Calculus 1, 15th and 16th lectures

Properties of continuous functions

Topological characterization

Theorem. Suppose that f: UcR— R is a function. Then the following statements
are equivalent.
(1) f is continuous on U,
(2) for all open set V c f(U) :={f(x) : x € U}, the preimage of V/,
(V) :={xeU:f(x)e V}is open.

Proof. (1) = (2)
Suppose that f is continuous on U and V c f(U) is open. Let a € f}(V) then f(a) e V.
Since V is open, then there exists € > 0 such that B(f(a), €) c V.
Since f is continuous at g, then for this ¢ there exists 6 > 0 such that if x € B(a, 96),
then f(x) e B(f(a), €) c V.
It means that B(a, 6) c f~1(V), so f1(V) is open.

(2)=(1)

Suppose that the preimage of each open set is open.

It means that if a e U, then the preimage of B(f(a), €) is open, so for this ¢ there exists 6 >0
such that f(B(a, 6)) c B(f(a), €), so f is continuous at a.

Intermediate value theorem

Theorem (Intermediate value theorem or Bolzano’s theorem).
Assume that f is continuous on [a, b], f(a) # f(b) and f(a) < c < f(b) or f(b) < c < f(q).
Then there exists xq € (a, b) such that f(xg) = c.

() f(b) > 0

() f(a)<0

Proof. We prove the case f(a) < c < f(b). The point x, can be found with an interval halving method
(bisection method).
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a+b
1st step: Consider the midpoint —— of the interval [a, b]. There are three cases:
2

a+b a+b
If f] >C = a;:=0, by :=
2 2
a+b a+b
If f <C = a;:= , bi:=b
2 2
a+b a+b
Iff =C = Xp:=
2 2
al+b1

2nd step: Consider the midpoint of the interval [a;, b;]. There are again three cases:

al+b1 al+b1
If f >C = a,:=0ay, by:=
2 2
al+b1 al+b1
If f <C = a,:= , byi=b;
2
Gl+b1 al+b1
If f =C = Xp:=
2

Continuing the above procedure, we either reach x, in one of the steps, or we define
the sequences (a,) and (b,) such that

[01 b] o [ala bl] 2 [02’ bZ] 2.2 [an: bn] 2 [an+1: bn+l] Dy
and

b-a bi-a; b-a b-a
b1—01=—, b2—02= = ,...,bn—a,,=—,...
2 2 2"

From this it follows that lim (b, — a,) = 0, so by the Cantor axiom there exists a unique

element xo €[a, b] such that ()[an, by] = {xo}.
n=1

Then a,—xq, b,— X, s0 by the continuity of f we have that limf(a,) = f(xy) = limf(b,),

and since f(a,) < c<f(b,), it follows that f(xy) = c.

Consequence 1. (Bolzano’s theorem)
Assume that f is continuous on [a, b] and f(a) f(b) < 0.
Then there exists x; € (a, b) such that f(xp) = 0.

Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.

k

Proof: Let f(x) = 0y 1 XL + a3 X2 ¥ + ... + a1 X + ag, and let a, 4, > 0.

= e limf(x) = o0, S0 there exists a number b such that f(b) > 1, and

X—>o0

o lim f(x) = —o0, SO there exists a number a such that f(a) < -1.

Since f is a polynomial then it is everywhere continuous, so it is also continuous on the
closed interval [a, b] and f(a) f(b) < 0.
Thus by Consequence 1. there exists x € (a, b), for which f(x) = 0.
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Remark. If f is not continuous on the closed interval [a, b] then the theorem is not true, as the
following example shows. Here f(a) and f(b) have different signs but f is not continuous
at g and f doesn’t have a root on the interval (a, b).

f(b)

f(a)

Applications

Example 1. Find a real root of the polynomial f(x) = x> + 4x* - 6 x - 2.

Solution. We apply an interval halving method. First we find two numbers a and b such that
f(a) and f(b) have opposite signs.

1) f(0)=-2 <0, f(2)=10>0 = f hasarootin theinterval [0, 2].

0+2
Bisect the interval and examine the sign of f at x = =1.
2

2)f(1)=-3<0, f(2)=10>0 = f hasarootin theinterval [1, 2].
1+2

2
3)f(1)=-3<0, f(1.5)=1.375>0 = f hasarootintheinterval [1, 1.5].

=1.5.

Bisect the interval again and examine the sign of f at x =

1+
Bisect the interval again and examine the sign of f at x = =1.25.

2
4) f(1.25)= -1.29688 <0, f(1.5)=1.375>0 = f has arootin the interval [1.25, 1.5].

Continuing the process, the root can be approximated as = 1.38318....

10}
fx)=x3+4x°>-6x-2
5,
1 1.\25 1 1 »
-5+

Example 2. Show that the equation 2*=x2+Ig(x) has a real solution.
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Solution. Set the equation to zero and consider the function f(x) = 2¥ — x* - lg(x).
We have to show that there exists a real number x such that f(x) = 0, that is,
we have to find two numbers a and b such that f(a) and f(b) have opposite signs.
For example
ef(1)=2-1-0=1>0
e f(3)=8-9-1g(3)~-1.47712<0
= by Bolzano’s theorem f has a root in the interval (1, 3) and thus

the equation has a real solution.

Weierstrass extreme value theorem
Remark. Recall by the Heine-Borel theorem that K c R is compact < K is closed and bounded.

= the interval [a, b] is compact.

Theorem (Weierstrass boundedness theorem).
If f is continuous on [a, b], then f is bounded on [a, b].

Proof. 1) Indirectly, suppose that for example f is not bounded above.
Then for all n e N there exists x,, € [a, b], such that f(x,) > n.
2) Obviously x, € [a, b] for all n e N, so the sequence (x,) is bounded, and thus
by the Bolzano-Weierstrass theorem there exists a convergent subsequence (x,,) such that

menk =aela, b].
k>
3) Since f is continuous at a and x,,, 3 a then Em f (xs,) =f(a), so the sequence
—oo

(f (xn,)) is bounded.
4) Since the index sequence (ny) is strictly monotonically increasing, then n, = k
= f(x,,)>nx 2 kforallkeN = the sequence (f (x,,)) is not bounded above

(it diverges to +o0). This is a contradiction, so f is bounded above on [a, b].

Theorem (Weierstrass extreme value theorem).
If f is continuous on the closed interval [a, b] then

there exist numbers a € [a, b] and B €[a, b], such that
f(a) < f(x)<f(B) forallx e[a, b],
that is, f has both a minimum and a maximum on [a, b].

f(B)

f(a)
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Proof. 1) Let A=f([a, b]) ={f(x) : x €[a, b]}.
By the previous theorem A is bounded, so by the least-upper-bound property of the
real numbers, 3supA:=MeR. We prove that 3 Be[a, b], such that f(8) = M.

1
2) Since M is the least upper bound, then for alln e N, M - — is not an upper bound for A, so
n

1
dx, ela, b] such that f(x,) >M - —.
n

1
Since Mis an upper bound for A, we have M- — <f (x,)<MforallneN.
n

3) The sequence (x,) c[a, b] is bounded, so by the Bolzano-Weierstrass theorem
there exists a convergent subsequence (x,,) such that Lim Xn, =Bela, bl.

1 1 e
4) Then M - — <f (x,,) <Mforall keN. Since — k—>0, then by the sandwich theorem
Nk Ny

k—oo

f (Xp,)— M.
. . . k—)oo
5) Since f is continuous at B and x,, — B then Lim f (Xn,) =1(B).

The limit is unique, so f(B) = M.
6) The existence of a €[a, b] can be proved similarly.

Remark. If f is not continuous or if the interval is not compact, then the theorem is not true.

— ifxx
For example, let f(x) = { X ifx=0 and investigate f on the following intervals.

0 ifx=0
a) Theinterval (0, 1] is bounded but not closed. f is continuous here but not bounded
above and thus it doesn’t have a maximum.
b) The interval [-1, 1] is compact, but f is not continuous here and doesn’t have a
minimum and a maximum.
¢) The interval [1, «) is not bounded. f is continuous here, but doesn’t have a minimum.

1)f:R—R 2)f:(0,1]—>R 3)f:[-1,1]—R

Remark. It follows from the intermediate value theorem and the extreme value theorem that
if f is continuous on [a, b], then the range of f is a closed and bounded interval:
f([a, b]) =[c, d], where c = min{f(x) : x €[a, b]} and d = max {f(x) : x € [a, b]}.
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Continuous image of a compact set is compact

Theorem. Suppose thatf: EcR—Ris a function and H c £ is a compact set.
If f is continuous on H, then f(H) is compact.

Proof. 1) Let K = f(H) = {f(x) : x e H}.
To prove compactness of K, it is enough to show that every sequence in K has a
convergent subsequence whose limit belongs to K.
2) Let (y,,) € K be a sequence, then 3 x, € H such that f(x,) =y, forallne N.
3) Since His compact and (x,) c H, then there exists a convergent subsequence
(Xn,) such that me,,k =aeH.

