Calculus 1, Final exam, Part 1

5th January, 2022

Name: _____ Neptun code: _____

I.	Н.	III.	IV.	Σ	

I. Definitions and theorems (12 x 3 points)

- 1. What is the relationship between boundedness, monotonicity and convergence of sequences?
- 2. State the root test for number series.
- 3. State the integral test for number series.
- 4. What does it mean that a series is conditionally convergent?
- 5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $A \subset \mathbb{R}$?
- 6. What is the sequential criterion for a limit of a function?
- 7. What does it mean that a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on an interval $I \subset \mathbb{R}$?
- 8. What is the definition of a function being differentiable at a point $x_0 \in \mathbb{R}$?
- 9. State Weierstrass' extreme value theorem for continuous functions.
- 10. State Taylor's theorem with the remainder term.
- 11. State the Newton-Leibniz formula.
- 12. Give two sufficient conditions for a function $f : [a, b] \rightarrow \mathbb{R}$ to be Riemann integrable.

II. Proof of a theorem (15 points)

Write down the statement of Rolle's theorem and prove it.

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer.

- 1. If $\lim_{n\to\infty} a_n^2 = +\infty$ then $\lim_{n\to\infty} a_n = -\infty$ or $\lim_{n\to\infty} a_n = \infty$.
- 2. If the sequences (a_n) and $(a_n + b_n)$ are convergent then the sequence (b_n) is also convergent.
- 3. There exists a sequence that does not have a monotonic subsequence.

4. If a nonnegative series $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} \sqrt{a_n}$ also converges.

5. If $a_n > 0$ for all $n \in \mathbb{N}$ and the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent then $\lim_{n \to \infty} a_n = 0$.

6. The set of rational numbers is open in \mathbb{R} .

7. There exists a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous only at one point.

8. If the function *f* is continuous on (*a*, *b*) then *f* is bounded on (*a*, *b*).

9. If the function f is continuous at x_0 then f is differentiable at x_0 .

10. Let $f(x) = x^4 - x^2$ for $x \in [-1, 1]$. Then there exists a point in (-1, 1) at which the tangent line is parallel to the *x*-axis.

11. If the function f is twice differentiable on an open interval containing x_0 and $f'(x_0) = f''(x_0) = 0$ then f has an inflection point at x_0 .

12. If a function f is differentiable on [a, b] and $f'(x) \ge 0$ for all $x \in [a, b]$ then it implies that $f(b) \ge f(a)$.

13. The partial fraction decomposition of $f(x) = \frac{1+x}{(x-1)^3(x^2+x+1)}$ cannot contain the term $\frac{A}{(x-1)^4}$.

14. The function $f(x) = \operatorname{sgn}(x) e^x$ is Riemann integrable on the interval [-1, 1].

15. The improper integral $\int_{1}^{\infty} \frac{\arctan x}{x^2} dx$ is convergent.

IV. Examples (3 x 3 points)

1. Give an example for a sequence (a_n) such that (a_n) is not bounded and $\frac{1}{a_n}$ is not convergent.

2. Give an example for a function $f:[a, b] \rightarrow \mathbb{R}$ that does not have an antiderivative.

```
3. Give an example for a function f : [1, 2) \longrightarrow \mathbb{R} such that f is not bounded but \int_{1}^{2} f(x) dx is convergent.
```

Answers

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer.

1. If $\lim_{n \to \infty} a_n^2 = +\infty$ then $\lim_{n \to \infty} a_n = -\infty$ or $\lim_{n \to \infty} a_n = \infty$.

False. For example if $a_n = (-1)^n n$ then $\lim_{n \to \infty} a_n$ doesn't exist but $\lim_{n \to \infty} a_n^2 = +\infty$.

2. If the sequences (a_n) and $(a_n + b_n)$ are convergent then the sequence (b_n) is also convergent.

True. Since $b_n = (a_n + b_n) - a_n$ then (b_n) is also convergent (by the difference rule).

3. There exists a sequence that does not have a monotonic subsequence.

False. Every sequence has a monotonic subsequence by the Bolzano-Weierstrass theorem.

4. If a nonnegative series $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} \sqrt{a_n}$ also converges.

False. For example if $a_n = \frac{1}{n^2}$ then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges but $\sum_{n=1}^{\infty} \sqrt{a_n} = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

5. If $a_n > 0$ for all $n \in \mathbb{N}$ and the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent then $\lim_{n \to \infty} a_n = 0$.

