22nd and 23rd lectures

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {xg, X1, ... Xy} such that
A=Xg<X1<..<Xp_1<Xp=b.
Definition. Assume that f : [0, b]—R is bounded and P ={xq, x1, ...X,}is a partition of [a, b]. Let
my = inf{f(x) : x € [xe_1, X[}
My :=sup {f(x) : x & [X4_1, X]}

n
The lower Darboux sum of f with respectto Pis sp = ka(xk - Xp_1)-
k=1

n
The upper Darboux sum of f with respectto Pis Sp = ZMk(xk - X)_1)-
k=1

n
The Riemann sum of f with respectto Pis gp= Zf(ck) (Xx = Xk-1), where
k=1
Cx € [Xi_1, X] is arbitrary. The points ¢, are called the evaluation points.
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Statement. sp < gp < Sp for all partitions P.

Proof. It follows from the fact that m, < f(c,) < M, on each subinterval [x,_;, x].

Definition. Let P, and P, be partitions of [a, b]. If P, contains all points of P,
and some additional points then P, is a refinement of P;.
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Theorem. If P, is a refinement of P; then sp, <sp, and Sp, < Sp,,
that is, by refining a partition, the lower Darboux sum cannot
decrease and the upper Darboux sum cannot increase.

Proof. Let P, be the partition that is obtained from Py = {xy, X1, ..., X,} by adding
the point x,_; <y <x,. We prove sp, < sp,.
Let A=inf{f(x):xe[x.1, y]} and B=inf{f(x):x e[y, x]}.
Then my(xk = Xk-1) = Mk(y = Xk-1) + Mi(xi = ¥) SAY = Xk1) + B(Xx = )
= Sp, = Sp, =A(Y = Xk_1) + B(Xk = y) = My(Xk = Xk_1) 2 0.
A A
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Theorem. sp, < Sp, for any partitions P; and P, of [a, b], thatis,
any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P; =P, UP, = Psisarefinementof Py and P, = sp, <sp, <Sp, <Sp,
Definition. Assume that f : [a, b]— R is bounded.

b
The lower Darboux integral of f is J f =sup{sp: Pis a partition of [a, b]}.

b
The upper Darbouxintegraloffisjf:inf{Sp:Pisapartition of [a, b]}.
b (b
Consequence: j fsjf

b (b
Definition. If f : [a, b]— R is bounded and / = f f= j f then f is Riemann integrable on [q, b].

In this case the Riemann integral of f on [a, b] is denoted as
b b
= J f(x)dx or /= j f.  (fiscalled the integrand.)
Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]
b (b
Remark. If f : [a, b]—Ris not bounded on [a, b] or bounded but j f< J f then fisnot
Riemann integrable on [a, b].

Example: Let f(x) =ceR, Ec dx=?

Sp= ka(Xk - Xy-1) = ZC(Xk - Xy-1) =c(b-a),

k=1 k=1



calculus1-22-23.nb | 3

Sp= ZMk(xk —Xj1) = Zc(xk - X-1) = c(b - a) for all partitions P.
k=1 k=1

b b b
ff=sup{sp}=c(b—a)=inf{Sp}zJf = jcdx:c(b—a)

1 if 0,1
Example: The Dirichlet function f(x) ={ 0 :fi: EO’ 1} Cﬂf is bounded, and for all

partitions Pof [0, 1], sp=0and Sp=1
b b
= Jf:Oandezl
Ja_ a

= fisnotintegrableon [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between
adjacent points in the partition: AP= max (X, — Xx_1)-
ke{l,...,n}

,,,,,

Statement. Assume that f : [a, b]— R is bounded and (P,) is a sequence of partitions of [a, b].

If imAP,=0 then limspn- fand limSp, = j f

N—oo N—oco N—oco

b
Statement. a) If 3 J f(x)dx = for all partition sequences (P,) for which limA P, = 0:

b
limsp, _l|mSP _Jf(x)dx

b) If (P,) is a partition sequence for which limA P, =0 and limsp, = l|m SP =]

N—oo N—co

=3 jf(x)dx:l.

Definition. Assume that f : [0, b]—R is bounded and P = {xq, x1, ...X,}is a partition of [a, b].
Then the oscillation sum of f related to the partition Pis
n
Op= Z(Mk = My) (Xk = Xk-1) = Sp = Sp.
k=1

A

Theorem (Riemann’s criterion for integrability). Assume that f : [a, b]— R is bounded.
fisintegrable on [a, b] < forall £ > 0 there exists a partition P such that Op = Sp—sp< €.

