19th and 20th lectures

L’Hospital’s rule

Theorem (L’Hospital’s rule).
Assume thatae R=R U {-oo, o0}, /isa neighbourhood of g, the functions f and g are differentiable

on/\ {a} and g(x)*0, g'(x)*0forallxe/\{a}. Assume moreover that
limf(x)=limg(x)=0 or lim | f(x) ]| =lim | g(x) | =co.

f'(x) — f(x)
If 3lim =beR then Ilim — =b.

X-a g' (X) X-a g(X)

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. We prove itin the case when a €R (for right-hand limit).

AssumethataeR, lim f(x) = lim g(x)=0and 3 lim ) =beR.
X->a+ X->a+ x—>a+g' (X)

Extend the functions f and g such that f(a)=g(a)=0and letx e/, x>a.
Then f and g are continuous on [a, x] and differentiable on (a, x),

so by Cauchy’s mean value theorem there exists c € (a, x) such that
fx)  fx)-fa) f'(c)

gx)  gx)-gla) g' (o)
Let (x,) be a sequence such that x,— a and choose ¢, € (a, x,) for all n.
fxa) ' (cn)
9(xn)  g'(cn)
fxa) ' (cn)
m

f(x
Therefore lim =li = b and by the sequential criterion for the limit, limﬂ =b.
n2e g(xp) 1= g'(Cp) x>0 g(x)

forallneN.

Thenc,—aand

Undefined forms

Remark. The theorem can be applied for limits of the following type:
0 o

1) PO : L’Hospital’s rule can be applied directly
. . f(x) g(x)
2) 0- o0 : we can try the following transformations: f(x) g(x) = - or f(x)g(x) = -
90 )
1 1 1 1 k(x)-h(x) (O
3Jo—o0:h(X)=—, k(X)=— = f(X)-gX)=— - — = —— (—)
f(x) g(x) hix) kix)  h(x)k(x) \0

4)0° 1%, 0®: (f(x))9% = e9¥N(fX) then for the undefined form g(x)- In(f(x))
previous methods can be applied.
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Exercises

Pages 171-172 of the pdffile (first 9 examples):
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_elm.pdf

Pages 72-73 of the pdf file, exercise 26:
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_gyak.pdf
In exercises 26. g), h) the L’Hospital’s rule cannot be applied.

Local properties and the derivative

Definition. Assume that x; € Ds and there exists 6 > 0 such that
forallx, yeDy,ifxg—0<x<xg<y<Xy+0,

f(x) < f(xo) =f(y) locally increasing
f(x) = f(xo) 2f(y) .| locally decreasing
h .Th hat f .
then f(x) < f(xg) < f(y) en we say that fis strictly locally increasing atxo
f(x) > f(xg) > f(y) strictly locally decreasing

Remarks. (1) If f is monotonically increasing on (a, b), then f is locally increasing for all x, € (a, b).
(2) If f is locally increasing for all x; € (a, b), then f is monotonically increasing on (a, b).

(3) Howevers, if fis locally increasing at x, then it doesn’t imply that there exists
a neighbourhood B(x,, r) where f is monotonically increasing.
The following functions are locally increasing at xo = 0 but on any interval that
contains 0, the functions are not monotonically increasing.

1 1
. 2 . . .
xsin“— ifx%0 — ifx*0 x ifxeQ
1. f(x):{ % 2.f(x)={x 3.f(x)={2x ifx<R\Q
€
0 ifx=0 0 ifx=0
Sr 10¢ ; P
2} .‘.’. .,."'
05f o &
JL ‘.p ...
’...’
| S 2 3 -10 05 o 05 1.0
-1 = '.._5.
& 505
-2 .."'. i.
I3t o S ol
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Theorem. Assume that f is differentiable at x;.
(1) If fis locally increasing at xq then f' (xq) 2 0.
(2) If fis locally decreasing at xo then f' (xg) < 0.
(3) If f' (xo) > 0 then f is strictly locally increasing at xo.
(4) If f' (xo) < 0 then f is strictly locally decreasing at xo.

