19th and 20th lectures

L'Hospital's rule

Theorem (L'Hospital's rule).

Assume that $a \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$, l is a neighbourhood of a, the functions f and g are differentiable on $I \backslash\{a\}$ and $g(x) \neq 0, g^{\prime}(x) \neq 0$ for all $x \in I \backslash\{a\}$. Assume moreover that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \quad \text { or } \quad \lim _{x \rightarrow a}|f(x)|=\lim _{x \rightarrow a}|g(x)|=\infty .
$$

If $\exists \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=b \in \overline{\mathbb{R}}$ then $\exists \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=b$.

Remark. The theorem holds for right-hand and left-hand limits as well.
Proof. We prove it in the case when $a \in \mathbb{R}$ (for right-hand limit).
Assume that $a \in \mathbb{R}, \lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0$ and $\exists \lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=b \in \mathbb{R}$.
Extend the functions f and g such that $f(a)=g(a)=0$ and let $x \in I, x>a$.
Then f and g are continuous on $[a, x]$ and differentiable on (a, x),
so by Cauchy's mean value theorem there exists $c \in(a, x)$ such that

$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} .
$$

Let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightarrow a$ and choose $c_{n} \in\left(a, x_{n}\right)$ for all n.
Then $c_{n} \rightarrow a$ and $\frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}=\frac{f^{\prime}\left(c_{n}\right)}{g^{\prime}\left(c_{n}\right)}$ for all $n \in \mathbb{N}$.
Therefore $\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}\left(c_{n}\right)}{g^{\prime}\left(c_{n}\right)}=b$ and by the sequential criterion for the limit, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=b$.

Undefined forms

Remark. The theorem can be applied for limits of the following type:

1) $\frac{0}{0}, \frac{\infty}{\infty}$: L'Hospital's rule can be applied directly
2) $0 \cdot \infty$: we can try the following transformations: $f(x) g(x)=\frac{f(x)}{\frac{1}{g(x)}}$ or $f(x) g(x)=\frac{g(x)}{\frac{1}{f(x)}}$
3) $\infty-\infty: h(x)=\frac{1}{f(x)}, k(x)=\frac{1}{g(x)} \Longrightarrow f(x)-g(x)=\frac{1}{h(x)}-\frac{1}{k(x)}=\frac{k(x)-h(x)}{h(x) k(x)}\binom{0}{0}$
4) $0^{0}, 1^{\infty}, \infty^{0}:(f(x))^{g(x)}=e^{g(x) \cdot \ln (f(x))}$, then for the undefined form $g(x) \cdot \ln (f(x))$
previous methods can be applied.

Exercises

Pages 171-172 of the pdf file (first 9 examples):
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_elm.pdf

Pages 72-73 of the pdf file, exercise 26:
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf In exercises 26. g), h) the L'Hospital's rule cannot be applied.

Local properties and the derivative

Definition. Assume that $x_{0} \in D_{f}$ and there exists $\delta>0$ such that for all $x, y \in D_{f}$, if $x_{0}-\delta<x<x_{0}<y<x_{0}+\delta$,

$$
\text { then }\left\{\begin{array} { l }
{ f (x) \leq f (x _ { 0 }) \leq f (y) } \\
{ f (x) \geq f (x _ { 0 }) \geq f (y) } \\
{ f (x) < f (x _ { 0 }) < f (y) } \\
{ f (x) > f (x _ { 0 }) > f (y) }
\end{array} \text { . Then we say that } f \text { is } \left\{\begin{array}{l}
\text { locally increasing } \\
\text { locally decreasing } \\
\text { strictly locally increasing } \\
\text { strictly locally decreasing }
\end{array} \text { at } x_{0} .\right.\right.
$$

Remarks. (1) If f is monotonically increasing on (a, b), then f is locally increasing for all $x_{0} \in(a, b)$.
(2) If f is locally increasing for all $x_{0} \in(a, b)$, then f is monotonically increasing on (a, b).
(3) However, if f is locally increasing at x_{0} then it doesn't imply that there exists a neighbourhood $B\left(x_{0}, r\right)$ where f is monotonically increasing.
The following functions are locally increasing at $x_{0}=0$ but on any interval that contains 0 , the functions are not monotonically increasing.

1. $f(x)= \begin{cases}x \sin ^{2} \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
2. $f(x)= \begin{cases}\frac{1}{x} & \text { if } x \neq 0 \\ x & \text { if } x=0\end{cases}$

Theorem. Assume that f is differentiable at x_{0}.
(1) If f is locally increasing at x_{0} then $f^{\prime}\left(x_{0}\right) \geq 0$.
(2) If f is locally decreasing at x_{0} then $f^{\prime}\left(x_{0}\right) \leq 0$.
(3) If $f^{\prime}\left(x_{0}\right)>0$ then f is strictly locally increasing at x_{0}.
(4) If $f^{\prime}\left(x_{0}\right)<0$ then f is strictly locally decreasing at x_{0}.

