
Calculus 1, 15th and 16th lectures

Properties of continuous functions

Topological characterization

Theorem. Suppose that  f : U⊂⟶ is a function. Then the following statements 
 are equivalent.
 (1) f  is continuous on U;
 (2) for all open set V ⊂ f (U) := {f (x) : x ∈ U}, the preimage of V , 
       f -1(V) := {x ∈ U : f (x) ∈ V} is open.

Proof. (1) ⟹ (2)
     Suppose that f  is continuous on U and V ⊂ f (U) is open. Let a ∈ f -1(V) then f (a) ∈ V .
     Since V  is open, then there exists ε > 0 such that B(f (a), ε)⊂ V .
     Since f  is continuous at a, then for this ε there exists δ > 0 such that if x ∈ B(a, δ), 
     then f (x) ∈ B(f (a), ε)⊂ V .
     It means that B(a, δ)⊂ f -1(V), so f -1(V) is open.
     
     (2) ⟹ (1)
     Suppose that the preimage of each open set is open. 
     It means that if a ∈ U, then the preimage of B(f (a), ε) is open, so for this ε there exists δ > 0 
     such that f (B(a, δ))⊂ B(f (a), ε), so f  is continuous at a.

Intermediate value theorem

Theorem (Intermediate value theorem or Bolzano’s theorem).
Assume that f  is continuous on [a, b], f (a) ≠ f (b) and f (a) < c < f (b) or f (b) < c < f (a). 
Then there exists x0 ∈ (a, b) such that f (x0) = c.

a

f (a)

b

f (b)

x0

c    a

f (a) < 0
b

f (b) > 0

x0

Proof. We prove the case f (a) < c < f (b). The point x0 can be found with an interval halving method
    (bisection method).



      1st step: Consider the midpoint 
a + b

2
 of the interval [a, b]. There are three cases:

    If f
a + b

2
> c  ⟹  a1 := a, b1 :=

a + b

2

    If f
a + b

2
< c  ⟹  a1 :=

a + b

2
, b1 := b

    If f
a + b

2
= c  ⟹   x0 :=

a + b

2

    2nd step: Consider the midpoint 
a1 + b1

2
 of the interval [a1, b1]. There are again three cases:     

      If f
a1 + b1

2
> c  ⟹  a2 := a1, b2 :=

a1 + b1

2

      If f
a1 + b1

2
< c  ⟹  a2 :=

a1 + b1

2
, b2 := b1

      If f
a1 + b1

2
= c  ⟹   x0 :=

a1 + b1

2

      Continuing the above procedure, we either reach x0 in one of the steps, or we define 
      the sequences (an) and (bn) such that
      [a, b]⊃ [a1, b1]⊃ [a2, b2]⊃ ... ⊃ [an, bn]⊃ [an+1, bn+1]⊃ ...,
      and

      b1 - a1 =
b - a

2
, b2 - a2 =

b1 - a1

2
=
b - a

22
, ..., bn - an =

b - a

2n
, ...

      From this it follows that lim
n∞

(bn - an) = 0, so by the Cantor axiom there exists a unique 

      element x0 ∈ [a, b] such that 
n=1

∞

[an, bn] = {x0}.

      Then an⟶x0, bn⟶x0, so by the continuity of f  we have that lim
n∞

f (an) = f (x0) = lim
n∞

f (bn),

      and since f (an) ≤ c ≤ f (bn), it follows that f (x0) = c. 
      

Consequence 1. (Bolzano’s theorem)
Assume that f  is continuous on [a, b] and f (a) f (b) < 0.
Then there exists x0 ∈ (a, b) such that f (x0) = 0.

Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.

Proof: Let f (x) = a2 k+1 x2 k+1 + a2 k x2 k + ... + a1 x + a0, and let a2 k+1 > 0.
    ⟹    lim

x∞
f (x) =∞, so there exists a number b such that f (b) > 1,  and

                lim
x-∞

f (x) = -∞, so there exists a number a such that f (a) < -1.

    Since f  is a polynomial then it is everywhere continuous, so it is also continuous on the
    closed interval [a, b] and f (a) f (b) < 0.
    Thus by Consequence 1. there exists x ∈ (a, b), for which f (x) = 0.
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 by Consequence ( ) ( )

     

Remark. If f  is not continuous on the closed interval [a, b] then the theorem is not true, as the
         following example shows. Here f (a) and f (b) have different signs but f  is not continuous
         at a and f  doesn’t have a root on the interval (a, b).

a

f (a)

b

f (b)

Applications

Example 1. Find a real root of the polynomial f (x) = x3 + 4 x2 - 6 x - 2.