Proof. (1) If f is locally increasing at x, then 3 6 > 0 such that
f(x) = f(xo)
—FF >0.
X =Xp
(If x < xy then x - xg <0 and f(x) — f(xp) <0 and
if x> xo then x —xg >0and f(x) - f(xg) 20.)

O<|x-Xx| <6 =

. - . . ) = flxo)
Since f is differentiable at x then f' (xg) = lim —— 2 0.
X=Xq X_XO
(2) Similar to case (1).
, _f(x) = f(xo) .
(3) If ' (xg) = lim ————— >0, then there exists 6 > 0 such that
XX X =X
f(x) = f(xo)
—— >0.
X =Xp
[ Xo<x<xg+6 f(x) > f(xo)
= if
{x0—6<x<xo {f(x)<f(xo)
= fis strictly locally increasing at x,.
(3) Similar to case (4).

if0< | x=xo | <06 then

Remarks. Assume that f is differentiable at x;.
(1) If f is strictly locally increasing at x, then it doesn’t imply that ' (xo) > 0.
If f is strictly locally increasing at x, then f' (xo) > 0, since 3 6 > 0 such that
f(x) = f(xo) f(x) = f(xo) S

0< | X=X | <6 = —— >0, but for the limit lim ——— 20.
X =Xo X=Xo X =Xo

For example f(x) = x? is strictly locally increasing at x, = 0, but f' (0) =3 x? | ..o = 0.

10
2 . .
X+x-sin|]— | ifx*0
1. f(x) = x3 2. f(x) = -3 3. f(x):{ * ( )
0 ifx=0
2 2 150
1.0F
1 1
-l2 1 2 -2 -1 1 é —1l.5 -1 -0.5 0t5 1. 115
-0.5
-1
-1.0r

2L
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(2) If f' (xo) 2 0 then it doesn’t imply that f is locally increasing at xq.
For example f(x) = -x® is not locally increasing at x, = 0, but f' (0) = = 0.

(3) If f' (xo) > 0 then it doesn't imply that f is monotonically increasing on an interval
containing xo.

For example, let f be a function such that x - x2 < f(x) < x + x> Vx = f(0) = 0.

f(x)  f(0) - (0
Ifx>0then1—xsﬁ=Ms

1+x,
X x-0
f(x) - £(0) .
Ifx<0thenl-x2——— >1+x,so by the sandwich theorem
x-0
0 - F(xo) 24 (10) ifx %0
f'(0)=lim—0=1>0. For example, letf(x):{)HX >n m "X
e X=X 0 ifx=0

Darboux’s theorem

Theorem. Assume that f : [a, b]— R is differentiable and ' (@) <y < f' (b) or f' (b) <y < f' (q).
Then there exists c € (a, b) such that f' (c) = y.

Remark. We say that f' has the intermediate value property of Darboux property.

Proof. 1) Letg:[a, b] >R, g(x)=f(x)-y-x = gisdifferentiableandg'(x)=f"'(x)-y.

2) Assumethatf'(a)<y<f'(b) = g'(a)=f'(a)-y<0<f'(b)-y<g'(b)
3) g is differentiable, so it is continuous on [a, b]

= by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].
4) Since { g'(a)<0 th {g?s str?ctly locally'decreas.,ing ata

g'(b)>0 gisstrictly locally increasing at b
= g does not have a minimum at a and b but on the open interval (a, b)
= there exists c e (a, b) such that g has a local minimum at ¢

= g'(c)=0=f"(c)-y = f'(c)=yforsomece(a,b).

-1 ifx<0
Example. The sign function or signum function is defined as sgnx={ 0 ifx=0.

1 ifx>0
This function is not continuous at x; = 0, so there is no function f :R—R
for which f' (x) =sgnx on R (or on any interval that contains x; = 0).

Remark. From Darboux’s theorem it follows that if ' is not continuous at a point then

f' cannot have a discontinuity of the first type at that point, so at least one of the
one-sided limits doesn’t exist or exists but is not finite

= f' has an essential discontinuity at the given point.
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Statement. If f is differentiable on [a, a + §) (6 >0) and f' has a discontinuity at a then the limit
lim f(x) doesn’texistor 3 lim f(x) ¢R.

x-a+0 x-a+0

Continuously differentiable functions

Definition. Assume that / is a neighbourhood of a € Df and f is differentiable on / n Dy.
Then f is continuous differentiable at a if f' is continuous at a.
f is continuously differentiable on A if f is continuous differentiable V¥ x e A.
Notation: C1(A) = {f : fis continuously differentiable on A}.

1
Example: The function f(x) = { = sm()—() ifx=0 is differentiable but f' is not continuous
0 ifx=0
. l l .
atxy=0,sincef'(x)= { 2xsm(;) - cos()—() ifx 0.
0 ifx=0

Higher order derivatives

Definition. If f' is differentiable at x then we say that f is twice differentiable at x and
the second derivative or second order derivative of f at xg is ' (x) = (f')' (x).
Differentiating f repeatedly, we get the third, ..., nth derivative of .

d*f
Notation: f" (x)=f@(x) = ¥
dx?
d*f
fm(X)=f(3)(X)= (X)
dx?
d" f(x)
FM () =
*) T

By definition: f(x) = f(x)

Example: f(x) =sinx = f'(x)=cosx, f" (x)=-sinx, f"' (x)=-cosx, fP(x)=sinx, ...
fx)=¢* = fM(x)=e* VneN
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Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : (a, b)— R is differentiable. Then
(1) f is monotonically increasing < f'(x) 20 forallx e (a, b)

(2) f is monotonically decreasing < f'(x)<0forallx e (a, b)
(3)fisconstant < f'(x)=0forallxe(a, b)

(4) f'(x)>0forallx e (a, by= f is strictly monotonically increasing
(5)

4)f
f'(x)<0forallxe(a, b)= fis strictly monotonically decreasing

5

Proof. (1)
(i) If f is monotonically increasing then f is locally monotonically increasing for all x € (a, b)
=f'(x)20 Vxe(a,b).
(ii) Assume that f' (x) 20 forall x e (g, b). Leta<x; <x, <b and apply Lagrange’s
mean value theorem for [x1, x;]. Then there exists c € (x, x;) c (a, b) such that

foo) - f
7109 30 = Fo) 2 Fixy)
Xy = X1

Therefore if x; < x, then f(x1) < f(x;), so f is monotonically increasing on (a, b).
(2) Similar to case (1).

(3) fis constant < f is monotonically increasing and decreasing
= f'(x)20and f'(x)<0 Vxe(a,b) = f'(x)=0 Vxe(a, b)

(4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.
For example, f(x) = x3 is strictly monotonically increasing on R, however f' (x) > 0
does not hold for all x e R, since f' (x) =3x*> = f'(0)=0.

Remark. If the domain of f is not an interval then the above theorem is not true,
as the following examples show.

1) Let f:R\Z—R, f(x)={x}=x-[x]. Then f is differentiable on R\ Z
andf'(x)=1>0forallxeR\Z but f is not monotonically increasing,.

2) Letf :R\Z—R, f(x)=[x]. Then f is differentiable on R\ Z
and f'(x)=0forall xeR\Z but f is not constant.
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Local extremum, sufficient conditions

Definition. If f is differentiable at x, and f' (xg) = 0 then xj is a stationary point of f.
If f' (xg) =0 or f is not differentiable at x; then x; is a critical point of f.

Remark. Recall that if f is differentiable at xy € int Df and f has a local extremum at xy then f' (xg) =0
This is a necessary condition for the existence of a local extremum.
The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test).
Assume that f is differentiable at x; € int Dy.

Iff' (xo) =0and f' changes sign at xg, then f has a local extremum at x,.

Namely, if ' (xo) =0 and f'is (strictly) locally { IdneC::assl?ngg a

at Xo-

. minimum
then f has a (strict) local{ .
maximum

Proof. Assume thatf' (xq) =0 and f'is locally increasing at x,

(thatis, f' changes sign from negative to positive)

"(X)<0 if xo —
= 36 >0suchthat F'x) O!on 6<X<Xg
frix)20if xo<x<xp+ 6

_ fismonotonically decreasing on (xo - 9, Xp)
fis monotonically increasing on (xg, X + 0)

F) 2 Fxo) 1 X0 = 6 <x <X = f has a local minimum at x,
{f(x)Zf(xo) if Xo<X<Xo+O o

Theorem (Sufficient condition for a local extremum, second derivative test).
Assume that f is twice differentiable at x; € int Dy.

If f' (xg) =0and f" (xo) #0 then f has a local extremum at xg.

fo 0 .
If{ (0)> then f has a strict local{ minimum

at xo.
(%) <0 maximum 0

Proof. f' (xo) >0 = f'is locally increasing at xo and ' (xy) =0

= by the previous theorem f has a local minimum at x,.

Remark. The sign change of f' at x is only a sufficient but not a necessary condition
for the existence of a local extremum at x,.

1
2 . _ .
For example, iff(x)={x (2+Sm(x)) =0

0 ifx=0
then f is differentiable for all x e R. At x = 0:
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1

x%|2 +sin[ -

f(x) - £(0) X (1 o
f'(0)=lim——— =lim——— = limx(z +sm(—)) =0 (sinceitis 0-bounded),
x>0 x-=0 x-0 X x-0 X

so the necessary condition holds at x, = 0.

However, in any neighbourhood of xy = 0:
f has strictly monotonic increasing and decreasing sections =
f' has both positive and negative values =
f' doesn't change sign at xq = 0.

Yet f has a local extreme value at x, = 0, and it is even an absolute minimum here.

0.04 2 .
L f(x) = x (2+sm(—))
X
0.03+
L = 3 X2
0.02 y
0.01F
y=x°
l ‘—0.10‘ - ‘—0.05‘ ‘ 0.00 ‘ ‘0.05‘ ‘ ‘0.10‘ ‘0.15‘

Local extremum and higher order derivatives

Remark. If f' (xg) =0 and " (xo) = 0 then it cannot be decided whether f has a local
extremum at xq. For example:
1) f(x) = x> does not have a local extremum at x, =0,
2) f(x) =x* has a local minimum at x, =0,
3) f(x) = -x* has a local maximum at xo = 0, and in each case f' (0) ="' (0) = 0.

Theorem. (1) Assume that f is 2 k times differentiable at xq, k = 1.
f2R(xg) >0

29 (x,) <0
minimum

Iff' (o) =. .. = f2*D(x;) =0 and {

then f has a strict local { Xo-

. a
maximum

(2) Assume that f is 2 k + 1 times differentiable at xq, k = 1.
Iff' (xo) =. .. = f?¥)(x,) = 0 and F2¥*1(x,) # 0, then f is strictly monotonic

in a neighbourhood of xg, so f doesn’t have a local extremum at xq.

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even order
then f has a local extremum at x,.
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Proof. (1) We prove the statement for a strict local minimum by induction.

(i) If k = 1 then the statement is true.

(ii) Assume that the statement holds fork- 1 and letg=f".
(=>g'=f", .., g2k3) = f2k1) g2k2) _ f2h) )
From the induction hypothesis it follows that
if g' (Xo) =. .. = 9g?*3(x,) = 0 and g'*¥-2)(x,) > 0 then the function
g =f"has astrict local minimum at x,.

(iii) We want to prove that if

£ (xo)=F" (Xo) =F"" (Xo) =. .. = FZ*V(xy) =0 and F?¥)(x;) > 0 then
f has a strict local minimum at x.
Since f'' (xo) =0 and f'" has a strict local minimum at xq,
then3 6> 0suchthatf" (x)>0, Vxe(xy- 0, X+ 6)\ {Xo}
= f'is strictly monotonically increasing on (xo - 6, xg + O)
= f'is strictly locally increasing at x
= f has a strict local minimum at x,.

(2) Assume that ' (xg) = F'* (Xo) =. .. = F2¥)(x,) =0 and F@*+V(x,) £ 0.
Letg=f',then g' (Xo) =. .. =g?¥ Y (xo) =0 and g?¥(x,) % 0.
= by part (1), g =f" has a strict local extremum at x;.
Since f' (xg) =0, then either f' (x)>0o0rf'(x)<0, Vxe(xy -0, Xo + 6)\ {Xo}
= f is strictly monotonic on (xo - &, Xy + O)
= f doesn’t have a local extremum at x,.

Example. f(x) = x" is n times differentiable,
fOx)y=nn-1)(n-2)...(n-k+1)x"* k=1,2, ..,n-1
fM(x) =n!
= if xo=0, then f'(0)=f"(0)=...=f"Y(©0)=0, FM(0)=n!>0
= atxy, =0 f has a local minimum if n is even and f doesn’t have a local
extremum if nis odd.
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Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).
If f is differentiable on the interval /, then the following statements are equivalent.
(1) fis convex on/
(2)f(x)2f(a)+f'(a)(x-a) ifx,ael
(3) f"is monotonically increasing on /

Remark. The geometrical meaning of (2) is that for all a €/, the graph of f
lies above the tangent line at a.

Proof of (1) = (2):

hax

y=Aa+(1-A)x
hax(y) = Af(a) + (1 - A) f(x)
fisconvex = f(y)<hgx(y)

Ifa<xandye(a, x)then 3 Ae (0, 1) such that
y=Aa+(1-A)x =y-a=(A-1a+(1-A)x
= y-a=(1-A)(x-a)
fisconvex = f(y)sAf(a)+(1-A)f(x)
= f(y)-f(a)s(A-1)f(a) +(1-A)f(x)
= f(y) - f(a) < (1 - A) (f(x) - f(a))
fly)-f(a) . f(x)-f(a)

y-a X-a

Dividing both sidesbyy-a=(1-A)(x-a)>0 =

f(x)-f
Ify—a+,thenf'(a) < ¥ - fla)

= f(x)2f(a)+f'(a)(x-a) ifx,ael.
X-a

If a > x then the proof is similar and if a = x then the statement is obvious.
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Proof of (2) = (3): Let T,(x)=f(a)+f'(a) (x - a).
Ifa,bel, a<b = T,(a)=f(a)2Ty(a) and T,(b)<f(b)=Ty(b)

Ta(b) = To(@) _Ta(b)-f(a) £(b)-Tw(a) Ty(b)-Th(a) _ £ (b)
< = =

b-a b-a b-a -a
= f'is monotonically increasing on /

= f'(a)=

@)= 0) (3)= (1)

\/

Proof of (3) = (1): Leta,bel, a<b, Ae(0, 1) forwhich x=Aa+(1-A)b
= x-a=(1-A)(b-aqa)
b-x=A(b-a)

Then by Lagrange’s mean value theorem there exist ¢; € (a, x) and ¢, € (x, b) such that

f(x) - f f(b) -
0=FO) 1 and friey o (O

X-a b-x

f'is monotonically increasing = f'(c;) <f'(cy)

f(x)-f(a) f(b)-f(x) f(x)-f(a) f(b) - f(x)
< ——3 <
X-a b-x (1-A)(b-a) Ab-a)
= fisconvexon/.

