Calculus 1, Final exam, Part 2

5th January, 2022
\qquad

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Σ

1. (10 points) Find the limit of the following sequence: $a_{n}=\sqrt[n]{\left(\frac{2 n}{3 n+1}\right)^{n+1}}$
2. (10 points) Decide whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{(n+3)!}{\sqrt{(2 n)!}}$
3. (10 points) Find the following limit: $\lim _{x \rightarrow \frac{1}{3}}\left(\frac{1}{\ln 3 x}-\frac{1}{3 x-1}\right)$
4. ($\mathbf{1 0}$ points) A rectangle R is inscribed in a semi-circle S of radius 1 . What is the minimal possible perimeter of R ?
5. (12 points) Give the Taylor polynomial of order 3 of the function $f(x)=x^{2}+5 x-3+\sin 2 x$ around the point $x_{0}=0$. Estimate the error if the value of $f(0.1)$ is approximated by $T_{3}(0.1)$.
6. (12 points) Calculate the following integral with the substitution $t=e^{x}: \int \frac{e^{x}+2}{e^{2 x}+1} d x$
7. (12 points) Calculate the following integral: $\int_{0}^{\infty} e^{-x}(3 x+1) d x$
8. (12 points) Calculate the following integral: $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)(\arctan x+\pi)} d x$
9. (12 points) Find the surface area of the following body of rotation (we rotate the given curve around the x-axis over the given interval):

$$
y=\sqrt{x+1}, \quad x \in[1,5]
$$

10.* (10 points - BONUS) Assume that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable everywhere.

Prove that if $\lim _{x \rightarrow \infty} f^{\prime}(x)=\infty$ then f is not uniformly continuous on $[0, \infty)$.

Results

1. The limit is $\frac{2}{3}$.
2. $\frac{a_{n+1}}{a_{n}} \rightarrow \frac{1}{2}<1 \Longrightarrow$ the series is convergent.
3. The limit is $\frac{1}{2}$.
4. The minimal possible perimeter is $2 \sqrt{5}$.
5. The Taylor polynomial is $T_{3}(x)=-3+7 x+\frac{2}{2!} x^{2}-\frac{8}{3!} x^{3}$

The remainder term is $R_{3}(x, \xi)=\frac{16 \sin 2 \xi}{4!} x^{4}$ where $x_{0}=0<\xi<x=0.1$
The error is $|E|=\left|R_{3}(0.1, \xi)\right|=\left|\frac{16 \sin 2 \xi}{4!} 0.1^{4}\right| \leq \frac{16 \cdot 1}{4!} 0.1^{4}$
6. $\int \frac{e^{x}+2}{e^{2 x}+1} d x=2 x+\arctan \left(e^{x}\right)-\ln \left(1+e^{2 x}\right)+c$
7. $\int_{0}^{\infty} e^{-x}(3 x+1) d x=4$
8. $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)(\arctan x+\pi)} d x=\ln 3$
9. $A=2 \pi \int_{1}^{5} \sqrt{x+1} \sqrt{1+\frac{1}{4 x+4}} \mathrm{dx}=\frac{49 \pi}{3}$
10. Since $f^{\prime} \rightarrow \infty$ then for all $K>0$ there exists $P(K)>0$ such that $f^{\prime}(x)>K$ if $x>P(K)$.
\Rightarrow if $x>y>P(K)$ then by Lagrange's mean value theorem there exists $c \in(y, x)$ such that $\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)>K \Rightarrow f(x)-f(y)>K(x-y)$ and $K(x-y)>1$ if $K>\frac{1}{x-y}$.