True. By the *n*the term test $\lim_{n \to \infty} (-1)^n a_n = 0 \implies \lim_{n \to \infty} a_n = 0.$

(Or, if $\lim_{n \to \infty} a_n \neq 0$ then $\lim_{n \to \infty} (-1)^n a_n$ doesn't exist, so by the *n*the term test he series would be divergent.)

6. The set of rational numbers is open in \mathbb{R} .

False. If $x \in \mathbb{Q}$ and *I* is an interval containing x then *I* contains irrational numbers, so *I* is not a subset of \mathbb{Q} .

7. There exists a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous only at one point.

True. For example let $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$. Then *f* is continuous only at 0.

8. If the function *f* is continuous on (*a*, *b*) then *f* is bounded on (*a*, *b*).

False. For example $f(x) = \tan x$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ but not bounded.

9. If the function f is continuous at x_0 then f is differentiable at x_0 .

False. For example f(x) = |x| is continuous at 0 but not differentiable at 0.

10. Let $f(x) = x^4 - x^2$ for $x \in [-1, 1]$. Then there exists a point in (-1, 1) at which the tangent line is

parallel to the *x*-axis.

True. Since f is differentiable on [-1, 1] and f(1) = f(-1) then by Rolle's theorem there exists $c \in (-1, 1)$ such that f'(c) = 0.

11. If the function f is twice differentiable on an open interval containing x_0 and $f'(x_0) = f''(x_0) = 0$ then f has an inflection point at x_0 .

False. For example if $f(x) = x^4$ then f'(0) = f''(0) = 0 but f has a local minimum at $0 \implies f$ doesn't have an inflection point at 0.

12. If a function f is differentiable on [a, b] and f'(x) ≥ 0 for all $x \in [a, b]$ then it implies that $f(b) \ge f(a)$.

True. By Lagrange's mean value theorem there exists $c \in (a, b)$ such that $\frac{f(b) - f(a)}{b - a} = f'(c) \implies f(b) - f(a) = f'(c) (b - a) \ge 0 \implies f(b) \ge f(a)$

13. The partial fraction decomposition of $f(x) = \frac{1+x}{(x-1)^3(x^2+x+1)}$ cannot contain the term

$$\frac{A}{\left(x-1\right)^4}.$$

True. The partial fraction decomposition of *f* is $f(x) = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{Dx+E}{x^2+x+1}$

14. The function $f(x) = \operatorname{sgn}(x) e^x$ is Riemann integrable on the interval [-1, 1].

True, since f is bounded on [-1, 1] and has a jump discontinuity at 0.

15. The improper integral $\int_{1}^{\infty} \frac{\arctan x}{x^2} dx$ is convergent.

True. Since $0 < \int_{1}^{\infty} \frac{\arctan x}{x^2} \, dx < \int_{1}^{\infty} \frac{\pi}{2} \frac{1}{x^2} \, dx$ and $\int_{1}^{\infty} \frac{1}{x^2} \, dx$ converges then by the comparison test for improper integrals $\int_{1}^{\infty} \frac{\arctan x}{x^2} \, dx$ also converges.

IV. Examples (3 x 3 points)

1. Give an example for a sequence (a_n) such that (a_n) is not bounded and $\frac{1}{n}$ is not convergent.

For example let $a_n = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n & \text{if } n \text{ is even} \end{cases} \implies (a_n) \text{ is not bounded.}$ Then $\frac{1}{a_n} = \begin{cases} 1 \longrightarrow 1 & \text{if } n \text{ is odd} \\ \frac{1}{n} \longrightarrow 0 & \text{if } n \text{ is even} \end{cases} \implies \lim_{n \to \infty} \frac{1}{a_n} \text{ doesn't exist.}$ 2. Give an example for a function $f:[a, b] \rightarrow \mathbb{R}$ that does not have an antiderivative.

Any function with a jump discontinuity is suitable. For example f(x) = sgn(x) on [-1, 1] doesn't have an antiderivative by Darboux's theorem.

Or, the Dirichlet function on [-1, 1] doesn't have an antiderivative either.

3. Give an example for a function $f : [1, 2) \longrightarrow \mathbb{R}$ such that f is not bounded but $\int_{1}^{2} f(x) dx$ is convergent.

We know that
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
 converges $\left(and \int_0^1 \frac{1}{\sqrt{x}} dx = 2 \right)$ so we can transform the integral:
 $\int_1^2 \frac{1}{\sqrt{2-x}} dx$ also converges $\left(and \int_1^2 \frac{1}{\sqrt{2-x}} dx = 2 \right)$.