= f(x)SAf(a) +(1-A)f(b)

Consequence (Necessary and sufficient condition for convexity).
Assume that f is twice differentiable on the interval /. Then
(1)f"(x)20Vxel ifandonlyif fisconvexon/.
(2)f"(x)s0Vxel ifandonlyif fisconcaveon/.

Consequence.
Assume that f is twice differentiable on the interval /. Then
(1) If f""(x)>0 V x el then fis strictly convex on /.
(2)If f"(x)<0 Vxel then fisstrictly concave on /.
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Inflection point

Definition. Assume that f is continuous at a € int Dy and there exists 6 > 0 such that
fis convex on (a - 6, a) and concave on (a, a + 0)
or fisconcave on (a- 6, a) and convexon (a, a + 0).
Then ais called a point of inflection of the function f.

Theorem (Necessary condition for an inflection point, second derivative test).
If f is twice differentiable at xo and f has an inflection point at xq then " (x;) = 0.

Proof. If f is convex on (xg — 6, xg] and concave on [xg, Xg + &) then

f'is monotonically increasing on (xo — 9, Xo] and monotonically decreasing on [xg, X + 6)
= f'hasalocal maximumatx, = ' (xp)=0.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f is twice differentiable in a neighbourhood of x,
f'" (xo) =0and f'" changes sign at xo,
then f has an inflection point at xg.

Theorem (Sufficient condition for an inflection point, third derivative test).
If f is three times differentiable in a neighbourhood of xq,
f"(xp)=0and "' (xo) £0,
then f has an inflection point at xg.

Inflection point and higher order derivatives

Theorem. (1) Assume that f is 2 k + 1 times differentiable at xy, k= 1.
If £ (X0) =. .. = F2M(xp) =0 and FR¥ N (x,) 0
then f has an inflection point at xg.

(2) Assume that f is 2 k times differentiable at xy, k= 1.

If £ (X0) =. .. = F2¥D(x) = 0 and F?K)(x,) # 0, then f is strictly convex or concave
in a neighbourhood of xy, so f doesn’t have an inflection point at x.

Remark. Part (1) in other words: If the first non-zero derivative (after the second one) has an
odd order then f has a local extremum at x,.
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Linear asymptotes
Definition. The straight line x = a is a vertical asymptote of the function f if

lim f(x) =t or lim f(x) = too.
X—0a+ X—a-

Definition. The straight line g(x) =Ax + B is a linear asymptote of the function f at oo or -0 if
lim (f(x) = g(x)) =0 or lim (f(x) - g(x))=0.
g(x) is a horizontal asymptote if A= 0 and an oblique or slant asymptote if A + 0.

Statement. g(x) =Ax + B is a linear asymptote of f at + if and only if

f(x)
A= lim — and B=lim (f(x)-Ax)

X—%oo x X—tco

JT
Example. lim tanx=Fc = x =— is a vertical asymptote of f(x) = tan(x).
2

m
X->=%
2

1
Example. If f(x) =x + 2+ — then g(x) =x + 2 is a linear asymptote of f at +co.
X

15

10F f(x)=x ex

Example. If f(x) =xe'§ then g(x) =x + 2 is a linear asymptote of f at + .

2
X

. fo  xe .
Solution. A= lim — = lim = lim ex=e"=1
X—*oo X X—=*oco X X—=*oco
2
2 ex-1 2 -
B= lim (xex—x): lim _Lety=2,thenB= lim =2,
X—oo X-oteo 1 X y-0+ 1
X 2

X

using that lim = 1. The limit can also be calculate with the L’Hospital’s rule.

x-0 X
Sog(x)=x+2.

