Practice exercises 10.

1. Analyze the following functions and sketch their graphs:

a)
$$f(x) = 2x^4 - 4x^2 + 1$$

b)
$$f(x) = \frac{8}{x^2 + 4}$$

c) (x) =
$$\frac{x}{x^2 + 1}$$

$$d) f(x) = \frac{x}{x^2 - 1}$$

e)
$$f(x) = \frac{x^2}{x - 1}$$

$$f) f(x) = x^2 \ln x^2$$

a)
$$f(x) = 2x^4 - 4x^2 + 1$$

b) $f(x) = \frac{8}{x^2 + 4}$
c) $(x) = \frac{x}{x^2 + 1}$
d) $f(x) = \frac{x}{x^2 - 1}$
e) $f(x) = \frac{x^2}{x - 1}$
f) $f(x) = x^2 \ln x^2$
g) $f(x) = x - \arctan \frac{x}{x + 1}$
h) $f(x) = (x - 3) e^{-x}$
i) $f(x) = (x + 2)^2 e^{-x}$
j) $f(x) = e^{-x^2}$
k) $f(x) = x + \sin x$, $x = x + \sin x$

h)
$$f(x) = (x - 3) e^{-x}$$

i)
$$f(x) = (x + 2)^2 e^{-x}$$

j)
$$f(x) = e^{-x^2}$$

k)
$$f(x) = x e^{-x^2}$$

l)
$$f(x) = x + \sin x$$
, $x \in [0, 2\pi]$

2. Find the absolute extreme values of the following functions on the given intervals:

a)
$$f(x) = x^3 - 6x^2 - 15x + 3$$
 on [-6, 6]

b)
$$f(x) = x^2 \ln x$$
 on [1, e]

3. Write 50 as the sum of two positive numbers so that their product is maximal.

4. We make a rectangular box with a square base open at the top. The maximum surface area of the box is $A = 2 m^2$. How should we choose the dimensions of the box so that its volume V is the largest, and what is this maximum volume?

5. Find the maximal volume of a cylinder inscribed in a sphere of radius 1.

6. Determine the dimensions of a straight cylinder of a given volume when the surface area is the least possible.

7. Find the minimal and maximal distance between the point A(2, 0) and the points of the circle with equation $x^2 + y^2 = 1$.

8.* Find the maximal element of the sequence $a_n = \frac{n^2}{n^3 + 100}$.

9.* Prove that the polynomial

$$p(x) = 1 - 2x^{11} + 3x^{24} - 4x^{35} + 5x^{46}$$

has at most 4 real roots.

Hint: If a real polynomial q(x) has n roots, then at least how many sign changes does q' have? Apply this several times.