Calculus 1, Midterm Test 1

28th October, 2021

Name: \qquad Neptun code: \qquad

1.	2.	3.	4.	5.	6.	7.	8.	9.	\sum

1. (10 points) Solve the following equation on the set of complex numbers:

$$
z^{2}=z+3 \bar{z}
$$

2. (9 points) Let $a_{n}=\frac{6 n^{3}+n^{2}-7}{3 n^{3}-2 n+1}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.
3. (9+9 points) Find the limit of the following sequences:
a) $a_{n}=\sqrt[n]{\frac{3^{n} \cdot n+5^{n}}{n^{2}+2}}$
b) $a_{n}=\left(\frac{n^{2}+4}{n^{2}+2}\right)^{n^{3}}$
4. (12 points) Let $a_{1}=2$ and $a_{n+1}=\sqrt{a_{n}-2}+4$ for all $n \in \mathbb{N}$. Prove that $\left(a_{n}\right)$ is convergent and calculate its limit.
5. (9 points) Find the liminf and limsup of $a_{n}=\sqrt{n^{2}+3 n}+(-1)^{n} \cdot \sqrt{n^{2}+5 n+3}$.
6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{n}+(-2)^{n} \cdot 3^{-n}}{6^{n}}$
7. (9+9+9 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{2 n}}$
b) $\sum_{n=1}^{\infty} 10^{n}\left(\frac{2 n+1}{2 n+5}\right)^{n^{2}}$
c) $\sum_{n=1}^{\infty} \frac{n^{2} \cdot \ln n+\sqrt{n+1}}{n^{3}-n+3}$
8. (9 points) For what values of $x \in \mathbb{R}$ does the following series converge?
$\sum_{n=1}^{\infty} \frac{n+2}{n^{2} \cdot 3^{n}} x^{n}$
9.* (10 points - BONUS): Calculate the limit of the following sequence:
$a_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+3 n}}$

Solutions

1. ($\mathbf{1 0}$ points) Solve the following equation on the set of complex numbers:

$$
z^{2}=z+3 \bar{z}
$$

Solution. Let $z=x+y i(x, y \in \mathbb{R})$. Then $z^{2}=\left(x^{2}-y^{2}\right)+2 x y i$ and $\bar{z}=x-y i(\mathbf{2 p})$.
We obtain the following equation system:
(1) $x^{2}-y^{2}=4 x$
(2) $2 x y=-2 y$ (2p)

From the second equation $2 y(x+1)=0 \Longrightarrow y=0$ or $x=-1$ (2p)
If $y=0$ then from the first equation $x=0$ or $x=4$ (1p)
If $x=-1$ then from the first equation $y= \pm \sqrt{5}$ (1p)
The solutions are $z_{1}=0, z_{2}=4, z_{3}=-1+i \sqrt{5}, z_{4}=-1-i \sqrt{5}$ (2p)
2. (9 points) Let $a_{n}=\frac{6 n^{3}+n^{2}-7}{3 n^{3}-2 n+1}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.

Solution. $a_{n}=\frac{6 n^{3}+n^{2}-7}{3 n^{3}-2 n+1}=\frac{6+\frac{1}{n}-\frac{7}{n^{3}}}{3-\frac{2}{n^{2}}+\frac{1}{n^{3}}} \rightarrow \frac{6+0-0}{3-0+0}=2$ (1p)
Let $\varepsilon>0$. We have to find $N(\varepsilon) \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-A\right|<\varepsilon$. $(A=2)(\mathbf{1 p})$
$\left|a_{n}-A\right|=\left|\frac{6 n^{3}+n^{2}-7}{3 n^{3}-2 n+1}-2\right|=\left|\frac{6 n^{3}+n^{2}-7-2 \cdot\left(3 n^{3}-2 n+1\right)}{3 n^{3}-2 n+1}\right|=$
$=\left|\frac{n^{2}+4 n-9}{3 n^{3}-2 n+1}\right| \stackrel{\text { if } n \geq 2}{=} \frac{n^{2}+4 n-9}{3 n^{3}-2 n+1}(\mathbf{2} p) \leq \frac{n^{2}+4 n^{2}+0}{3 n^{3}-2 n^{3}+0}=\frac{5}{n}<\varepsilon \Longleftrightarrow n>\frac{5}{\varepsilon}$,