Proof. (1) If f is locally increasing at x_{0} then $\exists \delta>0$ such that
$0<\left|x-x_{0}\right|<\delta \Rightarrow \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0$.
(If $x<x_{0}$ then $x-x_{0}<0$ and $f(x)-f\left(x_{0}\right) \leq 0$ and
if $x>x_{0}$ then $x-x_{0}>0$ and $f(x)-f\left(x_{0}\right) \geq 0$.)
Since f is differentiable at x_{0} then $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0$.
(2) Similar to case (1).
(3) If $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}>0$, then there exists $\delta>0$ such that if $0<\left|x-x_{0}\right|<\delta$ then $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}>0$.
\Longrightarrow if $\left\{\begin{array}{l}x_{0}<x<x_{0}+\delta \\ x_{0}-\delta<x<x_{0}\end{array}\right.$ then $\left\{\begin{array}{l}f(x)>f\left(x_{0}\right) \\ f(x)<f\left(x_{0}\right)\end{array}\right.$
$\Rightarrow f$ is strictly locally increasing at x_{0}.
(3) Similar to case (4).

Remarks. Assume that f is differentiable at x_{0}.
(1) If f is strictly locally increasing at x_{0} then it doesn't imply that $f^{\prime}\left(x_{0}\right)>0$.

If \boldsymbol{f} is strictly locally increasing at x_{0} then $\boldsymbol{f}^{\prime}\left(x_{0}\right) \geq 0$, since $\exists \delta>0$ such that
$0<\left|x-x_{0}\right|<\delta \Longrightarrow \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}>0$, but for the limit $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geq 0$.
For example $f(x)=x^{3}$ is strictly locally increasing at $x_{0}=0$, but $f^{\prime}(0)=\left.3 x^{2}\right|_{x=0}=0$.

1. $f(x)=x^{3}$
2. $f(x)=-x^{3}$
3. $f(x)= \begin{cases}x+x^{2} \sin \left(\frac{10}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

(2) If $f^{\prime}\left(x_{0}\right) \geq 0$ then it doesn't imply that f is locally increasing at x_{0}.

For example $f(x)=-x^{3}$ is not locally increasing at $x_{0}=0$, but $f^{\prime}(0)=\geq 0$.
(3) If $f^{\prime}\left(x_{0}\right)>0$ then it doesn't imply that f is monotonically increasing on an interval containing x_{0}.
For example, let f be a function such that $x-x^{2} \leq f(x) \leq x+x^{2} \forall x \Longrightarrow f(0)=0$.
If $x>0$ then $1-x \leq \frac{f(x)}{x}=\frac{f(x)-f(0)}{x-0} \leq 1+x$,
If $x<0$ then $1-x \geq \frac{f(x)-f(0)}{x-0} \geq 1+x$, so by the sandwich theorem
$f^{\prime}(0)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=1>0$. For example, let $f(x)= \begin{cases}x+x^{2} \sin \left(\frac{10}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Darboux's theorem

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is differentiable and $f^{\prime}(a)<y<f^{\prime}(b)$ or $f^{\prime}(b)<y<f^{\prime}(a)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=y$.

Remark. We say that f ' has the intermediate value property of Darboux property.
Proof. 1) Let $g:[a, b] \longrightarrow \mathbb{R}, g(x)=f(x)-y \cdot x \Longrightarrow g$ is differentiable and $g^{\prime}(x)=f^{\prime}(x)-y$.
2) Assume that $f^{\prime}(a)<y<f^{\prime}(b) \Longrightarrow g^{\prime}(a)=f^{\prime}(a)-y<0<f^{\prime}(b)-y<g^{\prime}(b)$
3) g is differentiable, so it is continuous on $[a, b]$
\Longrightarrow by Weierstrass extreme value theorem it has a minimum and a maximum on $[a, b]$.
4) Since $\left\{\begin{array}{l}g^{\prime}(a)<0 \\ g^{\prime}(b)>0\end{array}\right.$ then $\left\{\begin{array}{l}g \text { is strictly locally decreasing at } a \\ g \text { is strictly locally increasing at } b\end{array}\right.$
$\Longrightarrow g$ does not have a minimum at a and b but on the open interval (a, b)
\Longrightarrow there exists $c \in(a, b)$ such that g has a local minimum at c
$\Longrightarrow g^{\prime}(c)=0=f^{\prime}(c)-y \Longrightarrow f^{\prime}(c)=y$ for some $c \in(a, b)$.

Example. The sign function or signum function is defined as $\operatorname{sgn} x= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}$ This function is not continuous at $x_{0}=0$, so there is no function $f: \mathbb{R} \longrightarrow \mathbb{R}$ for which $f^{\prime}(x)=\operatorname{sgn} x$ on \mathbb{R} (or on any interval that contains $x_{0}=0$).

Remark. From Darboux's theorem it follows that if f ' is not continuous at a point then f^{\prime} cannot have a discontinuity of the first type at that point, so at least one of the one-sided limits doesn't exist or exists but is not finite
$\Longrightarrow f$ ' has an essential discontinuity at the given point.