4) Since f is continuous at a, then Limy,,k = ll(im f (xn,) =f(a) e K, so K is compact.

Uniform continuity

Introduction. Recall that f : H c R— R is continuous on H if f is continuous for all x e H,
thatis,VxeH Ve>0 I6>0suchthatVyeH, |x-y| <6 = |f(x)-f(y)| <&
Here 6 = 6(¢, x), that is, continuity at a point is a local property. In some cases 6

can be chosen independent of x.

Definition. The function f : E c R— R is uniformly continuous on the set H c E, if
Ve>0 36>0 suchthat Vx,yeH: |x-y| <6 = |fx)-f(x)| <&

Remarks. a) Here 6 depends only on € and not on x.
b) The definition implies that 3 inL O(¢, x)>0.
Xe

¢) His usually an interval.

d) If f is uniformly continuous on the interval / (open or closed) and J c / then
f is uniformly continuous on J. The same ¢ is suitable for J.

e) If f is uniformly continuous on H then f is continuous for all x e H.

Example. Let f(x) = x.
a) Prove that f is continuous for all x; €[1, 2].

b) Does there exist inf (g, xg) >0, that s,
Xo€[1,2]

does there exist a 6(¢) that is suitable for all x4 € [1, 2]?
Is f uniformly continuous on [1, 2]?

c) If f uniformly continuous on (1, 2)?

d) Is f uniformly continuous on (1, o0)?

Solution. a) | f(x)-f(xo) | = | X*=x{ | = | x=Xo | - | Xx+Xo | = | Xx=Xo | *(X+Xo) <

< | x=xo| (Xo+1+xg) <€ if |x—x0| < =0O(g, Xq)

2x0+1
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£ Xe€[1,2] ¢ £
b) 6(83 XO) = 2 =—-= 6(£: 2):
2x0+1 2:2+1 5
this is a common 6(¢) that is suitable for all x e [1, 2],
so f is uniformly continuous on[1, 2].
c) Yes, 6(¢, 2) is also suitable here, see Remark d).

d) f is not uniformly continuous on (1, ).

1 1
Letx,=n+—-—owandy,=n— . Then x, - y, = — —0, that is, the terms get
n n
arbitrarily close to each other if nis large enough, but

1)\? 1
| F0n) = F(yn) | = |(n+—) — | =24 — 52,
n n?

so if € <2 then there is no suitable 6.
Another choice: x, = Yn+1, y,= \/F

Example. Prove that f(x) = \/; is uniformly continuous on [0, ).

Solution. Let£>0.1f6=¢’and | x-y | <6then

1600100 = | V=7 | = | = [ [ V= | <
S| VA || A Ay [ =TT <V =

1
Example. Let f(x) = —. Prove that
X

a) f is uniformly continuous on [1, );
b) f is not uniformly continuous on (0, 1).

1 - -
|= |X ylS |X yl: |X—y| <e=0.

Solution. a) | f(x)-f(y) | = | 1!
X

y Xy 1-1

11 | x-y| .

b)|f(x)—f(y)|=|———|= <eif |x-y| <exy,
X Yy Xy

but 6(y) =exy—0if y—0, so there is no common ¢ that is independent of y.

1 1
thenx,-y,=—-——= —0, but
n+1 n n+l nn+1)

| FXn) =fyn) | = | n=(n+1)| =1,
so if € <1 then thereis no suitable 6.

1
For example, if x,=— and y,, =
n

Theorem (Heine). If f is continuous on the compact set H then f is uniformly continuous on H.

Proof. 1) Indirectly assume that f is not uniformly continuous on K, that s,
Je>0 suchthat V6>0 3x,yeH suchthat |x-y | <6 but | f(x)-f(y)| =e.
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1
2) Let 6 =- forall ne N".
n

Then for this & Ix,, y,eH such that

1
Xn = VYn <; but | f(x,)-f(yn) | 2¢.

3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence (x,) c H
has a convergent subsequence whose limit belongs to H, that is, there is an
index sequence (ny) such that (x,,) is convergent and Il(im Xp, = a€H.