If $\varepsilon=0.01$ then $N \geq 500$. (1p)
3. (9+9 points) Find the limit of the following sequences:
a) $a_{n}=\sqrt[n]{\frac{3^{n} \cdot n+5^{n}}{n^{2}+2}}$
b) $a_{n}=\left(\frac{n^{2}+4}{n^{2}+2}\right)^{n^{3}}$

Solution. a) An upper estimation:
$a_{n}=\sqrt[n]{\frac{3^{n} \cdot n+5^{n}}{n^{2}+2}} \leq \sqrt[n]{\frac{5^{n} \cdot n+5^{n} \cdot n}{1}}=\sqrt[n]{2 \cdot 5^{n} \cdot n}=5 \cdot \sqrt[n]{2} \cdot \sqrt[n]{n} \rightarrow 5 \cdot 1 \cdot 1=5(\mathbf{4 p})$
A lower estimation:
$a_{n}=\sqrt[n]{\frac{3^{n} \cdot n+5^{n}}{n^{2}+2}} \geq \sqrt[n]{\frac{0+5^{n}}{n^{2}+2 n^{2}}}=\sqrt[n]{\frac{5^{n}}{3 n^{2}}}=\frac{5}{\sqrt[n]{3} \cdot(\sqrt[n]{n})^{2}} \rightarrow \frac{5}{1 \cdot 1^{2}}=5(\mathbf{4 p})$
so by the sandwich theorem, $a_{n} \longrightarrow 5$. (1p)
b) Let $b_{n}=\left(\frac{n^{2}+4}{n^{2}+2}\right)^{n^{2}}$, then $a_{n}=\left(b_{n}\right)^{n}$ and $b_{n}=\frac{\left(1+\frac{4}{n^{2}}\right)^{n^{2}}}{\left(1+\frac{2}{n^{2}}\right)^{n^{2}}} \rightarrow \frac{e^{4}}{e^{2}}=e^{2}$ (3p).

Since $b_{n} \longrightarrow e^{2}$ then there exists $N \in \mathbb{N}$ such that if $n>N$ then $b_{n}>2$.
So if $n>N$ then $a_{n}=\left(b_{n}\right)^{n}>2^{n}$. Since $2^{n} \longrightarrow \infty$, then $a_{n} \rightarrow \infty$. (6p)
4. (12 points) Let $a_{1}=2$ and $a_{n+1}=\sqrt{a_{n}-2}+4$ for all $n \in \mathbb{N}$. Prove that $\left(a_{n}\right)$ is convergent and calculate its limit.

Solution. If $\exists \lim _{n \rightarrow \infty} a_{n}=A$, then $A=\sqrt{A-2}+4 \Longrightarrow(A-4)^{2}=A-2$
$\Longrightarrow A^{2}-9 A+18=(A-3)(A-6)=0 \Longrightarrow A_{1}=3, A_{2}=6$ (3p)
It can be verified that $A=3$ is not a solution, so if the limit exists then $A=6$. (1p)
Monotonicity:
(1) $a_{1}=2<a_{2}=\sqrt{2-2}+4=4$
(2) Assume that $2<a_{n}<a_{n+1}$
(3) Then $0<a_{n}-2<a_{n+1}-2 \Longrightarrow a_{n+1}=\sqrt{a_{n}-2}+4<\sqrt{a_{n+1}-2}+4=a_{n+2}$.

So $\left(a_{n}\right)$ is monotonically increasing. (3p)
Boundedness:
(1) $a_{1}=2<6$
(2) Assume that $2<a_{n}<6$
(3) Then $0<a_{n}-2<4 \Longrightarrow a_{n+1}=\sqrt{a_{n}-2}+4<\sqrt{6-2}+4=6$

So $\left(a_{n}\right)$ is bounded above. (3p)
Since $\left(a_{n}\right)$ is monotonically increasing and bounded above then it is convergent and $\lim _{n \rightarrow \infty} a_{n}=6$. ($\mathbf{2 p}$)
5. (9 points) Find the liminf and limsup of $a_{n}=\sqrt{n^{2}+3 n}+(-1)^{n} \cdot \sqrt{n^{2}+5 n+3}$.