Solution. We apply an interval halving method. First we find two numbers a and b such that
f (a) and f (b) have opposite signs.

1) f (0) = -2 < 0, f (2) = 10 > 0  ⟹  f  has a root in the interval [0, 2]. 

     Bisect the interval and examine the sign of f  at x =
0 + 2

2
= 1.

2) f (1) = -3 < 0, f (2) = 10 > 0  ⟹  f  has a root in the interval [1, 2]. 

     Bisect the interval again and examine the sign of f  at x =
1 + 2

2
= 1.5. 

3) f (1) = -3 < 0, f (1.5) = 1.375 > 0  ⟹  f  has a root in the interval [1, 1.5].

    Bisect the interval again and examine the sign of f  at x =
1 + 1.5

2
= 1.25. 

4) f (1.25) ≈ -1.29688 < 0, f (1.5) = 1.375 > 0  ⟹  f  has a root in the interval [1.25, 1.5].
    
    Continuing the process, the root can be approximated as ≈ 1.38318... .

1.25

f (x) = x3 + 4 x2 - 6 x - 2

1 1.5 2

-5

5

10

Example 2. Show that the equation   2x = x2 + lg(x)   has a real solution.
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Solution. Set the equation to zero and consider the function f (x) = 2x - x2 - lg(x).
We have to show that there exists a real number x such that f (x) = 0, that is,
we have to find two numbers a and b such that f (a) and f (b) have opposite signs.
For example 
    f (1) = 2 - 1 - 0 = 1 > 0 
    f (3) = 8 - 9 - lg(3) ≈ -1.47712 < 0
 ⟹  by Bolzano’s theorem f  has a root in the interval (1, 3) and thus 
          the equation has a real solution.
          

Weierstrass extreme value theorem

Remark. Recall by the Heine-Borel theorem that K ⊂ is compact  ⟺  K is closed and bounded.
        ⟹ the interval [a, b] is compact.         

Theorem (Weierstrass boundedness theorem). 
If f  is continuous on [a, b], then f  is bounded on [a, b].

Proof. 1) Indirectly, suppose that for example f  is not bounded above. 
         Then for all n ∈ there exists xn ∈ [a, b], such that f (xn) > n.
    2) Obviously xn ∈ [a, b] for all n ∈, so the sequence (xn) is bounded, and thus
         by the Bolzano-Weierstrass theorem there exists a convergent subsequence (xnk) such that
         lim

k∞
xnk = α ∈ [a, b]. 

   3) Since f  is continuous at α and xnk⟶
k∞

α  then lim
k∞

f (xnk) = f (α), so the sequence 

        (f (xnk)) is bounded.
   4) Since the index sequence (nk) is strictly monotonically increasing, then nk ≥ k
        ⟹  f (xnk) > nk ≥ k for all k ∈  ⟹  the sequence (f (xnk)) is not bounded above 
        (it diverges to +∞). This is a contradiction, so f  is bounded above on [a, b].
        

Theorem (Weierstrass extreme value theorem). 
If f  is continuous on the closed interval [a, b] then 
there exist numbers α ∈ [a, b] and β ∈ [a, b], such that
f (α) ≤ f (x) ≤ f (β) for all x ∈ [a, b],
that is, f  has both a minimum and a maximum on [a, b].

a bα β

f (α)

f (β)
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Proof. 1) Let A = f ([a, b]) = {f (x) : x ∈ [a, b]}.
         By the previous theorem A is bounded, so by the least-upper-bound property of the 
         real numbers, ∃ sup A :=M ∈ . We prove that ∃ β ∈ [a, b], such that f (β) =M.

    2) Since M is the least upper bound, then for all n ∈, M -
1

n
 is not an upper bound for A, so

         ∃ xn ∈ [a, b] such that f (xn) >M -
1

n
.

         Since M is an upper bound for A, we have  M -
1

n
< f (xn) ≤M for all n ∈.

    3) The sequence (xn)⊂ [a, b] is bounded, so by the Bolzano-Weierstrass theorem 
         there exists a convergent subsequence (xnk) such that lim

k∞
xnk = β ∈ [a, b]. 

    4) Then M -
1

nk
< f (xnk) ≤M for all k ∈. Since 

1

nk

k∞
0, then by the sandwich theorem 

          f (xnk)⟶
k∞

M.

