Practice exercises 13.

1. Find the values of the following definite integrals.
a) $\int_{0}^{\pi} \cos ^{2} x d x$
b) $\int_{0}^{1} x e^{-3 x} \mathrm{dx}$
c) $\int_{0}^{2} e^{|2 x-1|} d x$
2. Compute the area of the region enclosed by the following curves.
a) $f(x)=x^{2}+2 x, g(x)=4-x^{2}$
b) $y=\ln x, y=0, x=\frac{1}{e}, x=e$
3. Calculate the derivatives of the following functions.
a) $A(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{4}}} \mathrm{dt}$
b) $B(x)=\int_{0}^{x^{3}} \frac{1}{\sqrt{1+t^{4}}} d t$
c) $C(x)=\int_{x}^{x^{3}} \frac{1}{\sqrt{1+t^{4}}} d t$
4. Calculate the following limits:
a) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \ln (1+t) d t}{x^{2}}$
b) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sqrt{1+t^{4}} d t}{x^{2}}$
5.* Find the arc length of the following curves on the given intervals:
a) $f(x)=x^{2}, x \in[0,1]$
b) $f(x)=\cosh x, x \in[-\ln 2, \ln 2]$
5. Calculate the volume of the following bodies of rotation (the graph of f is rotated about the x axis over the given interval).
a) $f(x)=\sqrt{x}, x \in[0,4]$
b) $f(x)=e^{x}, x \in[0,2]$
c) $f(x)=\sqrt{\cos x}, x \in\left[0, \frac{\pi}{2}\right]$
d) $f(x)=\frac{1}{\cos x}, x \in\left[0, \frac{\pi}{4}\right]$
6. Calculate the surface area of the following bodies of rotation (the graph of f is rotated about the x axis over the given interval).
a) $f(x)=x^{3}, x \in[0,1]$
b) $f(x)=\sqrt{x+1}, x \in[0,2]$

Results

1. Find the values of the following definite integrals.
a) $\int_{0}^{\pi} \cos ^{2} x d x$
b) $\int_{0}^{1} x e^{-3 x} \mathrm{dx}$
c) $\int_{0}^{2} e^{|2 x-1|} d x$
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf
2. a) page 96 , exercise 11 .
c) page 97 , exercise 13 .
b)
3. Compute the area of the region enclosed by the following curves.
a) $f(x)=x^{2}+2 x, g(x)=4-x^{2}$
b) $y=\ln x, y=0, x=\frac{1}{e}, x=e$

The area between the graphs of $f(x)$ and $g(x)$ if $x \in[a, b]$ is:
$A=\int_{a}^{b}|f(x)-g(x)| d x$
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf
2. a) page 98 , exercise 15 ., see figure 5.1 on page 99 .
b) page 99 , exercise 16. , see figure 5.2 on page 100 .
3. Calculate the derivatives of the following functions.
a) $A(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{4}}} d t$
b) $B(x)=\int_{0}^{x^{3}} \frac{1}{\sqrt{1+t^{4}}} d t$
c) $C(x)=\int_{x}^{x^{3}} \frac{1}{\sqrt{1+t^{4}}} d t$
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf
3. page 104, exercise 21.
4. Calculate the following limits:
a) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \ln (1+t) d t}{x^{2}}$
b) $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sqrt{1+t^{4}} d t}{x^{2}}$

Apply the L'Hospital's rule.
a) $\frac{1}{2}$
b) 1
5. * Find the arc length of the following curves on the given intervals:
a) $f(x)=x^{2}, x \in[0,1]$
b) $f(x)=\cosh x, x \in[-\ln 2, \ln 2]$

The arc length can be calculated as $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$
a) $\frac{1}{4}(2 \sqrt{5}+\operatorname{arsinh}(2))$
b) $\frac{3}{2}$
6. Calculate the volume of the following bodies of rotation (the graph of f is rotated about the x axis over the given interval).
a) $f(x)=\sqrt{x}, x \in[0,4]$
b) $f(x)=e^{x}, \quad x \in[0,2]$
c) $f(x)=\sqrt{\cos x}, x \in\left[0, \frac{\pi}{2}\right]$
d) $f(x)=\frac{1}{\cos x}, x \in\left[0, \frac{\pi}{4}\right]$

The volume can be calculated as $V=\pi \int_{a}^{b} f^{2}(x) d x$
a) $f^{2}(x)=x \Rightarrow \pi \int x d x=\frac{\pi x^{2}}{2}$
$\Rightarrow V=\pi \int_{a}^{b} x \mathrm{dx}=8 \pi$
b) $f^{2}(x)=e^{2 x} \Rightarrow \pi \int e^{2 x} \mathrm{~d} x=\frac{\pi}{2} \cdot e^{2 x} \quad \Rightarrow V=\pi \int_{0}^{2} e^{2 x} d x=\frac{\pi}{2} \cdot\left(e^{4}-1\right)$
c) $f^{2}(x)=\cos x \Rightarrow \pi \int \cos x d x=\pi \sin x \quad \Rightarrow V=\pi \int_{0}^{\pi / 2} \cos x d x=\pi$
d) $f^{2}(x)=\frac{1}{\cos ^{2} x} \Rightarrow \pi \int \frac{1}{\cos ^{2} x} \mathrm{~d} x=\pi \tan x \Rightarrow V=\pi \int_{0}^{\pi / 4} \frac{1}{\cos ^{2} x} \mathrm{~d} x=\pi$
7. Calculate the surface area of the following bodies of rotation (the graph of f is rotated about the x axis over the given interval).
a) $f(x)=x^{3}, \quad x \in[0,1]$
b) $f(x)=\sqrt{x+1}, x \in[0,2]$

The volume can be calculated as $A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$
a) $f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=x^{3} \sqrt{1+9 x^{4}}$

$$
\begin{aligned}
& \Longrightarrow \int x^{3} \sqrt{1+9 x^{4}} \mathrm{~d} x=\frac{1}{54}\left(1+9 x^{4}\right)^{3 / 2} \\
& \Rightarrow A=\frac{\pi}{27}(10 \sqrt{10}-1)
\end{aligned}
$$

b) $f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{x+1} \sqrt{1+\frac{1}{4(x+1)}}=\frac{1}{2} \sqrt{4 x+5}$
$\Rightarrow \int_{2}^{1} \sqrt{4 x+5} \mathrm{dx}=\frac{1}{12}(5+4 x)^{3 / 2}$
$\Longrightarrow A=\pi\left(\frac{9}{2}-\frac{5 \sqrt{5}}{6}\right)$

Additional exercises: from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf

