Practice exercises 11.

1. Find the following Taylor polynomials of order n and center x_{0}.
a) $f(x)=\sin x, x_{0}=\frac{\pi}{3}, n=3$
b) $f(x)=2^{x}, x_{0}=1, n=3$
c) $f(x)=\tan x, x_{0}=0, n=3$
d) $f(x)=\tan x, x_{0}=\frac{\pi}{4}, n=2$
e) $f(x)=\log (1-x), \quad x_{0}=1, n=4$
f) $f(x)=\arccos x^{2}, \quad x_{0}=0, n=2$
2. Let $P(x)$ be a polynomial of degree n. Prove that the Taylor polynomial of order n corresponding to $P(x)$ at any center $x_{0} \in \mathbb{R}$ is $P(x)$ itself.
3. Estimate the value of $\sqrt{65}$ by the Taylor polynomial of order 2 of $f(x)=\sqrt{x}$ at center 64. Give an upper bound for the error of the approximation.
4. Estimate the value of $\log 1.2$ by the Taylor polynomial of order 3 of $f(x)=\log (1+x)$ at center 0 . Give an upper bound for the error of the approximation.
5. Estimate the value of sinh 1 by an appropriate Taylor polynomial with error less than 10^{-2}.
6. Calculate the Taylor series of the following function with center x_{0} and find the radius of convergence.
a) $f(x)=\sin 2 x, x_{0}=\pi$
b) $f(x)=3^{x}, x_{0}=1$
c) $f(x)=\frac{1}{x-2}, x_{0}=0$
d) $f(x)=\frac{1}{x-2}, x_{0}=5$
e) $f(x)=\frac{1}{x^{2}+3}, x_{0}=0$
f) $f(x)=\frac{x^{5}}{x^{2}+3}, x_{0}=0$
g) $f(x)=\frac{1}{(1-x)^{2}}, x_{0}=2$
h) $f(x)=\sinh 3 x^{3}, x_{0}=0$
i) $f(x)=\arccos x, x_{0}=0$
j) $f(x)=\cosh x, x_{0}=-1$
k) $f(x)=x^{2} \cdot \sqrt[3]{64-8 x^{2}}, x_{0}=0$
l) $f(x)=\frac{x}{\sqrt{x-1}}, x_{0}=3$
