Calculus 1, Final exam, Part 2

10th January, 2023

Name:

\qquad Neptun code: \qquad
1.: \qquad 2.: \qquad 3.: \qquad 4.: \qquad 5.: \qquad 6.: \qquad 7.: \qquad 8.: \qquad Sum: \qquad

1. (10 points) Calculate the following limit: $\lim _{x \rightarrow 0} \frac{x^{3}-\arctan \left(x^{2}\right)}{\sin \left(x^{2}\right)}$
2. (5+5+5 points) Calculate the derivatives of the following functions:
a) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=(\sin 2 x)^{\frac{1}{x}}$
b) $f(x)=\sqrt{\frac{e^{2 x} \cdot \cos x}{\ln \left(x^{2}+1\right)}}$
c) $f(x)=\int_{0}^{x^{3}} \sqrt{e^{t}+t^{2}} d t$
3. (10 points) What is the largest possible volume of a right circular cylinder without top that can be made from 48 square decimeters of metal?
4. (15 points) Analyze the following function and sketch its graph: $f(x)=x+2+\frac{2}{x-1}$.
5. (10+10 points) Calculate the following integrals:
a) $I_{1}=\int x \arcsin \left(x^{2}\right) d x$
b) $I_{2}=\int_{0}^{3} \frac{\sqrt{x}}{x+1} \mathrm{dx} \quad$ (substitution: $t=\sqrt{x}$)
6. (10+10 points) Calculate the following integrals:
a) $I_{3}=\int \frac{x+1}{4 x^{3}+x} d x$
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}+3} d x \quad$ (substitution: $t=e^{x}$)
7. (10 points) Calculate the area of the region enclosed by the curves
$f(x)=x^{2}-3 x+2$ and $g(x)=5-x$.

8.* (10 points - BONUS)

How many real roots does the function $F(x)=\int_{-1}^{x} \sinh \left(t^{3}\right) d t$ have?

Solutions

1. (10 points) Calculate the following limit: $\lim _{x \rightarrow 0} \frac{x^{3}-\arctan \left(x^{2}\right)}{\sin \left(x^{2}\right)}$

Solution. The limit has the form $\frac{0}{0}$, so the L'Hospital's rule can be applied:
$\lim _{x \rightarrow 0} \frac{x^{3}-\arctan \left(x^{2}\right)}{\sin \left(x^{2}\right)} \stackrel{0}{0}$, ' ' $^{=}+\lim _{x \rightarrow 0} \frac{3 x^{2}-\frac{2 x}{1+x^{4}}}{\cos \left(x^{2}\right) \cdot 2 x}$ (4p) $\stackrel{\frac{0}{0}, L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{6 x-\frac{2\left(1+x^{4}\right)-2 x \cdot 4 x^{3}}{\left(1+x^{4}\right)^{2}}}{-\sin \left(x^{2}\right) \cdot 2 x \cdot 2 x+\cos \left(x^{2}\right) \cdot 2} \quad$ (4p) $=\frac{0-2}{0+2}=-1$

Or: $\lim _{x \rightarrow 0} \frac{3 x^{2}-\frac{2 x}{1+x^{4}}}{\cos \left(x^{2}\right) \cdot 2 x}=\lim _{x \rightarrow 0} \frac{3 x-\frac{2}{1+x^{4}}}{\cos \left(x^{2}\right) \cdot 2}=\frac{0-2}{0}=-2$
2. (5+5+5 points) Calculate the derivatives of the following functions:
a) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=(\sin 2 x)^{\frac{1}{x}}$
b) $f(x)=\sqrt{\frac{e^{2 x} \cdot \cos x}{\ln \left(x^{2}+1\right)}}$
c) $f(x)=\int_{0}^{x^{3}} \sqrt{e^{t}+t^{2}} d t$

Solution.

a) $f(x)=(\sin 2 x)^{\frac{1}{x}}=e^{\ln \left((\sin 2 x)^{\frac{1}{x}}\right)}=e^{\frac{1}{x} \ln (\sin 2 x)}$
$\Longrightarrow f^{\prime}(x)=e^{\frac{1}{x} \ln (\sin 2 x)} \cdot\left(\frac{1}{x} \ln (\sin 2 x)\right)^{\prime}=(\sin 2 x)^{\frac{1}{x}} \cdot\left(-\frac{1}{x^{2}} \ln (\sin 2 x)+\frac{1}{x} \cdot \frac{1}{\sin 2 x} \cdot \cos 2 x \cdot 2\right)$
b) $f(x)=\sqrt{\frac{e^{2 x} \cdot \cos x}{\ln \left(x^{2}+1\right)}} \Rightarrow f^{\prime}(x)=\frac{1}{2}\left(\frac{e^{2 x} \cdot \cos x}{\ln \left(x^{2}+1\right)}\right)^{-\frac{1}{2}} \cdot \frac{\left(e^{2 x} \cdot 2 \cdot \cos x+e^{2 x} \cdot(-\sin x)\right) \cdot \ln \left(x^{2}+1\right)-e^{2 x} \cdot \cos x \cdot \frac{2 x}{x^{2}+1}}{\left(\ln \left(x^{2}+1\right)\right)^{2}}$
c) $f(x)=\int_{0}^{x^{3}} \sqrt{e^{t}+t^{2}} \mathrm{dt}=g\left(x^{3}\right)$ where $g(x)=\int_{0}^{x} \sqrt{e^{t}+t^{2}} d t$

Since the integrand $\sqrt{e^{t}+t^{2}}$ is a continuous function of t then g is differentiable and $g^{\prime}(x)=\sqrt{e^{x}+x^{2}}$ $\Longrightarrow f^{\prime}(x)=g^{\prime}\left(x^{3}\right) \cdot 3 x^{2}=\sqrt{e^{x^{3}}+\left(x^{3}\right)^{2}} \cdot 3 x^{2}=\sqrt{e^{x^{3}}+x^{6}} \cdot 3 x^{2}$
3. (10 points) What is the largest possible volume of a right circular cylinder without top that can be made from 48 square decimeters of metal?

Solution. Let the radius of the base circle be r and the height of the cylinder by h.
We have to minimize the volume $V=r^{2} \pi h$. The surface area is $A=r^{2} \pi+2 r \pi h=48$ from where
$h=\frac{48-r^{2} \pi}{2 \pi r}$, so the volume as a function of r is $V(r)=r^{2} \pi \frac{48-r^{2} \pi}{2 \pi r}=\frac{1}{2}\left(48 r-r^{3} \pi\right)$. (4p) Then $V^{\prime}(r)=\frac{\pi}{2}\left(48-3 \pi r^{2}\right)=0$ from where $r=\frac{4}{\sqrt{\pi}}($ since $r>0) .(3 p)$
$V^{\prime \prime}(r)=\frac{\pi}{2} \cdot(-6 \pi r)$ and thus $V^{\prime \prime}\left(\frac{4}{\sqrt{\pi}}\right)<0$, so V has a local maximum for $r=\frac{4}{\sqrt{\pi}} \cdot \mathbf{(2 p)}$
The maximum of the volume is $V=\frac{64}{\sqrt{\pi}}$. (1p)
4. (15 points) Analyze the following function and sketch its graph: $f(x)=x+2+\frac{2}{x-1}$.

Solution.

1) The domain of f is $D_{f}=\mathbb{R} \backslash\{1\}$.

The zeros of f are: $x+2+\frac{2}{x-1}=0 \Rightarrow x_{1}=0, x_{2}=-1$
The limits of f at $\pm \infty$ and at 1 ± 0 are:
$\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow 1+0} f(x)=\infty, \lim _{x \rightarrow 1-0} f(x)=-\infty$ (2p)
2) $f^{\prime}(x)=1-\frac{2}{(x-1)^{2}}=0 \Rightarrow(x-1)^{2}=2 \Rightarrow x=1 \pm \sqrt{2}$ (5p)

x	$x<1-\sqrt{2}$	$x=1-\sqrt{2}$	$1-\sqrt{2}<x<1$	$x=1$	$1<x<1+\sqrt{2}$	$x=1+\sqrt{2}$	$1+\sqrt{2}<x$
f^{\prime}	+	0	-	not def.	-	0	+
f	\nearrow	loc. max.	\searrow	not def.	\searrow	loc. min.	\nearrow