Extreme values on a closed interval

Remark. If f is continuous on a closed and bounded interval then by the
Weierstrass extreme value theorem f has a minimum and a maximum.
The possible points are:
1) the points where f is not differentiable
2) the points where the derivative of fis 0
3) the endpoints of the interval
Finally the largest and smallest of the possible values must be selected.
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Analyzing graphs of functions

Summary of the steps:

1) finding the domain of f

2) finding the zeros of f

3) parity, periodicity

4) limits at the endpoints of the intervals constituting the domain
5) investigation of f' = monotonicity, extreme values

6) investigation of f'' = convexity/concavity, inflection points
7) linear asymptotes

8) plotting the graph of f, finding the range of f

Exercises

https://math.bme.hu/~nagyi/calculusl/functions.pdf

Examples

X

1. f(x)=

X+l
Df = (-0, =1) U (-1, o0); f(X)=0 < x=0;

lim f(x)=0, lim f(X)=-co, lim f(X)=+oo
Xx--140

X->%*oo x->-1-0

Monotonicity, local extremum:

1-2x° 1
f'(x)= =0 & x=— =0.79
()(3+l)2 i/;
X | x<-1' -1<x<-t X=— X>—
: V2 V2 V2
f + : + 0 -
1
f 2 : 2 max:g:O.SB N

Convexity [/ concavity, inflection points:

6x%(x3-2
f“(x)=¥=0=>x=00rx=i/§zl.26
()(3+l)3
X x<—1:—1<x<0 X=0 0<x<\3/§ x:f/i x>\3/§
£ o ) - 0 +
]
£l U n N infl:gzOAZ U




The graph of f:

2. f(x)=2sinx+sin2x

Df =R; fisodd;
f is periodic with period 2 ;1 = it may be assumed that0<x <2 r1;
= onthisinterval f(x)=0 < x=0 or x=71 or X=27T

Monotonicity, local extremum:
f'(x)=2cosx+2cos2x=2(cosx+cos’x - (1-cos’x)) =
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-1+3 1
=2-(2coszx+cosx—l)=0 = (€COSX);, = = cosx=-1 or cosx=-
’ 2
7T 57T
= X1=—, Xp=T, X3 =—
3
T T T 57T 57T 57T
X | O (9,—) = (—,rr) 7T (rr,—] — [—,27‘(] 27T
3 3 3 3 3
'+ + (4] - (4] - 0 + +
f A max:% N N min:—% A
Convexity [/ concavity, inflection points:
f'"(x)==-2sinx-4sin2x=-2sinx-8sinxcosx =
1
=-2sinx(l+4cosx)=0 = sinx=0 or cosx=-—
4
1 1
= X1,=0, X, = 7T, X3 =2 JT, X4 = aArc cos(——) =1.82, x5 =271 -2arc cos(——) =4.46
4 4
X 0 (0, 1.82) 1.82 (1.82, 11) T (7T, 4.46) 4.46 (4.46,2 27
TT)
f'' (%] - 0 + %] - 0 + %]
f [infl:0 N infl:\n U infl:e N infl:\n U infl:e
3 4/15 _
8 3 V15
8
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The graph of f:

2F

wly

1.82

Implicitely given curve

Example.

Solution.

The curve y = y(x) is given by the following implicit equation:

xsinhx -ycoshy=0

Study the properties of this curve in a neighbourhood of (0, 0).

The point (0, 0) is on the curve: y(0) = 0.
1) The first derivative of x sinhx - y(x) cosh y(x) = 0 with respect to x:

sinhx +x coshx —y' (x) cosh y(x) -y (x)y' (x)sinhy(x)=0

Ifx=0, y=0= 0+0-1-y'(0):1-0-y'(0)-0=0 = y'(0)=0

2) The second derivative with respect to x:

coshx + coshx +xsinhx -y (x) cosh y(x) =y "' (x) y' (x) sinh y(x)
=y (x)y" (x)sinhy(x) = y(x) y" (x) sinh y(x) - y(x) y ' (x) y ' (x) cosh y(x) = 0

fx=0,y=0= 1+1+0-y"(0)-0-0-0-0=0 = y'" (0)=2

Sincey'(0)=0and y" (0) =2 > 0 then the curve y = y(x) has local minimum at
x =0 and itis convex in some neighbourhood of x = 0.

. . . .
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