## Calculus 1 - Homework 2

1. (3 points) Calculate the limit of the sequence $a_{n}=\sqrt[n]{\frac{n^{2}+3 n}{4 n^{3}-n+1}}$
2. (6 points) Calculate the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n-1}{3 n+5}\right)^{2 n+7}$
b) $a_{n}=\left(\frac{3 n-1}{3 n+5}\right)^{n^{2}}$
3. (5 points) Let $a_{1}=3$ and $a_{n+1}=\sqrt[3]{5 a_{n}^{2}-4 a_{n}}$ for all $n \in \mathbb{N}$. Investigate the convergence of $\left(a_{n}\right)$.
4. (10 points) Decide whether the following series are absolutely convergent, conditionally convergent or divergent:
a) $\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{1}{\sqrt[n]{n^{10}+2 n+1}}$
b) $\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{n+2}{n^{2}}$
c) $\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{n^{2}+3 n-5}{2 n^{5}-n^{3}+6}$
5. (6 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty}\left(\frac{n^{2}+6}{n^{2}+4}\right)^{n^{3}} \cdot \frac{n^{2}}{3^{2 n-1}}$
b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{3^{n} \cdot(n!)^{2}}$

Deadline: October 24th