    5) Since f  is continuous at β and xnk⟶
k∞

β  then lim
k∞

f (xnk) = f (β). 

         The limit is unique, so f (β) =M.
    6) The existence of α ∈ [a, b] can be proved similarly.
    

Remark. If f  is not continuous or if the interval is not compact, then the theorem is not true.

          For example, let f (x) =
1

x
if x ≠ 0

0 if x = 0
  and investigate f  on the following intervals.

          a) The interval (0, 1] is bounded but not closed. f  is continuous here but not bounded 
                above and thus it doesn’t have a maximum.
          b) The interval [-1, 1] is compact, but f  is not continuous here and doesn’t have a 
               minimum and a maximum.
          c) The interval [1, ∞) is not bounded. f  is continuous here, but doesn’t have a minimum.
          

1) f : ⟶  2) f : (0, 1]⟶    3) f : [-1, 1]⟶     4) f : [1, ∞)⟶

-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

   
-2 -1 1 2

-2

-1

1

2

Remark. It follows from the intermediate value theorem and the extreme value theorem that
          if f  is continuous on [a, b], then the range of f  is a closed and bounded interval:
          f ([a, b]) = [c, d], where c = min {f (x) : x ∈ [a, b]} and d = max {f (x) : x ∈ [a, b]}.

calculus1-15-16.nb     5



Continuous image of a compact set is compact

Theorem. Suppose that f : E ⊂⟶ is a function and H⊂ E is a compact set.
If f  is continuous on H, then f (H) is compact.

Proof. 1) Let K = f (H) = {f (x) : x ∈H}.
         To prove compactness of K, it is enough to show that every sequence in K has a 
         convergent subsequence whose limit belongs to K.
    2) Let (yn)⊂ K be a sequence, then ∃ xn ∈H such that f (xn) = yn for all n ∈.
    3) Since H is compact and (xn)⊂H, then there exists a convergent subsequence 
         (xnk) such that lim

k∞
xnk = α ∈ H.

    4) Since f  is continuous at α, then lim
k∞

ynk = lim
k∞

f (xnk) = f (α) ∈ K, so K is compact.

Uniform continuity

Introduction. Recall that f :H⊂⟶ is continuous on H if f  is continuous for all x ∈H, 
that is, ∀ x ∈H ∀ ε > 0 ∃ δ > 0 such that ∀ y ∈H, x - y < δ ⟹ f (x) - f (y) < ε.
Here δ = δ(ε, x), that is, continuity at a point is a local property. In some cases δ 
can be chosen independent of x.

Definition. The function f : E ⊂⟶ is uniformly continuous on the set H⊂ E, if
    ∀ ε > 0 ∃ δ > 0   such that  ∀ x, y ∈H : x - y < δ ⟹ f (x) - f (x) < ε. 

Remarks. a) Here δ depends only on ε and not on x.
         b) The definition implies that ∃ inf

x ∈H
δ(ε, x) > 0.

         c) H is usually an interval.
         d) If f  is uniformly continuous on the interval I (open or closed) and J⊂ I then
              f  is uniformly continuous on J. The same δ is suitable for J.
         e) If f  is uniformly continuous on H then f  is continuous for all x ∈H.
         

Example. Let f (x) = x2.
a) Prove that f  is continuous for all x0 ∈ [1, 2].
b) Does there exist inf

x0 ∈ [1,2]
δ(ε, x0) > 0, that is, 

     does there exist a δ(ε) that is suitable for all x0 ∈ [1, 2]?
     Is f  uniformly continuous on [1, 2]?
 c) If f  uniformly continuous on (1, 2)?
 d) Is f  uniformly continuous on (1, ∞)?

Solution. a) f (x) - f (x0) = x2 - x0
2 = x - x0 · x + x0 = x - x0 · (x + x0) <

       < x - x0 · (x0 +1 + x0) < ε   if   x - x0 <
ε

2 x0 + 1
= δ(ε, x0)
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 b) δ(ε, x0) =
ε

2 x0 + 1
≥

x0 ∈ [1,2] ε

2 ·2 + 1
=
ε

5
= δ(ε, 2), 

      this is a common δ(ε) that is suitable for all x ∈ [1, 2],
      so f  is uniformly continuous on [1, 2].
 c) Yes, δ(ε, 2) is also suitable here, see Remark d).
 d) f  is not uniformly continuous on (1, ∞).