$(f(1-\sqrt{2})=3-2 \sqrt{2}, \quad f(1+\sqrt{2})=3+2 \sqrt{2})$
3) $f^{\prime \prime}(x)=\frac{4}{(x-1)^{3}} \neq 0 \quad$ (5p)

x	$x<1$	$x=1$	$x>1$
$f^{\prime} '$	-	not def.	+
f	\cap	not def.	\cup

Linear asymptote of $f: y=A x+B$, where $A=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{x+2+\frac{2}{x-1}}{x}=1$ and
$B=\lim _{x \rightarrow \infty}(f(x)-A x)=\lim _{x \rightarrow \infty}\left(2+\frac{2}{x-1}\right)=2$.
$\Rightarrow y=x+2$

The graph of f : (3p)

5. (10+10 points) Calculate the following integrals:
a) $I_{1}=\int x \arcsin \left(x^{2}\right) d x$
b) $I_{2}=\int_{0}^{3} \frac{\sqrt{x}}{x+1} \mathrm{dx} \quad$ (substitution: $t=\sqrt{x}$)

Solution: a) We use the integration by parts method: $\int f^{\prime} \cdot g=f \cdot g-\int f \cdot g^{\prime}$

$$
\begin{aligned}
& \bullet f^{\prime}(x)=x \quad \Longrightarrow f(x)=\frac{x^{2}}{2} \\
& \bullet \\
& \Rightarrow I_{1}=\int x(x)=\arcsin \left(x^{2}\right) \Longrightarrow g^{\prime}(x)=\frac{1}{\sqrt{1-x^{4}}} \cdot 2 x \\
& =\frac{x^{2}}{2} \cdot \arcsin \left(x^{2}\right) \mathrm{dx}=\frac{x^{2}}{2} \cdot \arcsin \left(x^{2}\right)-\int \frac{x^{2}}{2} \cdot \frac{1}{\sqrt{1-x^{4}}} \cdot 2 x \mathrm{dx}= \\
& \quad=\frac{x^{2}}{2} \cdot \arcsin \left(x^{2}\right)+\int \frac{x^{3}}{\sqrt{1-x^{4}}} \cdot\left(-4 x^{3}\right)\left(1-x^{4}\right)^{-\frac{1}{2}} \mathrm{dx}=\frac{x^{2}}{2} \cdot \arcsin \left(x^{2}\right)+\frac{1}{4} \cdot \frac{\left(1-x^{4}\right)^{\frac{1}{2}}}{\frac{1}{2}}+c= \\
& \\
& =\frac{x^{2}}{2} \cdot \arcsin \left(x^{2}\right)+\frac{1}{2} \cdot \sqrt{1-x^{4}}+c
\end{aligned}
$$

b) $I_{2}=\int_{0}^{3} \frac{\sqrt{x}}{x+1} \mathrm{dx}=$? Substitution: $t=\sqrt{x} \Longrightarrow x=x(t)=t^{2} \Longrightarrow x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=2 t \Longrightarrow \mathrm{dx}=2 t \mathrm{dt}$ The bounds will change: $x_{1}=0 \Longrightarrow t_{1}=\sqrt{0}=0$

$$
\begin{gathered}
x_{2}=3 \Longrightarrow t_{2}=\sqrt{3} \\
\Rightarrow I_{2}=\int_{0}^{3} \frac{\sqrt{x}}{x+1} \mathrm{dx}=\int_{0}^{\sqrt{3}} \frac{t}{t^{2}+1} \cdot 2 t \mathrm{dt}(\mathbf{5 p})=\int_{0}^{\sqrt{3}} \frac{\left(2 t^{2}+2\right)-2}{t^{2}+1} \mathrm{dt}=\int_{0}^{\sqrt{3}}\left(2-\frac{2}{t^{2}+1}\right) \mathrm{dt}= \\
=[2 t-2 \arctan (t)]_{0}^{\sqrt{3}}=(2 \sqrt{3}-2 \arctan (\sqrt{3}))-(0-0)(5 \mathbf{p})=2\left(\sqrt{3}-\frac{\pi}{3}\right)
\end{gathered}
$$

6. (10+10 points) Calculate the following integrals:

a) $I_{3}=\int \frac{x+1}{4 x^{3}+x} d x$
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}+3} d x \quad$ (substitution: $t=e^{x}$)

