Calculus 1, Final exam, Part 1

12th January, 2022

Name: \qquad Neptun code: \qquad

I.	II.	III.	IV.	\sum

I. Definitions and theorems (12×3 points)

1. What is the statement of the sandwich theorem for number sequences?
2. What does it mean that the sequence $\left(a_{n}\right)$ is a Cauchy sequence?
3. State Leibniz's theorem for alternating series.
4. What are the possible behaviours of a power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ with regard to the region of convergence?
5. What does it mean that the number $x \in \mathbb{R}$ is a boundary point of the set $A \subset \mathbb{R}$?
6. State the intermediate value theorem or Bolzano's theorem.
7. What does it mean that a function f has an essential discontinuity at x_{0} ?
8. What does it mean that a function is convex? Write down a necessary and sufficient condition for a function to be convex on an interval.
9. State the theorem about the derivative of the inverse of a function.
10. State the L'Hospital's rule.
11. Give two sufficient conditions for a function f to have an inflection point at x_{0}.
12. State the second fundamental theorem of calculus.

II. Proof of a theorem ($\mathbf{1 5}$ points)

Write down the statement of Lagrange's theorem and prove it.

III. True or false? (15×3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer.

1. If $a_{n}<0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} b_{n}=-\infty$ then $\lim _{n \rightarrow \infty} a_{n} b_{n}=+\infty$.
2. If $\lim _{n \rightarrow \infty} a_{n}=A \in \mathbb{R}$ then $a_{n}>A+1$ can occur only finitely many times.
3. If a sequence is strictly monotonically increasing then it is divergent.
4. If the sequence $\left(a_{n}\right)$ is monotonically decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$ then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
5. For all $A \subset \mathbb{R}$ if x is an accumulation point of A then $x \in A$.
6. If the function f is continuous on (a, b) then f has a minimum and a maximum on (a, b).
7. There exists a function $f:[a, b] \longrightarrow \mathbb{R}$ that is Lipschitz continuous but not uniformly continuous.
8. If the function f is differentiable at x_{0} and the function g is not differentiable at x_{0} then $f+g$ is not differentiable at x_{0}.
9. If the function f is differentiable on $[a, b]$ and f has exactly three roots in $[a, b]$ then f^{\prime} has at least two roots in $[a, b]$.
10. If a function f is differentiable everywhere on \mathbb{R} and $|f(5)-f(6)| \leq 1$ then $\left|f^{\prime}(x)\right| \leq 1$ for some $x \in[5,6]$.
11. If the function $f:(a, b) \longrightarrow \mathbb{R}$ is differentiable and strictly monotonically increasing then $f^{\prime}(x)>0$ for all $x \in(a, b)$.
12. There exists a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f^{\prime}(x)=\operatorname{sgn}(x)$ for all $x \in \mathbb{R}$.
13. If the function f is continuous on $[a, b]$ then f has an antiderivative on (a, b).
14. The function $f(x)=\sin \left(\frac{e^{x}}{x}\right)$ is Riemann integrable on [1, 2].
15. The improper integral $\int_{1}^{\infty} \frac{2+\sin x}{x^{3}} \mathrm{dx}$ is convergent.

IV. Examples (3 x 3 points)

1. Give an example for a nonnegative series $\sum_{n=0}^{\infty} a_{n}$ such that $\sqrt[n]{a_{n}}<1$ for all $n, \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1$ and $\sum_{n=0}^{\infty} a_{n}$ does not converge.
2. Give an example for a function $f:[a, b] \longrightarrow \mathbb{R}$ that is not Riemann integrable.
3. Give an example for a function $f:[0, \infty) \longrightarrow \mathbb{R}$ such that $\int_{-\infty}^{\infty} f(x) \mathrm{dx}=1$.

Solutions

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer.

1. If $a_{n}<0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} b_{n}=-\infty$ then $\lim _{n \rightarrow \infty} a_{n} b_{n}=+\infty$.

False. For example $a_{n}=-\frac{1}{n}<0$ and $b_{n}=-n \longrightarrow-\infty$ but $a_{n} b_{n}=1 \longrightarrow 1$.
2. If $\lim _{n \rightarrow \infty} a_{n}=A \in \mathbb{R}$ then $a_{n}>A+1$ can occur only finitely many times.

True. By the definition of the limit for $\varepsilon=1$ there exists $N \in \mathbb{N}$ such that for all $n>N$:
$A-1<a_{n}<A+1 \Longrightarrow a_{n}>A+1$ can occur only finitely many times (at most N times).
3. If a sequence is strictly monotonically increasing then it is divergent.

False. For example $a_{n}=1-\frac{1}{n}$ is monotonically increasing but $a_{n} \longrightarrow 1$.
4. If the sequence $\left(a_{n}\right)$ is monotonically decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$ then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

False. For example $a_{n}=\frac{1}{n}$ is monotonically decreasing and $a_{n} \rightarrow 0$ but the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
5. For all $A \subset \mathbb{R}$ if x is an accumulation point of A then $x \in A$.