Proof. = : Assume that f is integrable and € > 0. Then there exist partitions P; and P, such that

€ b £
OSSPZ—J;f<E andOSJ;f—Sp1<E.
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LetP=P; UP, (Pisacommon refinement of P; and P;). Then sp, <sp<Sp<Sp,, 50

b b E €
OSOF’:SF’_SPSSPZ_SPl:(SPZ_j +(jf—$pl)<z+5=£
a =g

)
< For any partition P, SPSJfSJfSSP,SO
Za_ a

b b R b
OSJf—JfSSP—sp=Op<£forall£>O = Jf:jf,thatis,fisintegrable.

Remark. Recall that the Riemann sum of f with respect to the partition Pis

n
Op= Zf(ck) (Xx — xk-1), where the evaluation points ¢, € [x,_1, xx] are arbitrary and
k=1

Sp< gp < Sp for all partitions P.

Theorem. Assume that f : [a, b]— R is bounded. Then

b
1.3 J f(x) dx =1 = for all partition sequences (P,) for which limA P, = 0:

N—>oco

b
limop = J f(x) dx =1 (independent of the choice of the evaluation points).

b
2.3 J f(x) dx =1 < there exists a partition sequence (P,) for which imAP, =0
a N—oo

and 3 lim gp, =/ (independent of the choice of the evaluation points).

N—oo

Remark. The proof of part 1. is obvious, since sp. <gp <Sp, and limsp = limSp =1.
N—co

N—oo

Remark. It is important that the limit exists independent of the choice of ¢, € [x4_1, Xi] in the
Riemann sum. For example, assume that f is the Dirichlet function on [a, b] and
(P,) is a sequence of partitions for which limA P, =0.

N—oco

If ¢y is rational: gp, = > 1-(X - X41) =1+ (b-a)—b-a
k=1

n
If ¢ is irrational: gp, = > 0+ (X = X-1) =0—0
k=1
= the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f is monotonic and bounded on [a, b] then f is Riemann integrable on [a, b].

Proof. Assume that f is monotonically increasing.
1) If f(a) = f(b) then f is constant, so f e R[a, b].
2) If f(a) < f(b) then we show that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp - sp < €.
3) Let P = {xq, X1, ..., Xn} be a partition with mesh

AP= max (Xy=Xy.1)<6=—>0
o e =Xie-1) f(b) - f(a)

4) Then for the oscillation sum we get that
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n

Op=Sp-sp= Z(Mk = my) (X = Xj-1) = Z(f(xk) = F(Xk-1)) (Xi = X-1) <
k=1 k=1

<6 ) (fxw) - Fxin)) = 6(F(b) - f(a) = €.
k=1

Theorem. If f : [a, b]— R is continuous then f is Riemann integrable on [a, b].

Proof. 1) We prove that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp—sp< €.
2) f is continuous on [a, b] = f is bounded and also uniformly continuous on [a, b].

= for p > 0 there exists 6 >0 such thatV x, y €[a, b],
-a
&
| x-y| <6 = | f(x)-f(y) | <—.
b-a
3) Let P ={xq, X1, ..., Xn} be a partition with mesh AP= max (x, —x,_1) < 0.

kefl,...n}

4) f is continuous on [x,_;, x,] = by the extreme value theorem f has a
minimum for some ¢, € [xx_1, Xx] and a maximum for some dj € [x;_1, X«l,
let f(cy) = my, f(dy) =M.

5) Then obviously | dx-cx | <6, so for the oscillation sum we get that

n n
Op=Sp-sp= Z(Mk = My) (X = Xk-1) = Z(f(dk) = f(ci) %k = Xi-1) =

k=1 k=1

n n £
=> | fld - (@) | =) < > — (=) =
k=1 icib-a
£ ”( ) £ b
=— ) (X =X1)=—— (b-0a)=¢.
b—a; Kk = Xk-1 b—a( )

Theorem. If f : [a, b]— R is bounded and continuous except finitely many points then
f is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c € [a, b] and assume that f is continuous on
[a, b]\{c}. Let K> 0 be such that | f(x) | <K forallxe][a, b]. We show that forall e>0
there exists a partition P such that Op < €.

& & &
2) If c- — >athenletc; =c - — and let P, be a partition of [a, ¢;] such that Op, < —.
8K 8K 4

Such a partition exists since f is continuous on [a, ¢1].

&
Ifc—— <athenletc; =aand P, ={a}.
8K

& & &
3)Ifc+ — <bthenletc, =c+— and let P, be a partition of [¢,, b] such that Op, < —.
8K 8K 4

Such a partition exists since f is continuous on [c,, b].