Solution. If n is even, then $a_{n}=\sqrt{n^{2}+3 n}+\sqrt{n^{2}+5 n+3}=\infty+\infty=\infty$ (2p)
If n is odd, then $a_{n}=\left(\sqrt{n^{2}+3 n}-\sqrt{n^{2}+5 n+3}\right) \cdot \frac{\sqrt{n^{2}+3 n}+\sqrt{n^{2}+5 n+3}}{\sqrt{n^{2}+3 n}+\sqrt{n^{2}+5 n+3}}=$ (1p)
$=\frac{\left(n^{2}+3 n\right)-\left(n^{2}+5 n+3\right)}{\sqrt{n^{2}+3 n}+\sqrt{n^{2}+5 n+3}}=\frac{-2 n-3}{\sqrt{n^{2}+3 n}+\sqrt{n^{2}+5 n+3}}=$
$=\frac{n}{\sqrt{n^{2}}} \cdot \frac{-2-\frac{3}{n}}{\sqrt{1+\frac{3}{n}}+\sqrt{1+\frac{5}{n}+\frac{3}{n^{2}}}} \rightarrow \frac{-2-0}{\sqrt{1+0}+\sqrt{1+0+0}}=-1(4 \mathbf{p})$
$\Rightarrow \lim \sup a_{n}=\infty, \lim \inf a_{n}=-1(\mathbf{2 p})$
6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{n}+(-2)^{n} \cdot 3^{-n}}{6^{n}}$

Solution. $\sum_{n=1}^{\infty} \frac{3 \cdot 2^{n}+(-2)^{n} \cdot 3^{-n}}{6^{n}}=\sum_{n=1}^{\infty}\left(3 \cdot\left(\frac{2}{6}\right)^{n}+\left(\frac{-2}{6 \cdot 3}\right)^{n}\right)=\sum_{n=1}^{\infty}\left(3 \cdot\left(\frac{1}{3}\right)^{n}+\left(-\frac{1}{9}\right)^{n}\right)=(\mathbf{2 p})$
$=3 \cdot \frac{\frac{1}{3}}{1-\frac{1}{3}}+\frac{-\frac{1}{9}}{1-\left(-\frac{1}{9}\right)} \mathbf{(4 p)}=\frac{3}{2}-\frac{1}{10}=\frac{7}{5}$
7. (9+9+9 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{2 n}}$
b) $\sum_{n=1}^{\infty} 10^{n}\left(\frac{2 n+1}{2 n+5}\right)^{n^{2}}$
c) $\sum_{n=1}^{\infty} \frac{n^{2} \cdot \ln n+\sqrt{n+1}}{n^{3}-n+3}$

Solution. a) Let $a_{n}=\frac{(2 n)!}{n^{2 n}}$. By the ratio test:
$\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)!}{(n+1)^{2 n+2}} \cdot \frac{n^{2 n}}{(2 n)!}(3 p)=\frac{(2 n+2) \cdot(2 n+1)}{(n+1)^{2}} \cdot \frac{n^{2 n}}{(n+1)^{2 n}}=\frac{2 \cdot(2 n+1)}{(n+1)} \cdot\left(\frac{n}{n+1}\right)^{2 n}=$
$=\frac{4 n+2}{n+1} \cdot\left(\frac{1}{1+\frac{1}{n}}\right)^{2 n}=\frac{4+\frac{2}{n}}{1+\frac{1}{n}} \cdot \frac{1}{\left(\left(1+\frac{1}{n}\right)^{n}\right)^{2}}(\mathbf{3} \boldsymbol{p}) \rightarrow 4 \cdot \frac{1}{e^{2}} \mathbf{(2 p)}<1 \Longrightarrow$ the series $\sum_{n=1}^{\infty} a_{n}$ is convergent (1p)
b) Let $b_{n}=10^{n}\left(\frac{2 n+1}{2 n+5}\right)^{n^{2}}$. By the root test:
$\sqrt[n]{b_{n}}=10 \cdot\left(\frac{2 n+1}{2 n+5}\right)^{n}(\mathbf{3 p})=10 \cdot \frac{\left(1+\frac{1}{2 n}\right)^{n}}{\left(1+\frac{5}{2 n}\right)^{n}}(\mathbf{3 p}) \rightarrow 10 \cdot \frac{e^{\frac{1}{2}}}{e^{\frac{5}{2}}}=\frac{10}{e^{2}}(\mathbf{2 p})>1 \Longrightarrow$ the series $\sum_{n=1}^{\infty} b_{n}$ is divergent (1p)
c) $c_{n}=\frac{n^{2} \cdot \ln n+\sqrt{n+1}}{n^{3}-n+3} \geq \frac{n^{2} \cdot 1+0}{n^{3}+0+3 n^{3}}=\frac{1}{4 n}>0$ (6p) and $\sum_{n=1}^{\infty} \frac{1}{4 n}$ is divergent, so by the comparison test, the series $\sum_{n=1}^{\infty} c_{n}$ is divergent. (3p)
8. (9 points) For what values of $x \in \mathbb{R}$ does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{n+2}{n^{2} \cdot 3^{n}} x^{n}
$$

