Calculus 1, Final exam, Part 1

10th January, 2023

Name: \qquad Neptun code: \qquad

Part I: \qquad Part II.: \qquad Part III.: \qquad Sum: \qquad

I. Definitions and theorems (15×3 points)

1. What does it mean that $\lim _{n \rightarrow \infty} a_{n}=-\infty$?
2. State the Bolzano-Weierstrass theorem for number sequences.
3. Define the limes superior of the sequence $\left(a_{n}\right)$.
4. State the nth term test for number series.
5. State the ratio test for number series.
6. What does it mean that the number $x \in \mathbb{R}$ is an interior point of the set $A \subset \mathbb{R}$?
7. State the sequential criterion for continuity.
8. What does it mean that a function has a jump discontinuity?
9. Give a sufficient condition for a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ to be uniformly continuous on the set $A \subset \mathbb{R}$.
10. State Lagrange's mean value theorem.
11. What does it mean that a function is concave? Write down a necessary and sufficient condition for a function to be concave on an interval.
12. State the L'Hospital's rule.
13. Give two sufficient conditions for a function f to have a local maximum at the point x_{0}.
14. State the integration-by-parts formula.
15. What is the formula for the arc-length of a function $y=f(x), x \in[a, b]$?

II. Proof of a theorem (15 points)

Write down statement of the Newton-Leibniz formula and prove it.

III. True or false? (15×3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. $\lim a_{n}=A$ if and only if for all $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has infinitely many terms in the interval $(A-\varepsilon, A+\varepsilon)$.
2. If for all $K>0$ the sequence $\left(a_{n}\right)$ has only finitely many terms outside the interval (K, ∞) then $\lim _{n \rightarrow \infty} a_{n}=\infty$.
3. If $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$ then $\lim _{n \rightarrow \infty} a_{n}^{n}=0$.
4. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and $b_{n}<a_{n}$ for all positive integer n then $\sum_{n=1}^{\infty} b_{n}$ is also convergent.
5. If the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent then $\lim _{n \rightarrow \infty} a_{n}=0$.
6. If x is a boundary point of $A \subset \mathbb{R}$ then x is a limit point of A.
7. The polynomial $f(x)=-x^{7}+10 x^{4}+3 x+10$ has at least one real root.
8. There exists a continuous function $f:[-1,1] \rightarrow \mathbb{R}$ such that f has neither a minimum nor a maximum on $[-1,1]$.
9. There exists a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=2$ if $x \geq 0$ and $f^{\prime}(x)=-2$ if $x<0$.
10. The function $f(x)=2 x+\sin x$ is invertible on \mathbb{R}.
11. If a function is differentiable everywhere on \mathbb{R} and $\left|f^{\prime}\left(x_{0}\right)\right| \leq 1$ for all $x_{0} \in[4,5]$ then $|f(4)-f(5)| \leq 1$.
12. Assume that f is at least two times differentiable on \mathbb{R}. If f has a local minimum at x_{0} then $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$.
13. Let $f(x)=\frac{1}{x}$ if $0<x<1$ and $f(0)=0$. Then f is Riemann integrable on $[0,1]$.
14. The function $f(x)=\arctan \left(\frac{x^{2}}{x+3}\right)$ is Riemann integrable on the interval $[0,10]$.
15. If f is Riemann integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}$, where $x \in[a, b]$, then F is uniformly continuous on $[a, b]$.

Answers

I. Definitions and theorems (15×3 points)

1. What does it mean that $\lim _{n \rightarrow \infty} a_{n}=-\infty$?

Page 4: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-04-05.pdf
2. State the Bolzano-Weierstrass theorem for number sequences.

Page 1: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-08-09.pdf
3. Define the limes superior of the sequence $\left(a_{n}\right)$.

Page 4: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-08-09.pdf
4. State the nth term test for number series.

Page 9: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-08-09.pdf
5. State the ratio test for number series.

Page 7: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-10-11.pdf
6. What does it mean that the number $x \in \mathbb{R}$ is an interior point of the set $A \subset \mathbb{R}$?

Page 2: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-12-13.pdf
7. State the sequential criterion for continuity.

Page 9: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-14.pdf
8. What does it mean that a function has a jump discontinuity?

Page 12: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-14.pdf
9. Give a sufficient condition for a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ to be uniformly continuous on the set $A \subset \mathbb{R}$.

Page 7 (Heine's theorem) or Page 8 (Lipschitz continuity): https://math.bme.hu/~nagyi/calcu-lus1-2022/calculus1-15-16.pdf
10. State Lagrange's mean value theorem.

Page 13: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-17-18.pdf
11. What does it mean that a function is concave? Write down a necessary and sufficient condition for a function to be concave on an interval.

Definition: page 10: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-15-16.pdf Condition: page 11: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-19-20.pdf
12. State the L'Hospital's rule.

Page 1: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-19-20.pdf
13. Give two sufficient conditions for a function f to have a local maximum at the point x_{0}.

