Calculus 1, Final exam 2, Part 1

16th January, 2023

Name: \qquad Neptun code: \qquad

I. Definitions and theorems (15×3 points)

1. What does it mean that $\lim _{n \rightarrow \infty} a_{n}=A$, where $A \in \mathbb{R}$?
2. State the sandwich theorem for number sequences.
3. State the root test for number series.
4. State Leibniz's theorem for alternating series.
5. What does it mean that the number $x \in \mathbb{R}$ is a boundary point of the set $A \subset \mathbb{R}$?
6. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at the point $x_{0} \in \mathbb{R}$?
7. What does it mean that a function f has a removable discontinuity at the point $x_{0} \in \mathbb{R}$?
8. State the intermediate value theorem or Bolzano's theorem.
9. State Weierstrass' extreme value theorem for continuous functions.
10. What does it mean that a function is convex? Write down the definition.
11. What does it mean that a function is differentiable at the point $x_{0} \in \mathbb{R}$?
12. State Darboux's theorem.
13. Give two sufficient conditions for a function to have an inflection point at the point x_{0}.
14. Give two sufficient conditions for a function $f:[a, b] \longrightarrow \mathbb{R}$ to be Riemann integrable.
15. State the Newton-Leibniz formula.

II. Proof of a theorem (15 points)

Write down the statement of Rolle's theorem and prove it.

III. True or false? (15×3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. $\lim _{n \rightarrow \infty} a_{n}=A$ if and only if for all $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has only finitely many terms outside of the interval $(A-\varepsilon, A+\varepsilon)$.
2. If the sequence $\left(a_{n}\right)$ is bounded then it has a smallest and a greatest term.
3. If the sequence $\left(a_{n}\right)$ is bounded below but isn't bounded above then $\lim _{n \rightarrow \infty} a_{n}=\infty$.
4. If $\lim _{n \rightarrow \infty} a_{n}=10^{-10}$ then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
5. If the sequence $\left(a_{n}\right)$ is monotonically decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
6. If $x_{0} \in \mathbb{R}$ is an interior point of $A \in \mathbb{R}$ then x_{0} is a limit point of A.
7. If the function f is continuous on (a, b) then f is bounded.
8. If the function f is continuous on $(-1,1)$, then f has a minimum and a maximum on $(-1,1)$.
9. The function $f(x)=x^{3}-\sqrt{x^{2}+5}$ does not have a root on the interval $[0,2]$.
10. Let $f(2023)=1$ and $f(x)=0$, if $x \neq 2023$. Then f is differentiable at $x=2023$ from the right and from the left.
11. Let $f(x)=|x-2023|$. Then f is differentiable at $x=2023$ from the right and from the left.
12. Let $f(x)=2 x^{3}-x$ for $x \in[0,1]$. Then there exists a point in $x_{0} \in(0,1)$ such that the tangent line of the graph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$ is parallel to the straight line $y=x$.
13. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even, then f^{\prime} is odd.
14. The partial fraction decomposition of $f(x)=\frac{1}{x^{5}-x^{3}}$ cannot contain the term $\frac{1}{(x-1)^{2}}$.
15. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}$, where $x \in[a, b]$, then $F^{\prime}(x)=f(x)$.

Answers

I. Definitions and theorems (15×3 points)

1. What does it mean that $\lim _{n \rightarrow \infty} a_{n}=A$, where $A \in \mathbb{R}$?

Definition: $\lim _{n \rightarrow \infty} a_{n}=A \in \mathbb{R} \Longleftrightarrow$ for all $\varepsilon>0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon), \quad\left|a_{n}-A\right|<\varepsilon$.
2. State the sandwich theorem for number sequences.

Theorem: If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}, c_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $a_{n} \leq b_{n} \leq c_{n}$ for all $n>N$, then $b_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$
3. State the root test for number series.

Theorem: Assume that $a_{n}>0$ and lim sup $\sqrt[n]{a_{n}}=R$. Then
(1) if $R<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $R>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
4. State Leibniz's theorem for alternating series.

Theorem: Let $\left(a_{n}\right)$ be a monotonically decreasing sequence of positive numbers such that $a_{n} \xrightarrow{n \rightarrow \infty} 0$.
Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\ldots$ is convergent.
5. What does it mean that the number $x \in \mathbb{R}$ is a boundary point of the set $A \subset \mathbb{R}$?

Definition: $x \in \mathbb{R}$ is a boundary point of $A \subset \mathbb{R}$, if for all $r>0: B(x, r) \cap A \neq \varnothing$ and $B(x, r) \cap(\mathbb{R} \backslash A) \neq \varnothing$.
(That is, any interval $(x-r, x+r)$ contains a point in A and a point not in A.)
6. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at the point $x_{0} \in \mathbb{R}$?

