Practice exercises 10.

1. Analyze the following functions and sketch their graphs:
a) $f(x)=2 x^{4}-4 x^{2}+1$
b) $f(x)=\frac{8}{x^{2}+4}$
c) $(x)=\frac{x}{x^{2}+1}$
d) $f(x)=\frac{x}{x^{2}-1}$
e) $f(x)=\frac{x^{2}}{x-1}$
f) $f(x)=x^{2} \ln x^{2}$
g) $f(x)=x-\arctan \frac{x}{x+1}$
h) $f(x)=(x-3) e^{-x}$
i) $f(x)=(x+2)^{2} e^{-x}$
j) $f(x)=e^{-x^{2}}$
k) $f(x)=x e^{-x^{2}}$
l) $f(x)=x+\sin x, x \in[0,2 \pi]$
2. Find the absolute extreme values of the following functions on the given intervals:
a) $f(x)=x^{3}-6 x^{2}-15 x+3$ on $[-6,6]$
b) $f(x)=x^{2} \ln x$ on $[1, e]$
3. Write 50 as the sum of two positive numbers so that their product is maximal.
4. We make a rectangular box with a square base open at the top. The maximum surface area of the box is $A=2 \mathrm{~m}^{2}$. How should we choose the dimensions of the box so that its volume V is the largest, and what is this maximum volume?
5. Find the maximal volume of a cylinder inscribed in a sphere of radius 1 .
6. Determine the dimensions of a straight cylinder of a given volume when the surface area is the least possible.
7. Find the minimal and maximal distance between the point $A(2,0)$ and the points of the circle with equation $x^{2}+y^{2}=1$.
8. * Find the maximal element of the sequence $a_{n}=\frac{n^{2}}{n^{3}+100}$.
9.* Prove that the polynomial
$p(x)=1-2 x^{11}+3 x^{24}-4 x^{35}+5 x^{46}$
has at most 4 real roots.
Hint: If a real polynomial $q(x)$ has n roots, then at least how many
sign changes does q ' have? Apply this several times.