&
If c+ — = bthenletc, =band P, ={b}.
8K
4) Then P=P; U P, is a suitable choice.

Remark. Iff, g : [0, b] >R, f is Riemann integrable and f(x) = g(x) except finitely many points

b b
in [a, b] then g is Riemann integrable and J f= J g.



6 | calculus1-22-23.nb

Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
Iff : [a, bl— R is Riemann integrable and F : [a, b]— R is an antiderivative of f,
thatis, F' (x) = f(x) for all x € [a, b], then

f f(x) dx = F(b) - F(a) = [F(x)]

Proof. Let (P,) be a partition sequence of [a, b] such that imA P, =0.

N—>c0

Forallke{l, 2, ..., n}, F is continuous on [x,_1, X,] and differentiable on (x,_;, Xx), SO

by Lagrange’s mean value theorem there exists x,_; < ¢, <X, such that

F(Xk) = F(Xk-1)
S Fr(a) = Flal) = FOa) - FOtr) = F(C) k= Xk1)
X = Xk-1

= F(b) - F(a) = (F(x1) = F(x0)) + (F(x2) = F(x1)) + ... + (F(Xp) = F(Xp-1)) =

= > (FO4) = F(Xi1)) = D F(Ch) (0 = Xko1) = T,

k=1 k=1
= F(b) - F(a) = op,
Taking the limits of both sides: lim (F(b) - F(a)) = lim gp,

The left-hand side is independent of n and since f is integrable then the limit of the
right-hand side is the integral of f, so

F(b) - F(a)= be(x)dx.
b
Remark. The geometrical meaning of j fis the signed area under the graph of f on [a, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples

1 1 2 1
x?sin— ifx%0 2xsin— --cos— ifx*0
Example 1. Let F(x) = X2 ,then F' (x)=f(x) = X2 X X2 .
0 ifx=0 0 ifx=0

1
f has an antiderivative, however, J f(x) dx doesn’t exist, since f is not bounded.
0

5
Example 1. f sign (x2 - 5x +6) dx exists, since f is continuous except 2 points. However,
0

by Darboux’s theorem, f doesn’t have an antiderivative, since f has jump discontinuities.
Properties of Riemann integrable functions
a b a
Definition. If f < R[q, b] j FOx) dx = - j £(x) dix, j f(x)dx:=0
b a a

Theorem. Let f, ge R[a, b]and AeR. Then
b b b b b
(1) Af, f+g, f-geRla, b] and fAf:A[f, f(fig)=Jf¢Jg

(2)[a, Blcla, b] = feR[a, f]
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(3)a<c<b = [bf=ff+[bf
a a @ . .
(4)f(x)sg(x) Vxela, b] = jf(x)deJg(x)dx

(5) | f| <Rla, b] = ”bf(x)dx| sr’

a

f(x) | dx

1 b
(6) inf f< JfSSUpf
[G,b] b-a Ja [Cl,b]

Integration by parts

b b
Theorem. If f and g are continuously differentiable on [a, b] then Jf'g:[fg]Z—Jfg'

Integration by substitution

Theorem. If g is continuously differentiable, strictly monotonic, [a, b] c Dy and

b )
f is continuous on [a, b] then J f(x)dx = F f(g(t)) g' (t)dt.
a 97

n2
Example./:j Ve¥-1dx=?
0

Solution. Substitution: t= ye*-1 = x=x(t)=In(t?+1)
dx 1 2t

x'(t)=— = 2t = dx=

dt 2+1 t?+1

dt

The bounds will change: x; =0 = t; = «jeo -1=0

X=ln2 = t,=4e"-1=42-1=1
b 2t 1og2 12(2+1)-2 1 2
/= [ Ve -1 dx= [t ——dt= dt=j¥dt=j(2— )dt:
t; t“+1 0

ot?+1 o tr+1 t2+1

:[2t—2arctgt](l):(2-1—2arctg1)—(0—0):2—7—T
2

Lebesgue’s theorem

Definition. We say that the set A c R has Lebesgue measure 0 if for all £ > 0 there exist

sequences (x,) and (y,) such thatx, <y,, Ac U[x,,, ¥n] and Z(y,, - Xp) <E.

n=1 n=1
(That is, A can be covered with countably many intervals such that their total
length is less than ¢.)

Examples. 1) Any countable set of R has Lebesgue measure 0, for example N, Z or Q.