Statement. If f is differentiable on [a, $a+\delta)(\delta>0)$ and f ' has a discontinuity at a then the limit $\lim _{x \rightarrow a+0} f(x)$ doesn't exist or $\exists \lim _{x \rightarrow a+0} f(x) \notin \mathbb{R}$.

Continuously differentiable functions

Definition. Assume that $/$ is a neighbourhood of $a \in D_{f}$ and f is differentiable on $I \cap D_{f}$.
Then f is continuous differentiable at \boldsymbol{a} if f ' is continuous at a.
f is continuously differentiable on A if f is continuous differentiable $\forall x \in A$.
Notation: $C^{1}(A)=\{f$: f is continuously differentiable on $A\}$.

$$
\begin{gathered}
\text { Example: The function } f(x)=\left\{\begin{array}{ll}
x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} \text { is differentiable but } f^{\prime}\right. \text { is not continuous } \\
\text { at } x_{0}=0 \text {, since } f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 . \\
0 & \text { if } x=0\end{cases}
\end{gathered}
$$

Higher order derivatives

Definition. If f^{\prime} is differentiable at x then we say that f is twice differentiable at x and the second derivative or second order derivative of f at x_{0} is $f^{\prime \prime}(x)=\left(f^{\prime}\right)^{\prime}(x)$. Differentiating f repeatedly, we get the third,..,nth derivative of f.
Notation: $\quad f^{\prime \prime}(x)=f^{(2)}(x)=\frac{d^{2} f(x)}{d x^{2}}$

$$
f^{\prime \prime \prime}(x)=f^{(3)}(x)=\frac{d^{3} f(x)}{d x^{3}}
$$

$$
f^{(n)}(x)=\frac{d^{n} f(x)}{d x^{n}}
$$

By definition: $f^{(0)}(x)=f(x)$
Example: $f(x)=\sin x \Longrightarrow f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{\prime \prime \prime}(x)=-\cos x, f^{(4)}(x)=\sin x, \ldots$
$f(x)=e^{x} \Longrightarrow f^{(n)}(x)=e^{x} \quad \forall n \in \mathbb{N}$

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that $f:(a, b) \longrightarrow \mathbb{R}$ is differentiable. Then
(1) f is monotonically increasing $\Longleftrightarrow f^{\prime}(x) \geq 0$ for all $x \in(a, b)$
(2) f is monotonically decreasing $\Longleftrightarrow f^{\prime}(x) \leq 0$ for all $x \in(a, b)$
(3) f is constant $\Longleftrightarrow f^{\prime}(x)=0$ for all $x \in(a, b)$
(4) $f^{\prime}(x)>0$ for all $x \in(a, b) \Longrightarrow f$ is strictly monotonically increasing
(5) $f^{\prime}(x)<0$ for all $x \in(a, b) \Longrightarrow f$ is strictly monotonically decreasing

Proof. (1)
(i) If f is monotonically increasing then f is locally monotonically increasing for all $x \in(a, b)$ $\Rightarrow f^{\prime}(x) \geq 0 \forall x \in(a, b)$.
(ii) Assume that $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$. Let $a<x_{1}<x_{2}<b$ and apply Lagrange's mean value theorem for $\left[x_{1}, x_{2}\right]$. Then there exists $c \in\left(x_{1}, x_{2}\right) \subset(a, b)$ such that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c) \geq 0 \Longrightarrow f\left(x_{2}\right) \geq f\left(x_{1}\right)
$$

Therefore if $x_{1}<x_{2}$ then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$, so f is monotonically increasing on (a, b).
(2) Similar to case (1).
(3) f is constant $\Longleftrightarrow f$ is monotonically increasing and decreasing
$\Longleftrightarrow f^{\prime}(x) \geq 0$ and $f^{\prime}(x) \leq 0 \quad \forall x \in(a, b) \Longleftrightarrow f^{\prime}(x)=0 \forall x \in(a, b)$
(4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.
For example, $f(x)=x^{3}$ is strictly monotonically increasing on \mathbb{R}, however $f^{\prime}(x)>0$ does not hold for all $x \in \mathbb{R}$, since $f^{\prime}(x)=3 x^{2} \Longrightarrow f^{\prime}(0)=0$.

Remark. If the domain of f is not an interval then the above theorem is not true, as the following examples show.

1) Let $f: \mathbb{R} \backslash \mathbb{Z} \longrightarrow \mathbb{R}, f(x)=\{x\}=x-[x]$. Then f is differentiable on $\mathbb{R} \backslash \mathbb{Z}$ and $f^{\prime}(x)=1>0$ for all $x \in \mathbb{R} \backslash \mathbb{Z}$ but f is not monotonically increasing.
2) Let $f: \mathbb{R} \backslash \mathbb{Z} \longrightarrow \mathbb{R}, f(x)=[x]$. Then f is differentiable on $\mathbb{R} \backslash \mathbb{Z}$ and $f^{\prime}(x)=0$ for all $x \in \mathbb{R} \backslash \mathbb{Z}$ but f is not constant.