Definition: The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at the point $x_{0} \in D_{f}$ if for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $x \in D_{f}$ and $\left|x-x_{0}\right|<\delta(\varepsilon)$ then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
7. What does it mean that a function f has a removable discontinuity at the point $x_{0} \in \mathbb{R}$?

Definition: f has a removable discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}} f(x) \in \mathbb{R}$ but $\lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$ or $f\left(x_{0}\right)$ is not defined.
8. State the intermediate value theorem or Bolzano's theorem.

Theorem: Assume that f is continuous on $[a, b], f(a) \neq f(b)$ and $f(a)<c<f(b)$ or $f(b)<c<f(a)$. Then there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=c$.

9. State Weierstrass' extreme value theorem for continuous functions

Theorem: If f is continuous on the closed interval $[a, b]$ then there exist numbers $\alpha \in[a, b]$ and $\beta \in[a, b]$, such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in[a, b]$, that is, f has both a minimum and a maximum on $[a, b]$.
10. What does it mean that a function is convex? Write down the definition.

Definition: The function f is convex on the interval $I \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$
$f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$
Or:
Definition: Let $h_{a, b}(x)$ denote the the secant line passing through the points ($a, f(a)$) and $(b, f(b))$.
The function f is convex on the interval $I \subset D_{f}$ if for all $\forall a, b \in I$ and $a<x<b \Longrightarrow f(x) \leq h_{a, b}(x)$, that is, the secant lines of f always lie above the graph of f.
11. What does it mean that a function is differentiable at the point $x_{0} \in \mathbb{R}$?

Definition: Suppose that x_{0} is an interior point of D_{f}. Then the function f is differentiable at x_{0} if the following finite limit exists: $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.

12. State Darboux's theorem.

Theorem: Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is differentiable and $f^{\prime}(a)<y<f^{\prime}(b)$ or $f^{\prime}(b)<y<f^{\prime}(a)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=y$.
13. Give two sufficient conditions for a function to have an inflection point at the point x_{0}.

Theorems:

1) If f is twice differentiable in a neighbourhood of $x_{0}, f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}$ changes sign at x_{0}, then f has an inflection point at x_{0}.
2) If f is three times differentiable in a neighbourhood of $x_{0}, f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$, then f has an inflection point at x_{0}.
14. Give two sufficient conditions for a function $f:[a, b] \longrightarrow \mathbb{R}$ to be Riemann integrable.

Theorems:

1) If f is monotonic and bounded on $[a, b]$ then f is Riemann integrable on $[a, b]$.
2) If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous then f is Riemann integrable on $[a, b]$.
3) If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and continuous except finitely many points then
f is Riemann integrable on $[a, b]$.
Any two conditions are suitable.
15. State the Newton-Leibniz formula.

Theorem: If $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable and $F:[a, b] \longrightarrow \mathbb{R}$ is an antiderivative of f, that is, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{dx}=F(b)-F(a)=[F(x)]_{a}^{b}$.

II. Proof of a theorem (15 points)

Write down the statement of Rolle's theorem and prove it.
Theorem (Rolle). Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. Since f is continuous on the closed and bounded interval $[a, b]$ then by the Weierstrass extreme value theorem f has a minimum and a maximum on $[a, b]$.

1) If both extreme values are attained at the endpoints, then

$$
\begin{aligned}
& f(x)=f(a)=f(b) \text { for all } x \in[a, b] \Longrightarrow f \text { is constant } \\
& \Longrightarrow f^{\prime}(c)=0 \text { for all } c \in(a, b) .
\end{aligned}
$$

2) If the minimum or the maximum is attained at an interior point $c \in(a, b)$, then f has a local extremum at c, so $f^{\prime}(c)=0$.

III. True or false? (15×3 points)

1. $\lim _{n \rightarrow \infty} a_{n}=A$ if and only if for all $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has only finitely many terms outside of the interval $(A-\varepsilon, A+\varepsilon)$.

True. $\lim _{n \rightarrow \infty} a_{n}=A \Longleftrightarrow$ for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-A\right|<\varepsilon$. It is equivalent with the above statement.
2. If the sequence $\left(a_{n}\right)$ is bounded then it has a smallest and a greatest term.

False. For example $a_{n}=\frac{1}{n}$ is bounded $\left(0<a_{n} \leq 1\right.$ for all $\left.n\right)$, its greatest term is 1 , but it doesn't have a smallest term.
3. If the sequence $\left(a_{n}\right)$ is bounded below but isn't bounded above then $\lim _{n \rightarrow \infty} a_{n}=\infty$.