2) The Cantor set is defined in the following way. Let C =[O0, 1].
C, is obtained from C, by deleting the open middle third from Cy, that is,
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1 2
Ci=10,—-|Ul-, 1|
1=[o.5]u[5 1]
C, is obtained from C; by deleting the open middle thirds from Cy, that is,

&= 51U S IUE SIUG

Continuing this process, C,.; is obtained from C, by deleting the open middle thirds
of each of these intervals. The Cantor setis C = ﬂ C,.

neN
It can proved that the Cantor set is uncountable but has Lebesgue measure 0.

Theorem (Lebesgue). The function f : [a, b]— R is Riemann integrable if and only if it is bounded
and the set of discontinuities of f has Lebesgue measure 0.

Remark. If f : [a, b]—R is monotonic then f has at most countably many discontinuities (and they are
jump discontinuities), so by Lebesgue’s theorem f is Riemann integrable.

Example*. The Riemann function is defined as

0 ifxeR\Q
f:R>R, f(x)={ 1
—R, f(x) _ ifngwherepez, and g e N* are coprimes
q q
Prove that

a)limf(x)=0 VaeR;
X—=a

a) f is continuous at all irrational numbers;
b) f is discontinuous at all rational numbers.

1 k
Solution. If g e N* is fixed then the set Z- — = {— ke Z} does not have any real limit points.
q q

Therefore a finite union of such sets, A, = {B :peZ,qef{l, 2, .., n}} does not have any
q

1
limit points either. If x e R\ A, the | f(x) | <—,soforallxyeR, limf(x)=0.

n X-Xo

= fis continuous at all irrational points and has a removable discontinuity

at all rational points.

The Riemann function is bounded and the set of discontinuities is countable, so it has

Lebesgue measure 0 = f is Riemann integrable and f:f(x) dx=0.

The integral function

Definition. Assume that f is Riemann integrable on [a, b]. Then the function
F(x) = j “f(t)dt, xe[a, b]

is called the integral function of f.
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Theorem (Second fundamental theorem of calculus).

Assume that f is Riemann integrable on [a, b] and F(x) = fo(t) dt, xe[a, b]. Then

1. Fis Lipschitz continuous on [a, b].

2. If f is continuous at xq € [a, b] then F is differentiable at xo and F' (xg) = f(xo).

Proof. 1. Let K =sup | f(x) | .IfK=0 thenf=0so0F=0is Lipschitz continuous.
[a.b]

&
IfK+0then0<KeR. Lete>0and 6(5):}—(.Ifx,ye[a, blsuchthat | x-y | <d&then

| FO0 - F) | = | Ef(t)dt_ff(t)dt|= | Ef(t)dt| < | L

SK |x-y| <Kbé=¢ = FisLipschitz continuous.

f(t)|dt| < | FKdt| <
y

, . F(x) = F(xo) . .
2. F'(xp) = lim ———— =f(xp) if forall £>0there exists 6 > 0 such that
XXo X = Xo

F(x) = F(x
|M—f(xo)| <eif 0< | x-xp| <6.
X=X

Let € > 0. Since f is continuous at xo then 36 > 0 such that | f(x) - f(xo) | <€if | x=xo | <0.
Then with this 6

F(x) - Fxo) F(x) = Fxo) = F(Xo) (x = o) Lf (fydt- L Flo)dt
| _f(Xo) | = | = | -
X=X X =Xo X —Xo
X ~ X f _f «
. [[ 60~ Feop ’ [[1ro-reo el | [eat| e
X=X | x=Xo | | x=xo | | X=X |
Consequence.

1. If f is continuous on [a, b] and F(x) = Ff(t) dt, xe[a, bl then F' (x) =f(x) Vxe]a, b].

2. Every continuous function has an antiderivative.

Examples

Example 1. Calculate the derivatives of the following functions:

a) F(x) = stin t2dt, xx0 b)Gx)= JX sint? dt ) H(x) = JX sint? dt
0 0 X2
Solution. a) F' (x) = sinx?, since f(t) = sin(t*) is continuous.

b) G(x) = F(x°) = G'(x)=F'(x3)-3)(2=sin(()(3)2)-3)(2=sin()(6)~3)(2
c) H(x) = F3sint2 dt - J'Xzsintzdt=F(x3)-F(X2) = H'(x) =sin(x®):3x - sin(x*) - 2x

fgarctan 2 dt
Example 2. im——— =?
Xx-0 Xz

Solution. The limit has the form % and the numerator is differentiable since

f(t) = arctan t? is continuous
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1
X 2 2 — -2X
. foarctant dt .y arctanx® o Toa
= llm— = llm— = l|m
x=0 X2 x=0 2x x=0 2