Local extremum, sufficient conditions

Definition. If f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=0$ then x_{0} is a stationary point of f. If $f^{\prime}\left(x_{0}\right)=0$ or f is not differentiable at x_{0} then x_{0} is a critical point of f.

Remark. Recall that if f is differentiable at $x_{0} \in \operatorname{int} D_{f}$ and f has a local extremum at x_{0} then $f^{\prime}\left(x_{0}\right)=0$. This is a necessary condition for the existence of a local extremum.
The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test).

Assume that f is differentiable at $x_{0} \in \operatorname{int} D_{f}$.
If $f^{\prime}\left(x_{0}\right)=0$ and f^{\prime} changes sign at x_{0}, then f has a local extremum at x_{0}.

Namely, if $f^{\prime}\left(x_{0}\right)=0$ and f^{\prime} is (strictly) locally $\left\{\begin{array}{l}\text { increasing } \\ \text { decreasing }\end{array}\right.$ at x_{0}
then f has a (strict) local $\left\{\begin{array}{l}\text { minimum } \\ \text { maximum }\end{array}\right.$ at x_{0}.
Proof. Assume that $f^{\prime}\left(x_{0}\right)=0$ and f^{\prime} is locally increasing at x_{0}
(that is, f^{\prime} changes sign from negative to positive)
$\Longrightarrow \exists \delta>0$ such that $\left\{\begin{array}{l}f^{\prime}(x) \leq 0 \text { if } x_{0}-\delta<x<x_{0} \\ f^{\prime}(x) \geq 0 \text { if } x_{0}<x<x_{0}+\delta\end{array}\right.$
$\Longrightarrow\left\{\begin{array}{l}f \text { is monotonically decreasing on }\left(x_{0}-\delta, x_{0}\right) \\ f \text { is monotonically increasing on }\left(x_{0}, x_{0}+\delta\right)\end{array}\right.$
$\Longrightarrow\left\{\begin{array}{l}f(x) \geq f\left(x_{0}\right) \text { if } x_{0}-\delta<x<x_{0} \\ f(x) \geq f\left(x_{0}\right) \text { if } x_{0}<x<x_{0}+\delta\end{array} \Rightarrow f\right.$ has a local minimum at x_{0}.

Theorem (Sufficient condition for a local extremum, second derivative test).

Assume that f is twice differentiable at $x_{0} \in \operatorname{int} D_{f}$.
If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right) \neq 0$ then f has a local extremum at x_{0}.
If $\left\{\begin{array}{l}f^{\prime \prime}\left(x_{0}\right)>0 \\ f^{\prime \prime}\left(x_{0}\right)<0\end{array}\right.$ then f has a strict local $\left\{\begin{array}{l}\text { minimum } \\ \text { maximum }\end{array}\right.$ at x_{0}.
Proof. $f^{\prime \prime}\left(x_{0}\right)>0 \Longrightarrow f^{\prime}$ is locally increasing at x_{0} and $f^{\prime}\left(x_{0}\right)=0$
\Longrightarrow by the previous theorem f has a local minimum at x_{0}.

Remark. The sign change of f^{\prime} at x_{0} is only a sufficient but not a necessary condition for the existence of a local extremum at x_{0}.
For example, if $f(x)= \begin{cases}x^{2}\left(2+\sin \left(\frac{1}{x}\right)\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
then f is differentiable for all $x \in \mathbb{R}$. At $x=0$:
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2}\left(2+\sin \left(\frac{1}{x}\right)\right)}{x}=\lim _{x \rightarrow 0} x\left(2+\sin \left(\frac{1}{x}\right)\right)=0$ (since it is $0 \cdot$ bounded), so the necessary condition holds at $x_{0}=0$.

However, in any neighbourhood of $x_{0}=0$:
f has strictly monotonic increasing and decreasing sections \Longrightarrow f ' has both positive and negative values \Longrightarrow
f^{\prime} doesn't change sign at $x_{0}=0$.

Yet f has a local extreme value at $x_{0}=0$, and it is even an absolute minimum here.

Local extremum and higher order derivatives

Remark. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)=0$ then it cannot be decided whether f has a local extremum at x_{0}. For example:

1) $f(x)=x^{3}$ does not have a local extremum at $x_{0}=0$,
2) $f(x)=x^{4}$ has a local minimum at $x_{0}=0$,
3) $f(x)=-x^{4}$ has a local maximum at $x_{0}=0$, and in each case $f^{\prime}(0)=f^{\prime \prime}(0)=0$.

Theorem. (1) Assume that f is $2 k$ times differentiable at $x_{0}, k \geq 1$.
If $f^{\prime}\left(x_{0}\right)=\ldots=f^{(2 k-1)}\left(x_{0}\right)=0$ and $\left\{\begin{array}{l}f^{(2 k)}\left(x_{0}\right)>0 \\ f^{(2 k)}\left(x_{0}\right)<0\end{array}\right.$
then f has a strict local $\left\{\begin{array}{l}\text { minimum } \\ \text { maximum }\end{array}\right.$ at x_{0}.
(2) Assume that f is $2 k+1$ times differentiable at $x_{0}, k \geq 1$. If $f^{\prime}\left(x_{0}\right)=\ldots=f^{(2 k)}\left(x_{0}\right)=0$ and $f^{(2 k+1)}\left(x_{0}\right) \neq 0$, then f is strictly monotonic in a neighbourhood of x_{0}, so f doesn't have a local extremum at x_{0}.