4) We show that with the same index sequence (ny), the sequence (y,,) is also convergent
and Emynk = a. Foralln e N* we have
1

X,,k—a| <n—+
k

ynk_Xnk +

ynk—a| <

xnk—al

. l k> k—)oo . k—)oo
Since ——0 and | Xn, — | — 0 then their sum also tends to 0, so | Yo, — @ | —0.
Ny

5) Since X,,klﬁfa and y,,klﬁfa and fis continuous at a € H, then f(x,,k)li’;f(a) and
f(ynk)lzof(a), from where ll{im (f(xn,) = f(¥n,)) =f(a) - f(a) =0,

however, this is a contradiction, since forallne N* | f(x,) - f(y,) | 2¢.

It means that the indirect assumption is false, so the statement of the theorem is true.

Theorem. If f is continuous on [a, o) and A lim,,.f(x)=A€R then fis
uniformly continuous on [a, oo).

Lipschitz continuity

Definition. The function f is Lipschitz continuous on the set A if there exists
L =20 (Lipschitz constant), such that | f(x)-f(y) | <L | x-y | forallx, y€A.
Theorem. If f is Lipschitz continuous on A, then f is uniformly continuous on A.

Proof. a) If L = 0 then ¢ can be arbitrary, f is constant, so it is uniformly continuous.

b) If L > 0 then let(5=f.lf | x-y| <§forallx,yeA,then
&
|f(x)—f(y)| <L|x—y| ste-=e

Remark. The converse of the theorem is not true.

For example f(x) = \/; is uniformly continuous on [0, 1] but not Lipschitz continuous.
Letx=0, y>0andL>0.Then

|\/;—\/;| sL|y—x| = WsL-y«:)L—lZSy

1
It means that there is no positive number that is less than > which is a contradiction.
L

Remark. f is Lipschitz continuous on A = f is uniformly continuous on A = f is continuous on A.



calculus1-15-16.nb | 9

Continuity of the inverse function

Definition. The function f is invertible if for all x, y € Df, x +y = f(x) = f(y).
(Or, equivalently, for all x, y € Ds: (f(x) =f(y) = x=Y)).
The inverse function ! of f is defined as follows:
Dp1 =Ry and (ftof) (x) = x for all x € Dy.

Remark. If f is invertible and continuous at x; then from this it doesn’t follow that

1. . . x+1 ifx=20 | | .
f~ is continuous at f(xg). For example, the function f(x) = ) is invertible.
x+2 ifx<-1

If we express x from the equation y = f(x), then we get that the inverse of f is

-1 ify=1
)= { Y . y = fiscontinuous but f~! is not continuous.
y-2 ify<l1

o
//

Theorem. Assume that f : [a, b]— R is continuous and strictly monotonic.
Then 1 is continuous on Ry.

Proof. 1) Since f is continuous on [a, b] then it follows from the intermediate value theorem
and extreme value theorem that the range of f is a closed and bounded interval.
Let [c, d]=Ry.

Since f is strictly monotonic then it is bijective, so it has aninverse, f* : [c, d]—[a, b].
2) Let v e[c, d] arbitrary, u := f}(v) and assume that (y,) c[c, d], y,— Vv is an arbitrary
sequence. To prove the continuity of f~! at v, it is enough to show that
Xn =y, —F(v)=u.
3) Assume indirectly that the sequence (x,) < [a, b] does not tend to u.
Then36>0 VkeN In,>k,suchthat | x, -u| 26.
4) Since the sequence (x,,) c[a, b]\ (u - 6, u + 6) is bounded, then it has a convergent
subsequence (x,, ). Let ELT; Xn, = a. Obviously a e[a, b], but a * u.

5) Since f is continuous at a then f(x,, ) =y, —f(a).

Since y,,mv and (y,, ) is a subsequence of (y,), then y, — v, so f(a)=v.

6) We obtained that a # u, but f(a) = f(u) = v, which means that f is not bijective.
This is a contradiction, so the indirect assumption is false.
Therefore, x,— u and thus ! is continuous at v.



10 | calculusi-15-16.nb

Convexity and continuity

Definition. The function f is convex on the interval / c Dy if forall x, y e land t € [0, 1]
ftx+(1-t)y)stfx)+ (L -t)f(y)
The function f is concave on the interval / c Dy if forallx, ye/and t €0, 1]
ftx+(1-t)y)2tf(x)+(1-t)f(y).

f is strictly convex / strictly concave if equality doesn’t hold.

A
f is convex f is concave

Y

Remark. Let a, b €/, then the secant line passing through the points (a, f(a)) and (b, f(b)) is
f(b) - f(a)
hap(x) = b— (x-a)+f(a).