      Let xn = n +
1

n
⟶∞ and yn = n⟶∞. Then xn - yn =

1

n
⟶0, that is, the terms get 

      arbitrarily close to each other if n is large enough, but

      f (xn) - f (yn) = n +
1

n

2
- n2 = 2 +

1

n2
> 2,

      so if ε < 2 then there is no suitable δ.

      Another choice: xn = n + 1 , yn = n .
      

Example. Prove that f (x) = x  is uniformly continuous on [0, ∞).

Solution. Let ε > 0. If δ = ε2 and x - y < δ then 

f (x) - f (y) = x - y = x - y · x - y ≤

≤ x - y · x + y = x - y < δ = ε.

Example. Let f (x) =
1

x
. Prove that

a) f  is uniformly continuous on [1, ∞);
b) f  is not uniformly continuous on (0, 1).

Solution. a) f (x) - f (y) =
1

x
-

1

y
=

x - y

x y
≤

x - y

1 ·1
= x - y < ε = δ.

b) f (x) - f (y) =
1

x
-

1

y
=

x - y

x y
< ε if  x - y < ε x y,

      but δ(y) = ε x y⟶0 if y⟶0, so there is no common δ that is independent of y.

      For example, if xn =
1

n
 and yn =

1

n + 1
 then xn - yn =

1

n
-

1

n + 1
=

1

n(n + 1)
⟶0, but 

      f (xn) - f (yn) = n - (n + 1) = 1,
      so if ε < 1 then there is no suitable δ.
      

Theorem (Heine). If f  is continuous on the compact set H then f  is uniformly continuous on H.

Proof. 1) Indirectly assume that f  is not uniformly continuous on K, that is, 
         ∃ ε > 0 such that ∀ δ > 0 ∃ x, y ∈H  such that  x - y < δ  but f (x) - f (y) ≥ ε.
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    2) Let δ =
1

n
 for all n ∈+. 

         Then for this δ   ∃ xn, yn ∈H  such that xn - yn <
1

n
  but  f (xn) - f (yn) ≥ ε.

    3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence (xn)⊂H 
         has a convergent subsequence whose limit belongs to H, that is, there is an 
         index sequence (nk) such that (xnk) is convergent and lim

k∞
xnk = α ∈ H.     

    4) We show that with the same index sequence (nk), the sequence (ynk) is also convergent 
         and lim

k∞
ynk = α. For all n ∈+ we have

         ynk - α ≤ ynk - xnk + xnk - α <
1

nk
+ xnk - α

         Since 
1

nk

k∞
0  and  xnk - α ⟶

k∞
0  then their sum also tends to 0, so ynk - α ⟶

k∞
0.

    5) Since  xnk⟶
k∞

α  and  ynk⟶
k∞

α  and  f  is continuous at α ∈H, then f (xnk)⟶
k∞

f (α)  and 

        f (ynk)⟶
k∞

f (α), from where lim
k∞

(f (xnk) - f (ynk)) = f (α) - f (α) = 0,

         however, this is a contradiction, since for all n ∈+  f (xn) - f (yn) ≥ ε.
         It means that the indirect assumption is false, so the statement of the theorem is true.
         

Theorem. If f  is continuous on [a, ∞) and ∃ limx∞ f (x) = A ∈   then  f  is 
  uniformly continuous on [a, ∞).

Lipschitz continuity

Definition. The function f  is Lipschitz continuous on the set A if there exists 
    L ≥ 0 (Lipschitz constant), such that f (x) - f (y) ≤ L x - y   for all x, y ∈ A.

Theorem. If f  is Lipschitz continuous on A, then f  is uniformly continuous on A.

Proof. a) If L = 0 then δ can be arbitrary, f  is constant, so it is uniformly continuous.

              b) If L > 0 then let δ =
ε

L
. If x - y <

ε

L
 for all x, y ∈ A, then

                  f (x) - f (y) < L x - y ≤ L ·
ε

L
= ε.

Remark. The converse of the theorem is not true.

          For example f (x) = x  is uniformly continuous on [0, 1] but not Lipschitz continuous.
          Let x = 0, y > 0 and L > 0. Then

          y - x ≤ L y - x   ⟺  y ≤ L ·y  ⟺  
1

L2
≤ y

          It means that there is no positive number that is less than 
1

L2
, which is a contradiction.