=0

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is
X+y?=1= y?=1-x* = y=+1-x

1
The area of the unit circle is A=2f NV1-x2 dx
-1

Substitution: x=x(t)=sint = t=arcsinx

dx
x’(t)=d— =cost = dx=costdt
t

The bounds will change: x; = -1 = t; = arcsin(-1) = -7

X=1= t2=arcsin1=%r

1 /2 12
=>A:2J V1-x2 dx= 2\/1—(sin1‘)2 costdt=2 | cost-costdt
-1 -

/2 7T/2

7l ) 2 sin2t 2
= 2cos“tdt= (1+coszt)dt=[t+ ]
2 2 2 A2
7T SingT 7T sin(-7m) 7T T
:(—+ )—(——+ ):(—+O)—(——+O):ﬂ'
2 2 2 2 2 2

Arc length

Theorem. Assume that f : [a, b]— R is continuously differentiable. Then the arc length of the

b
graph of f is L=J 1+ (f' (x))? dx.

Remark. Let a =xy <x; <X, <...<X,=b be a partition. If f is differentiable then by Lagrange’s
mean value theorem there exists ¢, € (x4_1, Xx) such that m=£"'(c,), where m is the slope of
the secant line connecting the points (x,_1, f(Xk_1)) and (xk, f(xk)).

So the arc length can be approximated by the sum Z \/ 1+ (F'(ck))? (X - Xk_1), Which is

k=1
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the Riemann sum of the function 41+ (f' (x))?.

If f is continuously differentiable then the arc length of the graph of f is

L=fb 1+ (F' () dx.

M(Xk—Xk-_1)

Example. Calculate the arc length of the unit circle.

Solution. Let f(x) = y1-x? ifxe[-1, 1].

£ 00 == (1) (<20 = ——
= -

1-x2
x? 1 1
= L+(f ()2 = |1+ = =
1-x2 1-x2 1

The arc length of the unit circle is
1 1
Lzzj N1+ (F () dx:ZJ
-1 -1

=2 lim lim [arcsinx]2=2 lim lim (arcsin b - arcsina) =
a--1+b->1- a-»-1+b-1-

=2(arcsinl-arcsin(-1)) = 2(12r - (—izr)) =277

l . . b l
dx=2 lim l|mj dx=
1- X2 a--1+b-1- Jg 1- X2

Volume of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuous and nonnegative and the graph of f is rotated

b
about the x axis. Then the volume of this solid of revolutionis V =7t f f2(x) dx.

Remark. If a =xg < x; <X, <...<x, = b is a partition then the volume can be approximated by the

n
sum > (X = Xj-1) 7 F2(ci) where ¢ € [y, x,] is arbitrary.
k=1
(Geometrically it means that the volume can be approximated by the sum of volumes of

cylinders.)
This is the Riemann sum of the function 7t f2(x), so if f is continuous then the volume is

b
V=7TJ 2(x) dx.
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Surface area of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuously differentiable and nonnegative and the graph
of f is rotated about the x axis. Then the surface area of this solid of revolution is

A= znff NI+ (F () dx.

Remark. If a =xg < x; <X, <...<x, = b is a partition then the surface area of the solid of revolution
can be approximated by the sum

> Tt(F(xkan) + F00)) Y1+ (F' () (k= Xk-a)
k=1

where ¢ € [x4_1, X] exists by the Lagrange intermediate value theorem if f is differentiable.
(Geometrically it means that the surface area can be approximated by the sum of lateral
surfaces of truncated cones.)

If f is continuously differentiable then f(x,_;) + f(x,) = 2 f(ck), so the above sum will be the

Riemann sum of the function 2 71 f(x) 41+ (f' (x))? . Therefore if f is continuously

b
differentiable then the surface areaisA=2r [ f(x) \/ 1+ (f' (x))? dx.

X0= =Xn
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Let f(x) = Yr? -x*, -r <x <r. Rotating the graph of f about the x axis, we get a sphere

with radius r. Calculate the volume and surface area of the sphere.

b
Solution: 1. The volume can be calculated as V=t j 2(x) dx
a

Theintegrandis (f(x))? =r? - x

. X3 '
The volumeis V = 7'(J’_rr(r2 -x?)dx = rr[rzx - ;]_r =

)2

b
2. The surface are can be calculated asA=2 7t j fx) A1+ (F' (x))? dx

1 1 1
The derivative of fis f'(x)= ((r2 - xz)i)’ =—(rP-x*)"2-(-2x)=-
2

= 1+(f'(x))*=1+ = =

.
The surfaceareais A=27 | rdx=27[rx], =2m(r* = (-r*))=4r*m
-r

Additional exercises: Chapter 5, from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_gyak.pdf