Solution. a) We use partial fraction decomposition:

$$
\begin{aligned}
& \frac{x+1}{4 x^{3}+x}=\frac{x+1}{x\left(4 x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{4 x^{2}+1} \text { (2p) Multiplying by } x\left(4 x^{2}+1\right) \text { we get: } \\
& x+1=A\left(4 x^{2}+1\right)+x(B x+C) \\
& x=0 \Longrightarrow \quad \begin{array}{l}
1=A+0 \\
x=1 \Longrightarrow \quad 2=5 A+B+C \Rightarrow 2 C=2 \Longrightarrow C=1, B=-4 \text { (3p) } \\
x=-1 \Longrightarrow \quad 0=5 A+B-C
\end{array}
\end{aligned}
$$

$\Longrightarrow I_{3}=\int \frac{x+1}{4 x^{3}+x} \mathrm{dx}=\int\left(\frac{A}{x}+\frac{B x+C}{4 x^{2}+1}\right) \mathrm{dx}=\int\left(\frac{1}{x}+\frac{-4 x+1}{4 x^{2}+1}\right) \mathrm{dx}=$
$=\int\left(\frac{1}{x}+\left(-\frac{1}{2}\right) \frac{8 x}{4 x^{2}+1}+\frac{1}{(2 x)^{2}+1}\right) \mathrm{dx}=\ln |x|-\frac{1}{2} \ln \left(4 x^{2}+1\right)+\frac{1}{2} \arctan (2 x)+c$ (5p)
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}+3} d x=$? (substitution: $t=e^{x}$)

Substitution: $t=e^{x} \Longrightarrow x=x(t)=\ln t \Longrightarrow x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{t} \Longrightarrow \mathrm{dx}=\frac{1}{t} \mathrm{dt}$
$\Rightarrow I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}+3} \mathrm{dx}=\int \frac{t}{t^{2}+4 t+3} \cdot \frac{1}{t} \mathrm{dt}=\int \frac{1}{(t+1)(t+3)} \mathrm{dt}(\mathbf{4 p})$
Partial fraction decomposition: $\frac{1}{(t+1)(t+3)}=\frac{A}{t+1}+\frac{B}{t+3}$
$\begin{aligned} & \Longrightarrow \quad 1=A(t+3)+B(t+1) \\ & t=-1 \Longrightarrow \quad 1=2 A+0 \Longrightarrow A=\frac{1}{2}\end{aligned}$
$t=-3 \Longrightarrow \quad 1=0-2 B \Longrightarrow B=-\frac{1}{2}$ (3p)
$\Longrightarrow I_{4}=\int\left(\frac{1}{2} \frac{1}{t+1}-\frac{1}{2} \frac{1}{t+3}\right) \mathrm{dt}=\frac{1}{2} \ln |t+1|-\frac{1}{2} \ln |t+3|+c=\frac{1}{2} \ln \left(e^{x}+1\right)-\frac{1}{2} \ln \left(e^{x}+3\right)+c$ (3p) $=\frac{1}{2} \ln \frac{e^{x}+1}{e^{x}+3}+c$
7. (10 points) Calculate the area of the region enclosed by the curves
$f(x)=x^{2}-3 x+2$ and $g(x)=5-x$.

Results:

$x^{2}-3 x+2=5-x \Longrightarrow$ the x coordinate of the intersections points of the curves are $x_{1}=-1$ and $x_{2}=3$.
The area is $\int_{-1}^{3}\left((5-x)-\left(x^{2}-3 x+2\right)\right) \mathrm{dx}(\mathbf{5 p})=\left[3 x+x^{2}-\frac{x^{3}}{3}\right]_{-1}^{3}=\frac{32}{3}$ (5p)

8.* (10 points - BONUS)

How many real roots does the function $F(x)=\int_{-1}^{x} \sinh \left(t^{3}\right) d t$ have?
Solution. $F(-1)=0$. (1p) Since $F^{\prime}(x)=\sinh \left(x^{3}\right)(\mathbf{2 p})$ and $F^{\prime}(x)=0 \Longleftrightarrow x=0(\mathbf{1 p})$ then F may have at most one negative and one positive real root. (2p) Since $F(0)<0$ and $\lim _{x \rightarrow \infty} F(x)=\infty$ then F has a positive real root. (4p)