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even order then f has a local extremum at x_{0}.

Proof. (1) We prove the statement for a strict local minimum by induction.
(i) If $k=1$ then the statement is true.
(ii) Assume that the statement holds for $k-1$ and let $g=f^{\prime \prime}$.
$\left(\Longrightarrow g^{\prime}=f^{\prime \prime}, \ldots, g^{(2 k-3)}=f^{(2 k-1)}, g^{(2 k-2)}=f^{(2 k)}\right.$.)
From the induction hypothesis it follows that
if $g^{\prime}\left(x_{0}\right)=\ldots=g^{(2 k-3)}\left(x_{0}\right)=0$ and $g^{(2 k-2)}\left(x_{0}\right)>0$ then the function $g=f "$ has a strict local minimum at x_{0}.
(iii) We want to prove that if
$f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime \prime}\left(x_{0}\right)=\ldots=f^{(2 k-1)}\left(x_{0}\right)=0$ and $f^{(2 k)}\left(x_{0}\right)>0$ then
f has a strict local minimum at x_{0}.
Since $\boldsymbol{f}^{\prime \prime}\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$ and $f^{\prime \prime}$ has a strict local minimum at x_{0},
then $\exists \delta>0$ such that $f^{\prime \prime}(x)>0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \backslash\left\{x_{0}\right\}$
$\Longrightarrow f^{\prime}$ is strictly monotonically increasing on $\left(x_{0}-\delta, x_{0}+\delta\right)$
$\Longrightarrow f^{\prime}$ is strictly locally increasing at x_{0}
$\Longrightarrow f$ has a strict local minimum at x_{0}.
(2) Assume that $\boldsymbol{f}^{\prime}\left(x_{0}\right)=\boldsymbol{f}^{\prime \prime}\left(x_{0}\right)=\ldots=\boldsymbol{f}^{(2 \boldsymbol{k})}\left(x_{0}\right)=\mathbf{0}$ and $\boldsymbol{f}^{(2 \boldsymbol{k}+1)}\left(x_{0}\right) \neq \mathbf{0}$.

Let $g=f^{\prime}$, then $\boldsymbol{g}^{\prime}\left(\boldsymbol{x}_{0}\right)=\ldots=\boldsymbol{g}^{(\mathbf{2 k - 1})}\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$ and $\boldsymbol{g}^{(2 k)}\left(\boldsymbol{x}_{0}\right) \neq 0$.
\Longrightarrow by part (1), $g=f$ ' has a strict local extremum at x_{0}.
Since $\boldsymbol{f}^{\prime}\left(x_{0}\right)=0$, then either $f^{\prime}(x)>0$ or $f^{\prime}(x)<0, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right) \backslash\left\{x_{0}\right\}$
$\Longrightarrow f$ is strictly monotonic on $\left(x_{0}-\delta, x_{0}+\delta\right)$
$\Longrightarrow f$ doesn't have a local extremum at x_{0}.

Example. $f(x)=x^{n}$ is n times differentiable,
$f^{(k)}(x)=n(n-1)(n-2) \ldots(n-k+1) x^{n-k}, \quad k=1,2, \ldots, n-1$
$f^{(n)}(x)=n!$
\Longrightarrow if $x_{0}=0$, then $f^{\prime}(0)=f^{\prime \prime}(0)=\ldots=f^{(n-1)}(0)=0, f^{(n)}(0)=n!>0$
\Rightarrow at $x_{0}=0 f$ has a local minimum if n is even and f doesn't have a local extremum if n is odd.

Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).

If f is differentiable on the interval I, then the following statements are equivalent.
(1) f is convex on I
(2) $f(x) \geq f(a)+f^{\prime}(a)(x-a)$ if $x, a \in I$
(3) f^{\prime} is monotonically increasing on $/$

Remark. The geometrical meaning of (2) is that for all $a \in I$, the graph of f lies above the tangent line at a.
Proof of $(1) \Longrightarrow(2)$:

$$
\begin{aligned}
& y=\lambda a+(1-\lambda) x \\
& h_{a x}(y)=\lambda f(a)+(1-\lambda) f(x) \\
& f \text { is convex } \Longrightarrow f(y) \leq h_{a x}(y)
\end{aligned}
$$