False. For example, let $a_{2 n-1}=0$ and $a_{2 n}=n$. Then $\left(a_{n}\right)$ is bounded below but isn't bounded above.
Since $a_{2 n-1} \longrightarrow 0$ and $a_{2 n} \longrightarrow \infty$ then the limit points of $\left(a_{n}\right)$ are 0 and ∞, so the limit of (a_{n}) doesn't exist.
4. If $\lim _{n \rightarrow \infty} a_{n}=10^{-10}$ then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

True. Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then by the nth term test $\sum_{n=1}^{\infty} a_{n}$ is divergent.
5. If the sequence $\left(a_{n}\right)$ is monotonically decreasing and tends to zero, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

False. For example, $a_{n}=\frac{1}{n}$ is monotonically decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$, but $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
6. If $x_{0} \in \mathbb{R}$ is an interior point of $A \in \mathbb{R}$ then x_{0} is a limit point of A.

True. If x_{0} is an interior point of A then there exists $r>0$ such that $\left(x_{0}-r, x_{0}+r\right) \subset A$. From this it follows that any open interval $\left(x_{0}-s, x_{0}+s\right)$ also contains a point in $\left(x_{0}-r, x_{0}+r\right)$ that is distinct from x_{0}, so x_{0} is a limit point of A.
7. If the function f is continuous on (a, b) then f is bounded.

False. For example, $f(x)=\tan x$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ but not bounded.
8. If the function f is continuous on $(-1,1)$, then f has a minimum and a maximum on $(-1,1)$.

False. For example, $f:(-1,1) \longrightarrow \mathbb{R}, f(x)=x$ doesn't have a minimum and a maximum on $(-1,1)$.
9. The function $f(x)=x^{3}-\sqrt{x^{2}+5}$ does not have a root on the interval [0, 2].

False. $f(2)=5>0$ and $f(0)=-\sqrt{5}<0$, so by Bolzano's theorem f has a real root on the interval [0, 2]. That is, there exists a number $x_{0} \in(0,2)$ such that $f\left(x_{0}\right)=0$.
10. Let $f(2023)=1$ and $f(x)=0$, if $x \neq 2023$. Then f is differentiable at $x=2023$ from the right and from the left.

False. Since f is not continuous at $x=2023$ then f is not differentiable at $x=2023$.
11. Let $f(x)=|x-2023|$. Then f is differentiable at $x=2023$ from the right and from the left.

True. The right-hand derivative of f at $x=2023$ is
$f_{+}^{\prime}(2023)=\lim _{x \rightarrow 2023+0} \frac{f(x)-f(2023)}{x-2023}=\lim _{x \rightarrow 2023+0} \frac{(x-2023)-0}{x-2023}=1$,
so f is differentiable at $x=2023$ from the right.
Similarly, $f_{-}^{\prime}(2023)=-1$, so f is differentiable at $x=2023$ from the left.
Remark: Since $f_{+}{ }^{\prime}(2023)=1 \neq-1=f_{-}{ }^{\prime}(2023)$ then f is not differentiable at $x=2023$.
12. Let $f(x)=2 x^{3}-x$ for $x \in[0,1]$. Then there exists a point in $x_{0} \in(0,1)$ such that the tangent line of the graph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$ is parallel to the straight line $y=x$.

True. Since f is continuous on $[0,1]$ and differentiable on $(0,1)$ then by Lagrange's mean value theorem there exists $x_{0} \in(0,1)$ such that $f^{\prime}\left(x_{0}\right)=\frac{f(1)-f(0)}{1-0}=1$, which is equal to the slope of the straight line $y=x$.

13. If the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is even, then f^{\prime} is odd.

True. Since f is even, then $f(x)=f(-x)$, so $f^{\prime}(x)=f^{\prime}(-x) \cdot(-1)=-f^{\prime}(-x)$, therefore f^{\prime} is odd.
14. The partial fraction decomposition of $f(x)=\frac{1}{x^{5}-x^{3}}$ cannot contain the term $\frac{1}{(x-1)^{2}}$.

True. The partial fraction decomposition of $f(x)=\frac{1}{x^{5}-x^{3}}=\frac{1}{x^{3}\left(x^{2}-1\right)}=\frac{1}{x^{3}(x-1)(x+1)}$ is $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{2}}+\frac{D}{x-1}+\frac{E}{x+1}$
15. If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and $F(x)=\int_{a}^{x} f(t) d t$, where $x \in[a, b]$, then $F^{\prime}(x)=f(x)$.

True. This is the second fundamental theorem of calculus.

