Calculus 1 - Homework 2

- **1. (3 points)** Calculate the limit of the sequence $a_n = \sqrt[n]{\frac{n^2 + 3n}{4n^3 n + 1}}$
- 2. (6 points) Calculate the limit of the following sequences:

a)
$$a_n = \left(\frac{3n-1}{3n+5}\right)^{2n+7}$$
 b) $a_n = \left(\frac{3n-1}{3n+5}\right)^{n^2}$

b)
$$a_n = \left(\frac{3n-1}{3n+5}\right)^{n^2}$$

- **3.** (5 points) Let $a_1 = 3$ and $a_{n+1} = \sqrt[3]{5 a_n^2 4 a_n}$ for all $n \in \mathbb{N}$. Investigate the convergence of (a_n) .
- 7. (10 points) Decide whether the following series are absolutely convergent, conditionally convergent or divergent:

a)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\sqrt[n]{n^{10} + 2n + 1}}$$
 b) $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n+2}{n^2}$ **c)** $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2 + 3n - 5}{2n^5 - n^3 + 6}$

b)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n+2}{n^2}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2 + 3n - 5}{2n^5 - n^3 + 6}$$

8. (6 points) Decide whether the following series are convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 6}{n^2 + 4} \right)^{n^3} \cdot \frac{n^2}{3^{2n-1}}$$
 b) $\sum_{n=1}^{\infty} \frac{(2n)!}{3^n \cdot (n!)^2}$

b)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{3^n \cdot (n!)^2}$$

Deadline: October 24th