If $a<x$ and $y \in(a, x)$ then $\exists \lambda \in(0,1)$ such that

$$
\begin{aligned}
y=\lambda a+(1-\lambda) x & \Longrightarrow y-a=(\lambda-1) a+(1-\lambda) x \\
& \Longrightarrow y-a=(\mathbf{1}-\lambda)(x-a)
\end{aligned}
$$

f is convex $\Longrightarrow f(y) \leq \lambda f(a)+(1-\lambda) f(x)$

$$
\Longrightarrow f(y)-f(a) \leq(\lambda-1) f(a)+(1-\lambda) f(x)
$$

$$
\Longrightarrow f(y)-f(a) \leq(1-\lambda)(f(x)-f(a))
$$

Dividing both sides by $y-a=(1-\lambda)(x-a)>0 \Longrightarrow \frac{f(y)-f(a)}{y-a} \leq \frac{f(x)-f(a)}{x-a}$
If $y \rightarrow a+$, then $f^{\prime}(a) \leq \frac{f(x)-f(a)}{x-a} \Longrightarrow f(x) \geq f(a)+f^{\prime}(a)(x-a)$ if $x, a \in I$.
If $a>x$ then the proof is similar and if $a=x$ then the statement is obvious.

Proof of (2) $\Rightarrow \mathbf{(3)}$: Let $T_{a}(x)=f(a)+f^{\prime}(a)(x-a)$.
If $a, b \in I, a<b \Longrightarrow T_{a}(a)=f(a) \geq T_{b}(a)$ and $T_{a}(b) \leq f(b)=T_{b}(b)$
$\Longrightarrow f^{\prime}(a)=\frac{T_{a}(b)-T_{a}(a)}{b-a}=\frac{T_{a}(b)-f(a)}{b-a} \leq \frac{f(b)-T_{b}(a)}{b-a}=\frac{T_{b}(b)-T_{b}(a)}{b-a}=f^{\prime}(b)$
$\Longrightarrow f^{\prime}$ is monotonically increasing on $/$
$(2) \Longrightarrow(3)$

$(3) \Longrightarrow(1)$

Proof of $\mathbf{(3)} \Rightarrow \mathbf{(1) : ~ L e t ~} a, b \in I, a<b, \lambda \in(0,1)$ for which $x=\lambda a+(1-\lambda) b$

$$
\begin{aligned}
\Longrightarrow x-a & =(1-\lambda)(b-a) \\
b-x & =\lambda(b-a)
\end{aligned}
$$

Then by Lagrange's mean value theorem there exist $c_{1} \in(a, x)$ and $c_{2} \in(x, b)$ such that
$\frac{f(x)-f(a)}{x-a}=f^{\prime}\left(c_{1}\right)$ and $f^{\prime}\left(c_{2}\right)=\frac{f(b)-f(x)}{b-x}$.
f^{\prime} is monotonically increasing $\Longrightarrow f^{\prime}\left(c_{1}\right) \leq f^{\prime}\left(c_{2}\right)$
$\Longrightarrow \frac{f(x)-f(a)}{\boldsymbol{x}-\boldsymbol{a}} \leq \frac{f(b)-f(x)}{\boldsymbol{b}-\boldsymbol{x}} \Longrightarrow \frac{f(x)-f(a)}{(1-\lambda)(\boldsymbol{b}-\boldsymbol{a})} \leq \frac{f(b)-f(x)}{\lambda(\boldsymbol{b}-\boldsymbol{a})} \Longrightarrow f(x) \leq \lambda f(a)+(1-\lambda) f(b)$
$\Longrightarrow f$ is convex on $/$.

Consequence (Necessary and sufficient condition for convexity).

Assume that f is twice differentiable on the interval I. Then
(1) $f^{\prime \prime}(x) \geq 0 \forall x \in I$ if and only if f is convex on I.
(2) $f^{\prime \prime}(x) \leq 0 \forall x \in I$ if and only if f is concave on I.

Consequence.

Assume that f is twice differentiable on the interval I. Then
(1) If $f^{\prime \prime}(x)>0 \forall x \in I$ then f is strictly convex on I.
(2) If $f^{\prime \prime}(x)<0 \forall x \in I$ then f is strictly concave on I.

Inflection point

Definition. Assume that f is continuous at $a \in \operatorname{int} D_{f}$ and there exists $\delta>0$ such that f is convex on $(a-\delta, a)$ and concave on ($a, a+\delta$)
or f is concave on ($a-\delta, a$) and convex on ($a, a+\delta$).
Then a is called a point of inflection of the function f.

Theorem (Necessary condition for an inflection point, second derivative test).

If f is twice differentiable at x_{0} and f has an inflection point at x_{0} then $f^{\prime \prime}\left(x_{0}\right)=0$.
Proof. If f is convex on $\left(x_{0}-\delta, x_{0}\right]$ and concave on $\left[x_{0}, x_{0}+\delta\right)$ then
f ' is monotonically increasing on ($x_{0}-\delta, x_{0}$] and monotonically decreasing on $\left[x_{0}, x_{0}+\delta\right.$)
$\Longrightarrow f^{\prime}$ has a local maximum at $x_{0} \Longrightarrow f^{\prime \prime}\left(x_{0}\right)=0$.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f is twice differentiable in a neighbourhood of x_{0},
$f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}$ changes sign at x_{0},
then f has an inflection point at x_{0}.