Solution. The coefficients are $a_{n}=\frac{n+2}{n^{2} \cdot 3^{n}}$ and the center is
$x_{0}=0$.
$\sqrt[n]{a_{n}}=\sqrt[n]{\frac{n+2}{n^{2} \cdot 3^{n}}}=\frac{\sqrt[n]{n+2}}{(\sqrt[n]{n})^{2} \cdot 3} \rightarrow \frac{1}{1^{2} \cdot 3}=\frac{1}{3}=\frac{1}{R} \Longrightarrow R=3$. (3p)
$\sqrt[n]{n+2} \rightarrow 1$ by the sandwich theorem, since $1 \leq \sqrt[n]{n+2} \leq \sqrt[n]{n+2 n}=\sqrt[n]{3} \cdot \sqrt[n]{n} \rightarrow 1 \cdot 1=1$.
Let H denote the domain of convergence. Then $(-3,3) \subset H \subset[-3,3]$.

The endpoints of H :
If $x=x_{0}+R=3$ then the series is $\sum_{n=1}^{\infty} \frac{n+2}{n^{2} \cdot 3^{n}} 3^{n}=\sum_{n=1}^{\infty} \frac{n+2}{n^{2}}$. Since $\frac{n+2}{n^{2}} \geq \frac{n+0}{n^{2}}=\frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by the comparison test, $\sum_{n=1}^{\infty} \frac{n+2}{n^{2}}$ also diverges. $\Rightarrow 3 \notin H$. (2p)
If $x=x_{0}-R=-3$ then the series is $\sum_{n=1}^{\infty} \frac{n+2}{n^{2} \cdot 3^{n}}(-3)^{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n+2}{n^{2}}$. This is a Leibniz series (or: the sum of two Leibniz series), so it is convergent. $\Rightarrow-3 \in H$. (2p)
The domain of convergence is $H=[-3,3)$. (2p)
9.* (10 points - BONUS): Calculate the limit of the following sequence:

$$
a_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+3 n}}
$$

Solution. An upper estima-
tion:

$$
\begin{aligned}
& a_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+3 n}} \leq \frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+1}}+\ldots+\frac{1}{\sqrt{n^{2}+1}}= \\
& =\frac{3 n}{\sqrt{n^{2}+1}}=\frac{n}{\sqrt{n^{2}}} \cdot \frac{3}{\sqrt{1+\frac{1}{n^{2}}}} \rightarrow \frac{3}{\sqrt{1+0}}=3(4 \mathbf{p})
\end{aligned}
$$

A lower estimation:
$a_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+3 n}} \geq \frac{1}{\sqrt{n^{2}+3 n}}+\frac{1}{\sqrt{n^{2}+3 n}}+\ldots+\frac{1}{\sqrt{n^{2}+3 n}}=$
$=\frac{3 n}{\sqrt{n^{2}+3 n}}=\frac{n}{\sqrt{n^{2}}} \cdot \frac{3}{\sqrt{1+\frac{3}{n}}} \rightarrow \frac{3}{\sqrt{1+0}}=3(4 \mathbf{p})$
so by the sandwich theorem, $a_{n} \longrightarrow 3$. (2p)