Remark. f  is Lipschitz continuous on A  ⟹  f  is uniformly continuous on A  ⟹  f  is continuous on A.
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Continuity of the inverse function

Definition. The function f  is invertible if for all x, y ∈ Df , x ≠ y  ⟹  f (x) ≠ f (y).
    (Or, equivalently, for all x, y ∈ Df :  (f (x) = f (y) ⟹ x = y)).
    The inverse function f -1 of f  is defined as follows: 
    Df -1 = Rf  and f -1 ◦ f  (x) = x for all x ∈ Df .     

Remark. If f  is invertible and continuous at x0 then from this it doesn’t follow that 

          f -1 is continuous at f (x0). For example, the function f (x) =
x + 1 if x ≥ 0
x + 2 if x < -1

 is invertible.

         If we express x from the equation y = f (x), then we get that the inverse of f  is

         f -1(y) =
y - 1 if y ≥ 1
y - 2 if y < 1

     ⟹    f  is continuous but f -1 is not continuous.

         

         

f

f -1

Theorem. Assume that f : [a, b]⟶ is continuous and strictly monotonic. 
 Then f -1 is continuous on Rf .

Proof. 1) Since f  is continuous on [a, b] then it follows from the intermediate value theorem 
          and extreme value theorem that the range of f  is a closed and bounded interval.
          Let [c, d] = Rf .
          Since f  is strictly monotonic then it is bijective, so it has an inverse, f -1 : [c, d]⟶ [a, b].
     2) Let v ∈ [c, d] arbitrary, u := f -1(v) and assume that (yn)⊂ [c, d], yn⟶v is an arbitrary 
          sequence. To prove the continuity of f -1 at v, it is enough to show that 
          xn := f -1(yn)⟶ f -1(v) = u.
     3) Assume indirectly that the sequence (xn)⊂ [a, b] does not tend to u.
          Then ∃ δ > 0 ∀ k ∈ ∃ nk > k, such that xnk - u ≥ δ.
     4) Since the sequence (xnk)⊂ [a, b] \ (u - δ, u + δ) is bounded, then it has a convergent
          subsequence xnkl . Let lim

l∞
xnkl = α. Obviously α ∈ [a, b], but α ≠ u.

     5) Since f  is continuous at α then f xnkl  = ynkl ⟶ f (α).

          Since yn
n∞

v and ynkl  is a subsequence of (yn), then ynkl ⟶v, so f (α) = v.

     6) We obtained that α ≠ u, but f (α) = f (u) = v, which means that f  is not bijective.
          This is a contradiction, so the indirect assumption is false. 
          Therefore, xn⟶u and thus f -1 is continuous at v.        
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Convexity and continuity

Definition. The function f  is convex on the interval I⊂ Df  if for all x, y ∈ I and t ∈ [0, 1]

f (t x + (1 - t) y) ≤ t f (x) + (1 - t) f (y)

    The function f  is concave on the interval I⊂ Df  if for all x, y ∈ I and t ∈ [0, 1]
    
    f (t x + (1 - t) y) ≥ t f (x) + (1 - t) f (y).     
    
    f  is strictly convex / strictly concave if equality doesn’t hold.

f is convex

y=ha,b(x)

a b

     

f is concave

y=ha,b(x)

a b

Remark. Let a, b ∈ I, then the secant line passing through the points (a, f (a)) and (b, f (b)) is

ha,b(x) =
f (b) - f (a)

b - a
(x - a) + f (a).

The function f  is 
convex
concave

 on the interval I⊂ Df  if

∀ a, b ∈ I, a < x < b  ⟹  
f (x) ≤ ha,b(x)
f (x) ≥ ha,b(x)

, that is, the secant lines of f

always lie 
above
below

  the graph of f .

Theorem. If f  is convex on the open interval I, then f  is continuous on I.

Proof. Let a, b, c ∈ I such that a < c < b.  If x ∈ (c, b), then ha,c ≤ f (x) ≤ hc,b(x).

    Since lim
xc+

ha,c(x) = lim
xc+

hc,b(x) = f (c), then by the sandwich theorem lim
xc+

f (x) = f (c),

    and similarly lim
xc-

f (x) = f (c).

a bc

f

y=hc,b(x)

y=ha,c(x)
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Remark. If f  is convex on a closed interval, then f  can be discontinuous only at the 
         endpoints of the interval.

