Practice exercises 4.

Limit superior and limit inferior

Find the limit inferior and limit superior of the following sequences.
a) $a_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2}$
b) $a_{n}=\left(3+(-1)^{n}\right) n$
c) $a_{n}=1+2(-1)^{n}+3(-1)^{\frac{n(n+1)}{2}}$
d) $a_{n}=\cos \left(\frac{n \pi}{2}\right) \cdot \frac{2 n^{2}-3}{n^{2}+n+8}, \quad b_{n}=\cos \left(\frac{n \pi}{2}\right) \cdot \frac{2 n^{2}-3}{n^{3}+n+8}$
e) $a_{n}=\frac{(-3)^{n}+8}{5+4^{n}}, \quad b_{n}=\frac{(-4)^{n}+8}{5+4^{n}}$
f) $a_{n}=\sqrt{\frac{n^{3}+(-1)^{n} n^{3}}{3 n^{3}+n+7}}$

Additional exercises

1.* Let $\left(a_{n}\right)$ be a sequence of positive terms and let
$A_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}, \quad G_{n}=\sqrt[n]{a_{1} a_{2} \ldots a_{n}}, \quad H_{n}=\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}}$.
a) Prove that if $\lim _{n \rightarrow \infty} a_{n}=A \in \mathbb{R}$ or $\lim _{n \rightarrow \infty} a_{n}=+\infty$ then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} G_{n}=\lim _{n \rightarrow \infty} H_{n}$.
b) Using this result prove that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n!}}=0$ and $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e$.
2.* For all $r>0$ show examples for sequences $a_{n} \longrightarrow 0+$ and $b_{n} \longrightarrow 0$ such that

$$
a_{n}{ }^{b_{n}} \rightarrow r .
$$

3.* For all $n \in \mathbb{N}$ we define the value of a_{n} by placing a decimal point in front of the index n written in the decimal number system and then a zero digit in front of it, and we interpret the number thus obtained in the decimal number system. For example $a_{4523}=0.4523$ and $a_{100}=0.100$. Find the accumulation points of the number sequence $\left(a_{n}\right)$.
4.* Consider the following number sequence:
$\frac{0}{1}, \frac{0}{2}, \frac{1}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{0}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \ldots \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{0}{n+1}, \frac{1}{n+1}, \ldots$
a) Is 0 an accumulation point of the sequence?
b) Is 1 an accumulation point of the sequence?
c) Is the sequence convergent?
d) Exactly what real numbers are the accumulation points of the sequence?

Give reasons for your answers.
5.* Is there a number sequence whose real accumulation points are
a) the integers;
b) the rational numbers;
c) the points of the $\operatorname{set}\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$;
d) the points of the $\operatorname{set}\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} \cup\{0\}$;
e) the $[0,1]$ closed interval?

If the answer is yes, then construct such a sequence.