Theorem (Sufficient condition for an inflection point, third derivative test).
If f is three times differentiable in a neighbourhood of x_{0},
$f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$,
then f has an inflection point at x_{0}.

Inflection point and higher order derivatives

Theorem. (1) Assume that f is $2 k+1$ times differentiable at $x_{0}, k \geq 1$.
If $f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(2 k)}\left(x_{0}\right)=0$ and $f^{(2 k+1)}\left(x_{0}\right) \neq 0$
then f has an inflection point at x_{0}.
(2) Assume that f is $2 k$ times differentiable at $x_{0}, k \geq 1$.

If $f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(2 k-1)}\left(x_{0}\right)=0$ and $f^{(2 k)}\left(x_{0}\right) \neq 0$, then f is strictly convex or concave in a neighbourhood of x_{0}, so f doesn't have an inflection point at x_{0}.

Remark. Part (1) in other words: If the first non-zero derivative (after the second one) has an odd order then f has a local extremum at x_{0}.

Linear asymptotes

Definition. The straight line $x=a$ is a vertical asymptote of the function f if $\lim _{x \rightarrow a+} f(x)= \pm \infty$ or $\lim _{x \rightarrow a-} f(x)= \pm \infty$.
Definition. The straight line $g(x)=A x+B$ is a linear asymptote of the function f at ∞ or $-\infty$ if $\lim _{x \rightarrow \infty}(f(x)-g(x))=0$ or $\lim _{x \rightarrow-\infty}(f(x)-g(x))=0$.
$g(x)$ is a horizontal asymptote if $A=0$ and an oblique or slant asymptote if $A \neq 0$.
Statement. $g(x)=A x+B$ is a linear asymptote of f at $\pm \infty$ if and only if

$$
A=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x} \text { and } B=\lim _{x \rightarrow \pm \infty}(f(x)-A x)
$$

Example. $\lim _{x \rightarrow \frac{\pi}{2} \pm} \tan x=\mp \infty \Longrightarrow x=\frac{\pi}{2}$ is a vertical asymptote of $f(x)=\tan (x)$.
Example. If $f(x)=x+2+\frac{1}{x}$ then $g(x)=x+2$ is a linear asymptote of f at $\pm \infty$.

Example. If $f(x)=x e^{\frac{2}{x}}$ then $g(x)=x+2$ is a linear asymptote of f at $\pm \infty$.
Solution. $A=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{x e^{\frac{2}{x}}}{x}=\lim _{x \rightarrow \pm \infty} e^{\frac{2}{x}}=e^{0}=1$
$B=\lim _{x \rightarrow \pm \infty}\left(x e^{\frac{2}{x}}-x\right)=\lim _{x \rightarrow \pm \infty} \frac{e^{\frac{2}{x}}-1}{\frac{1}{x}}$. Let $y=\frac{2}{x}$, then $B=\lim _{y \rightarrow 0 \pm} \frac{e^{y}-1}{\frac{1}{2} \cdot y}=2$,
using that $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$. The limit can also be calculate with the L'Hospital's rule.
So $g(x)=x+2$.

Extreme values on a closed interval

Remark. If f is continuous on a closed and bounded interval then by the Weierstrass extreme value theorem f has a minimum and a maximum. The possible points are:

1) the points where f is not differentiable
2) the points where the derivative of f is 0
3) the endpoints of the interval

Finally the largest and smallest of the possible values must be selected.

Analyzing graphs of functions

Summary of the steps:

1) finding the domain of f
2) finding the zeros of f
3) parity, periodicity
4) limits at the endpoints of the intervals constituting the domain
5) investigation of $f^{\prime} \Longrightarrow$ monotonicity, extreme values
6) investigation of $f^{\prime \prime} \Longrightarrow$ convexity/concavity, inflection points
7) linear asymptotes
8) plotting the graph of f, finding the range of f

Exercises

https://math.bme.hu/~nagyi/calculus1/functions.pdf

Examples

1. $f(x)=\frac{x}{x^{3}+1}$
$D_{f}=(-\infty,-1) \cup(-1, \infty) ; f(x)=0 \Longleftrightarrow x=0 ;$
$\lim _{x \rightarrow \pm \infty} f(x)=0, \lim _{x \rightarrow-1+0} f(x)=-\infty, \quad \lim _{x \rightarrow-1-0} f(x)=+\infty$

Monotonicity, local extremum:

$f^{\prime}(x)=\frac{1-2 x^{3}}{\left(x^{3}+1\right)^{2}}=0 \Longleftrightarrow x=\frac{1}{\sqrt[3]{2}} \approx 0.79$

x	$x<-1$	$-1<x<\frac{1}{\sqrt[3]{2}}$	$x=\frac{1}{\sqrt[3]{2}}$	$x>\frac{1}{\sqrt[3]{2}}$
f^{\prime}	+	+	0	-
f	\nearrow	\nearrow	$\max : \frac{\sqrt[3]{4}}{3} \approx 0.53$	\searrow