Jensen’s inequality

Theorem (Jensen’s inequality). 
The function f  is convex on the interval I if and only if for all a1, a2, ...an ∈ I,  
and for all t1, t2, ..., tn ≥ 0, if t1 + t2 + ... + tn = 1 then

f (t1 a1 + t2 a2 + ... + tn an) ≤ t1 f (a1) + t2 f (a2) + ... + tn f (an)

Examples 1. f (x) = x2 is convex on . Applying Jensen’s inequality with t1 = t2 =. .. = tn =
1

n
:

a1 + a2 + ... + an

n

2
≤
a1

2 + a2
2 + ... + an

2

n
      from where we obtain the inequality of the arithmetic and quadratic means:

          
a1 + a2 + ... + an

n
≤

a1
2 + a2

2 + ... + an
2

n

 2. f (x) =
1

x
 is convex on (0, ∞).  Applying Jensen’s inequality with t1 = t2 =. .. = tn =

1

n
:

 
1

a1

n
+
a2

n
+ ... +

an

n

=
n

a1 + a2 + ... + an
≤

1

n
·

1

a1
+

1

n
·

1

a2
... +

1

n
·

1

an
=

1

n

1

a1
+

1

a2
+ ... +

1

an

     from where we obtain the inequality of the arithmetic and harmonic means:
     

     
a1 + a2 + ... + an

n
≥

n

1

a1
+

1

a1
+ ... +

1

a1

The exponential function

Definition. The function f (x) = lim
n∞

1 +
x

n

n
 is called the exponential function of base e.

    Notation: ex, expe(x)  or  exp(x).

Statement. ex+y = ex ey ∀ x, y ∈ .

Proof. Using the identity an - bn = (a - b)
k=0

n-1

ak bn-1-k and choosing n large enough such that

     1 +
x + y

n
> 0, 1 +

x

n
> 0 and 1 +

y

n
> 0, we get that

     1 +
x + y

n

n
- 1 +

x

n

n
1 +

y

n

n
=

x y

n2


k=0

n-1

1 +
x + y

n

k
1 +

x

n
· 1 +

y

n

n-1-k
.

     Here
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     1 +
a

n

k
≤

1 if a ≤ 0
ea if a > 0

,    so    1 +
x + y

n

k
1 +

x

n
·1 +

y
n

n-1-k

≤ K

     
     where K = max {1, ex+y} ·max {1, ex} ·max {1, ey}, therefore
     

     1 +
x + y

n

n
- 1 +

x

n

n
1 +

y

n

n
≤

x y

n2
·nK =

K x y

n

n∞
0.     

Statement. If x ∈ , then ex > 0, ex ≥ 1 + x, and if x < 1, then ex ≤
1

1 - x
.

Proof. 1) If x ≥ 0 then from the definition it follows that ex > 0.

                    If x < 0 then ex =
1

e-x
> 0, since e-x > 0.

              2) If n ∈+ such that n ≥ -x, then 
x

n
≥ -1, so by the Bernoulli inequality 

              1 +
x

n

n
≥ 1 + n ·

x

n
= 1 + x

                   By the monotonicity of the limit ex ≥ 1 + x.

              3)  If x < 1 then e-x ≥ 1 + (-x) > 0   ⟹  ex =
1

e-x
≤

1

1 - x
.

Statement. f (x) = ex is continuous at 0.

Proof. If x < 1 then 1 + x ≤ ex ≤
1

1 - x
, so from the sandwich theorem lim

x0
ex = e0 = 1.

Consequence. f (x) = ex is continuous. 

Proof. lim
xx0

ex = ex0 lim
xx0

ex-x0 = ex0 lim
x0

ex = ex0. 

Statement. f (x) = ex is strictly monotonically increasing and its range is (0, ∞).

Proof. 1) Let x, y ∈  such that x < y. We have to show that ex < ey.
         Since y - x > 0 then ey-x ≥ 1 + (y - x) > 1
         and since ex > 0 then ey = e(y-x)+x = ey-x ex > 1 ·ex = ex.
    2) supRf =∞. Since ex ≥ 1 + x  and  lim

x0
(1 + x) =∞, so lim

x0
ex =∞.

    3) inf Rf = 0. Since f (x) = ex is strictly monotonically increasing, then 

         lim
x -∞

ex = lim
x∞

e-x = lim
x∞

1

ex
= 0.

    4) By the intermediate value theorem the range of f  is an interval, so Rf = (0, ∞).

The logarithm function

Definition. Denote ln = loge the inverse of f (x) = ex, so eln x = ln ex = x.

    Dln = Rexp = (0, ∞)  and Rln = Dexp =.
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