Page 7, first derivative test and second derivative test: https://math.bme.hu/~nagyi/calculus1-2022/cal culus1-19-20.pdf
14. State the integration-by-parts formula.

Page 3: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-21.pdf
15. What is the formula for the arc-length of a function $y=f(x), x \in[a, b]$?

Page 10: https://math.bme.hu/~nagyi/calculus1-2022/calculus1-22-23.pdf

III. True or false? (15×3 points)

1. $\lim _{n \rightarrow \infty} a_{n}=A$ if and only if for all $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has infinitely many terms in the interval $(A-\varepsilon, A+\varepsilon)$.

False. For example $a_{n}=(-1)^{n}$ is divergent and there are infinitely many terms in the interval (0,2).
2. If for all $K>0$ the sequence $\left(a_{n}\right)$ has only finitely many terms outside the interval (K, ∞) then $\lim _{n \rightarrow \infty} a_{n}=\infty$.

True. The statement is equivalent with the definition: $\lim _{n \rightarrow \infty} a_{n}=\infty \Longleftrightarrow$ for all $K>0$ there exists $N \in \mathbb{N}$ such that $a_{n}>K$ if $n>N$.
3. If $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$ then $\lim _{n \rightarrow \infty} a_{n}^{n}=0$.

True. If n is large enough then $0<a_{n}<\frac{3}{4}$, so $0<a_{n}^{n}<\left(\frac{3}{4}\right)^{n} \rightarrow 0$, and thus by the sandwich theorem $\lim _{n \rightarrow \infty} a_{n}^{n}=0$.
4. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and $b_{n}<a_{n}$ for all positive integer n then $\sum_{n=1}^{\infty} b_{n}$ is also convergent.

False. For example if $a_{n}=\frac{1}{n^{2}}$ and $b_{n}=-1$ then $\sum_{n=1}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty} b_{n}$ is divergent.
5. If the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent then $\lim _{n \rightarrow \infty} a_{n}=0$.

True. By the nth term test $\lim _{n \rightarrow \infty}(-1)^{n} a_{n}=0 \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=0$.
6. If x is a boundary point of $A \subset \mathbb{R}$ then x is a limit point of A.

False. A boundary point can be an isolated point. For example, if $A=(0,1) \cup\{2\}$ then $x=2$ is a boundary point but not a limit point of A.
7. The polynomial $f(x)=-x^{7}+10 x^{4}+3 x+10$ has at least one real root.

True. f is continuous and since $\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x)=\infty$ then there exists an interval $[a, b]$ such that $f(a)>1$ and $f(b)<-1$. So by Bolzano's theorem there exists $x \in(a, b)$ such that $f(x)=0$.
8. There exists a continuous function $f:[-1,1] \longrightarrow \mathbb{R}$ such that f has neither a minimum nor a maximum on $[-1,1]$.

False. By Weierstrass extreme value theorem if a function is continuous on a closed interval then it has both a minimum and a maximum on the interval.
9. There exists a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f^{\prime}(x)=2$ if $x \geq 0$ and $f^{\prime}(x)=-2$ if $x<0$.

False. By Darboux' theorem f^{\prime} cannot have a jump discontinuity.
10. The function $f(x)=2 x+\sin x$ is invertible on \mathbb{R}.

True. Since $f^{\prime}(x)=2+\cos x>0$ for all $x \in \mathbb{R}$ then f is strictly monotonically increasing on \mathbb{R}, so f is invertible on \mathbb{R}.
11. If a function is differentiable everywhere on \mathbb{R} and $\left|f^{\prime}\left(x_{0}\right)\right| \leq 1$ for all $x_{0} \in[4,5]$ then $|f(5)-f(4)| \leq 1$.

True. By Lagrange's theorem there exists $c \in(4,5)$ such that $f^{\prime}(c)=\frac{f(5)-f(4)}{5-4}$. Since $\left|f^{\prime}\left(x_{0}\right)\right| \leq 1$ for all $x_{0} \in[4,5]$ then $|f(5)-f(4)| \leq 1$.
12. Assume that f is at least two times differentiable on \mathbb{R}. If f has a local minimum at x_{0} then $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$.

False. For example $f(x)=x^{4}$ has a local minimum at $x_{0}=0, f^{\prime}(0)=0$, but $f^{\prime \prime}(0)=0$.
13. Let $f(x)=\frac{1}{x}$ if $0<x<1$ and $f(0)=0$. Then f is Riemann integrable on $[0,1]$.

False. f is not bounded, but boundedness is necessary for Riemann integrability.
14. The function $f(x)=\arctan \left(\frac{x^{2}}{x+3}\right)$ is Riemann integrable on the interval [0, 10].

True. Since f is a composition of continuous functions then it is continuous, so it is Riemann integrable on $[0,10]$.
15. If f is Riemann integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}$, where $x \in[a, b]$, then F is uniformly continuous on $[a, b]$.

True. By the second fundamental theorem of calculus, F is Lipschitz continuous on $[a, b]$, so f is uniformly continuous on $[a, b]$.