Convexity / concavity, inflection points:

$f^{\prime \prime}(x)=\frac{6 x^{2}\left(x^{3}-2\right)}{\left(x^{3}+1\right)^{3}}=0 \Longleftrightarrow x=0$ or $x=\sqrt[3]{2} \approx 1.26$

x	$x<-1$	$-1<x<0$	$x=0$	$0<x<\sqrt[3]{2}$	$x=\sqrt[3]{2}$	$x>\sqrt[3]{2}$
$f^{\prime} \cdot$	+	-	0	-	0	+
f	\cup	\cap		\cap	infl $: \frac{\sqrt[3]{2}}{3} \approx 0.42$	\cup

The graph of f :

2. $f(x)=2 \sin x+\sin 2 x$
$D_{f}=\mathbb{R} ; f$ is odd;
f is periodic with period $2 \pi \Longrightarrow$ it may be assumed that $0 \leq x \leq 2 \pi$;
\Rightarrow on this interval $f(x)=0 \Longleftrightarrow x=0$ or $x=\pi$ or $x=2 \pi$

Monotonicity, local extremum:

$$
\begin{aligned}
f^{\prime}(x) & =2 \cos x+2 \cos 2 x=2\left(\cos x+\cos ^{2} x-\left(1-\cos ^{2} x\right)\right)= \\
& =2 \cdot\left(2 \cos ^{2} x+\cos x-1\right)=0 \Longrightarrow(\cos x)_{1,2}=\frac{-1 \pm 3}{4} \Longrightarrow \cos x=-1 \text { or } \cos x=\frac{1}{2} \\
& \Longrightarrow x_{1}=\frac{\pi}{3}, x_{2}=\pi, x_{3}=\frac{5 \pi}{3}
\end{aligned}
$$

x	0	$\left(0, \frac{\pi}{3}\right)$	$\frac{\pi}{3}$	$\left(\frac{\pi}{3}, \pi\right)$	π	$\left(\pi, \frac{5 \pi}{3}\right)$	$\frac{5 \pi}{3}$	$\left(\frac{5 \pi}{3}, 2 \pi\right)$	2π
f^{\prime}	+	+	0	-	0	-	0	+	+
f		π	$\max : \frac{3 \sqrt{3}}{2}$	\searrow		\searrow	$\min :-\frac{3 \sqrt{3}}{2}$	\nearrow	

Convexity / concavity, inflection points:

$f^{\prime \prime}(x)=-2 \sin x-4 \sin 2 x=-2 \sin x-8 \sin x \cos x=$

$$
\begin{aligned}
& =-2 \sin x(1+4 \cos x)=0 \Longrightarrow \sin x=0 \text { or } \cos x=-\frac{1}{4} \\
& \Longrightarrow x_{1}=0, x_{2}=\pi, x_{3}=2 \pi, x_{4}=\arccos \left(-\frac{1}{4}\right) \approx 1.82, x_{5}=2 \pi-\arccos \left(-\frac{1}{4}\right) \approx 4.46
\end{aligned}
$$

x	0	$(0,1.82)$	1.82	$(1.82, \pi)$	π	$(\pi, 4.46)$	4.46	$(4.46,2$ $\pi)$	2π
$f^{\prime \prime}$	0	-	0	+	0	-	0	+	0
f	infl:0	\cap	infl:\n $\frac{3 \sqrt{15}}{8}$	\cup	infl:0	\cap	infl: n - $3 \sqrt{15}$ 8	\cup	infl:0

The graph of f :

Implicitely given curve

Example. The curve $y=y(x)$ is given by the following implicit equation: $x \sinh x-y \cosh y=0$ Study the properties of this curve in a neighbourhood of $(0,0)$.

Solution. The point $(0,0)$ is on the curve: $y(0)=0$.

1) The first derivative of $x \sinh x-y(x) \cosh y(x)=0$ with respect to x :
$\sinh x+x \cosh x-y^{\prime}(x) \cosh y(x)-y(x) y^{\prime}(x) \sinh y(x)=0$

If $x=0, y=0 \Longrightarrow 0+0 \cdot 1-y^{\prime}(0) \cdot 1-0 \cdot y^{\prime}(0) \cdot 0=0 \Longrightarrow y^{\prime}(0)=0$
2) The second derivative with respect to x :
$\cosh x+\cosh x+x \sinh x-y^{\prime \prime}(x) \cosh y(x)-y^{\prime}(x) y^{\prime}(x) \sinh y(x)$
$-y^{\prime}(x) y^{\prime}(x) \sinh y(x)-y(x) y^{\prime \prime}(x) \sinh y(x)-y(x) y^{\prime}(x) y^{\prime}(x) \cosh y(x)=0$

If $x=0, y=0 \Longrightarrow 1+1+0-y^{\prime \prime}(0)-0-0-0-0=0 \Longrightarrow y^{\prime \prime}(0)=2$

Since $y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=2>0$ then the curve $y=y(x)$ has local minimum at $x=0$ and it is convex in some neighbourhood of $x=0$.