. . [ convex
The function f is {
concave

F(x) < hap(x)
F(x) 2 hap(x)

on theinterval | c Dy if

Va,bel, a<x<b = { , thatis, the secant lines of f

bove
th hof f.
W egrapho

a
| li
always |e{ belo

Theorem. If f is convex on the open interval /, then f is continuous on /.
Proof. Leta, b, celsuchthata<c<b. Ifxe(c, b), then h, < f(x) < hc p(x).

Since lim hg ¢(x) = lim h¢ p(x) = f(c), then by the sandwich theorem lim f(x) = f(c),

X-C+

and similarly lim f(x) = f(c).
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Remark. If f is convex on a closed interval, then f can be discontinuous only at the
endpoints of the interval.

Jensen’s inequality

Theorem (Jensen’s inequality).

The function f is convex on the interval / if and only if for all ay, a5,

..a, €l
andforallty, ty, ..., t,20,if t; +t, +... +t, = 1 then
fltiar+tyay +...+ t,a,) <ty f(a;) +t, f(ay) +... + t, f(a,)
2 . . . . . l
Examples 1. f(x) = x* is convex on R. Applying Jensen’s inequality with t; =t, =. .= t, = -
n

n

(al+az+...+an)2 ad+ai+..+a?
<
n n

from where we obtain the inequality of the arithmetic and quadratic means:

ay+ 0y +...+0, a4+ a5+ .. +0a>
<

n n
. . . . . l
2.f(x) = — is convex on (0, «). Applying Jensen’s inequality witht; =t, =...=t, = —:
N n
1 n 11 11 11 1/1 1 1
— S—'—+—'_...+_'_=_(_+_+"'+_)
ﬂ+2+...+ﬂ ar+ax+...+a, n ap n a n-a, n\ap 0 Gn
non n

from where we obtain the inequality of the arithmetic and harmonic means:

a,+da+..+4d, n
2
n 1 1 1
— +t— + .+ —
a o ax

The exponential function

Definition. The function f(x) = lim

N—>o0

X\n
(1 + —) is called the exponential function of base e.
n

Notation: ¥, exp,(x) or exp(x).

Statement. e =¢*e’ Vx,yeR.

n-1

Proof. Using the identity a” - b" = (a - b) > " b™'™ and choosing n large enough such that

k=0
X+

X y
1+ >0, 1+—>0and1+~=>0,wegetthat
n

n n
| xy | &g x+y\kg o X y\\r-1k
gl e G {C
n” g n n n

X+ n X\n n
[ (o) (20 5) (3)
n n n "

Here
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ayk (1 ifa<o0 X+ Y \k X PR
(1+—) < . , SO (1+ ) ((1+—)-(1+—)) <K
n e’ ifa>0 n n n
where K = max{1, €*}-max{1, e}-max {1, €'}, therefore
X n X\n n
[ (=) =20 5) (25)
n n n

1
Statement. If xeR,thene*>0,e*21+x,andifx<1,thene*<s —.
1-x

Xy K | xy oo
D S R A e 2

n? n

Proof. 1) If x 2 0 then from the definition it follows that ¢* > 0.

1
Ifx<0theneX= — >0, sincee™>0.
o

X
2) If ne N* such that n = —x, then — 2 -1, so by the Bernoulli inequality

n
X\n X
(1+—) 21l+n—-=1+x
n n
By the monotonicity of the limite* 21 + x.
1 1
3) Ifx<1lthene™21+(-X)>0 = &*=— < .
e* 1-x

Statement. f(x) = €" is continuous at 0.

1
Proof. If x<1then 1 +x<e*<——, sofrom the sandwich theorem lime* =e® = 1.
1-x x-0

Consequence. f(x) = " is continuous.

Proof. lime* = €™ [im & = e* [im ¥ = e*0.

X-Xo X=X x-0
Statement. f(x) = €* is strictly monotonically increasing and its range is (0, o).

Proof. 1) Let x, y e R such that x < y. We have to show that e* < ¢’.
Sincey-x>0thene&™ 21+ (y-x)>1
and sincee®>0thene =V ™ =g/ *e¥>1-e¥ =¢".
2) sup Rf=oo. Since €21+ x and lim(1 +x) = o0, SO lime* = co.

x-0 x-0

3) inf R = 0. Since f(x) = € is strictly monotonically increasing, then
1
lim & =lime™ = lim— =0.
X —co X o0 x> 00 @X

4) By the intermediate value theorem the range of f is an interval, so Ry = (0, ).

The logarithm function

Definition. Denote |n = log, the inverse of f(x) = €*, so e =IneX=x.
Dy = Rexp = (0: °°) and Rin= Dexp =R.