False. For example if $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ or $A=(0,1)$ then $x=0$ is an accumulation point of A but $x \notin A$.
6. If the function f is continuous on (a, b) then f has a minimum and a maximum on (a, b).

False. For example $f(x)=\tan x$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ but f has no maximum and no minimum.
7. There exists a function $f:[a, b] \longrightarrow \mathbb{R}$ that is Lipschitz continuous but not uniformly continuous.

False. If a function is Lipschitz continuous then it is uniformly continuous.
8. If the function f is differentiable at x_{0} and the function g is not differentiable at x_{0} then $f+g$ is not differentiable at x_{0}.

True. $g=(f+g)-f \Longrightarrow$ if $(f+g)$ and f are differentiable then g is also differentiable.
9. If the function f is differentiable on $[a, b]$ and f has exactly three roots in $[a, b]$ then f^{\prime} has at least two roots in $[a, b]$.

True. If the roots are x, y, z and $a \leq x<y<z \leq b$ then by Rolle's theorem there exist $x<c_{1}<y$ and $y<c_{2}<z$ such that $f^{\prime}\left(c_{1}\right)=0$ and $f^{\prime}\left(c_{2}\right)=0$.
10. If a function f is differentiable everywhere on \mathbb{R} and $|f(5)-f(6)| \leq 1$ then $\left|f^{\prime}(x)\right| \leq 1$ for some $x \in[5,6]$.

True. By Lagrange's theorem there exists $c \in(5,6)$ such that $\frac{f(6)-f(5)}{6-5}=f^{\prime}(c) \Longrightarrow$ $|f(5)-f(6)|=\left|f^{\prime}(c)\right| \leq 1$.
11. If the function $f:(a, b) \longrightarrow \mathbb{R}$ is differentiable and strictly monotonically increasing then $f^{\prime}(x)>0$ for all $x \in(a, b)$.

False. For example $f(x)=x^{3}$ is differentiable and strictly monotonically increasing on $(-1,1)$ but $f^{\prime}(0)=0$. (However, the converse of the statement is true.)
12. There exists a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f^{\prime}(x)=\operatorname{sgn}(x)$ for all $x \in \mathbb{R}$.

False. By Darboux's theorem if $-1<y<1$ then $f^{\prime}(x)=y$ should hold for some x but if $y=\frac{1}{2}$ then there is no such x.
13. If the function f is continuous on $[a, b]$ then f has an antiderivative on (a, b).

True. It is a consequence of the second fundamental theorem of calculus: If f is continuous at $x_{0} \in[a, b]$ then $F(x)=\int_{a}^{x} f(t) \mathrm{dt}$ is differentiable x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
14. The function $f(x)=\sin \left(\frac{e^{x}}{x}\right)$ is Riemann integrable on [1, 2].

True. Since f is a composition of continuous functions then it is continuous, so it is Riemann integrable on [1, 2].
15. The improper integral $\int_{1}^{\infty} \frac{2+\sin x}{x^{3}} d x$ is convergent.

True. Since $0<\int_{1}^{\infty} \frac{2+\sin x}{x^{3}} \mathrm{~d} x<\int_{1}^{\infty} \frac{3}{x^{3}} \mathrm{dx}$ and $\int_{1}^{\infty} \frac{3}{x^{3}} \mathrm{dx}$ converges then by the comparison test for improper integrals $\int_{1}^{\infty} \frac{2+\sin x}{x^{3}} \mathrm{dx}$ also converges.

IV. Examples (3 x 3 points)

1. Give an example for a nonnegative series $\sum_{n=0}^{\infty} a_{n}$ such that $\sqrt[n]{a_{n}}<1$ for all $n, \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1$ and $\sum_{n=0}^{\infty} a_{n}$ does not converge.

For example if $a_{n}=\frac{1}{n}$ then $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges, $\sqrt[n]{a_{n}}=\frac{1}{\sqrt[n]{n}}<1$ and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=1$.
2. Give an example for a function $f:[a, b] \longrightarrow \mathbb{R}$ that is not Riemann integrable.

For example the Dirichlet function $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{array}\right.$ is not Riemann integrable on any closed interval, since the lower Darboux integral is 0 and the upper Darboux integral is $b-a$.
3. Give an example for a function $f:[0, \infty) \longrightarrow \mathbb{R}$ such that $\int_{-\infty}^{\infty} f(x) \mathrm{dx}=1$.

For example:

1) $\int_{0}^{\infty} e^{-x} d x=\lim _{A \rightarrow \infty}\left[-e^{-x}\right]_{0}^{A}=\lim _{A \rightarrow \infty}\left(-e^{-A}+e^{0}\right)=0+1=1 \Rightarrow \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x|} d x=1$
2) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \mathrm{dx}=\lim _{\substack{A \rightarrow \infty \\ B \rightarrow-\infty}}[\arctan]_{B}^{A}=\lim _{\substack{A \rightarrow \infty \\ B \rightarrow-\infty}}(\arctan A-\arctan B)=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi \Longrightarrow \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \mathrm{dx}=1$

