
Calculus 1, 14th lecture

Limits of real functions

Definitions

A function f : A⟶B is a mapping that assigns exactly one element of B to every element from A.
The set A is called the domain of f  (notation: Df  or Dom(f )) and 
the set f (A) = {f (x) : x ∈ A} is called the range of f  (notation: Rf  or Ran(f )).

A function f : A⟶B is one-to one or injective if for all x, y ∈ A:  (f (x) = f (y) ⟹ x = y).
A function f : A⟶B is onto or surjective if f (A) = B.
A function f  is bijective if it is injective and surjective.

The function f : Df ⊂⟶ is
 even, if  ∀ x ∈ Df , -x ∈ Df  and f (x) = f (-x)  (for example, f (x) = x2 or f (x) = cos x)
 odd, if ∀ x ∈ Df , -x ∈ Df  and f (-x) = -f (x)   (for example, f (x) = x3 or f (x) = sin x)
 monotonically increasing if ∀ x, y ∈ Df   (x < y ⟹ f (x) ≤ f (y))
 monotonically decreasing if ∀ x, y ∈ Df   (x < y ⟹ f (x) ≥ f (y))

 strictly monotonically increasing if ∀ x, y ∈ Df   (x < y ⟹ f (x) < f (y))  (for example, f (x) = x , f (x) = x3)
 strictly monotonically decreasing if ∀ x, y ∈ Df   (x < y ⟹ f (x) > f (y))
 periodic with period p > 0 if ∀ x ∈ Df , x + p ∈ Df  and f (x) = f (x + p)         (for example, f (x) = sin x)

Limit at a finite point

Definition. The limit of the function f : Df ⊂⟶ at the point x0 ∈  is A ∈  if
    (1) x0 is a limit point of Df   (x ∈ Df ')
    (2) for all ε > 0 there exists δ(ε) > 0 such that
    if  x ∈ Df   and  0 < x - x0 < δ(ε)  then  f (x) - A < ε

    Notation: lim
xx0

f (x) = A

Remark:    0 < x - x0 < δ   means that   x0 - δ < x < x0   or   x0 < x < x0 + δ.

x0x0 -δ x0 +δ

A

A+ ε

A- ε

lim
xx0

f (x) = A

     

x0x0 -δ x0 +δ

A

A+ ε

A- ε

lim
xx0

f (x) = A



One-sided limits:

Notation. The 
right hand limit
left hand limit

  of f  at x0 is denoted as 
lim
xx0+

f (x) = lim
xx0+0

f (x) = f (x0 + 0)

lim
xx0-

f (x) = lim
xx0-0

f (x) = f (x0 - 0)
.

Definition. Suppose x0 ∈  is a limit point of 
Df ⋂ [x0, ∞)

Df ⋂ (-∞, x0]
. Then 

   
lim
xx0+

f (x) = A

lim
xx0-

f (x) = A
   if for all ε > 0 there exists δ(ε) > 0 such that if x ∈ Df  and  

x0 < x < x0 + δ(ε)

x0 - δ(ε) < x < x0
  

   then  f (x) - A < ε.  

Consequence. If x0 is a limit point of Df  then  lim
xx0

f (x) exists if and only if lim
xx0+

f (x) and lim
xx0-

f (x) exist 

 and lim
xx0+

f (x) = lim
xx0-

f (x).

Definition. Let f : X⟶Y  be a function and A⊂ X. The restriction of f  to A is the function
   f A : A⟶Y , f A (x) = f (x). 
  

Remark. lim
xx0+

f (x) = lim
xx0

f Df⋂[x0,∞) (x)   and  lim
xx0-

f (x) = lim
xx0

f Df⋂(-∞,x0] (x)     

Example 1. Using the definition, show that lim
x-2

8 - 2 x2

x + 2
= 8.

Solution.   We have to show that if x is “close” to  x0, that is, x - x0  is “small”, then f (x) is “close” to 
   A, that is, f (x) - A  is also “small”. That is, we have to show that for all ε > 0 there exists
   δ > 0 such that if 0 < x - x0 < δ,   then f (x) - A < ε.
   Here x0 = -2. If ε > 0 then    

 f (x) - A =
8 - 2 x2

x + 2
- 8 =

2 · 4 - x2

x + 2
- 8 = 2 · (2 - x) - 8 =

               = -2 x - 4 = (-2) (x + 2) = 2 x + 2 = 2 x - (-2) < ε, if x + 2 <
ε

2

               ⟹ with the choice δ = δ(ε) =
ε

2
 the definition holds. Remark:  -2 ∉ Df .

   For example if ε = 10-2 then δ = 5 ·10-3.       
   

Example 2. Using the definition, show that lim
x-3

1 - 5 x = 4.

Solution. Let  ε > 0. Then 

         f (x) - A = 1 - 5 x - 4 =
1 - 5 x - 16

1 - 5 x + 4
=

5 x - (-3)

1 - 5 x + 4
≤

5 x + 3

0 + 4
< ε,

          if x + 3 <
4 ε

5
  ⟹  with the choice δ(ε) =

4 ε

5
 the definition holds.
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Definition. Suppose f : Df ⊂⟶ is a function and x0 ∈ Df '. Then lim
xx0

f (x) =
∞

-∞
 if 

for all P > 0 there exists δ(P) > 0 such that  if  x ∈ Df   and  0 < x - x0 < δ(P)  then  
f (x) > P
f (x) < -P

 .

x0x0 -δ x0 +δ

P > 0

lim
xx0

f (x) = ∞

     

x0x0 -δ x0 +δ

-P < 0

lim
xx0

f (x) = -∞

Remark. The one-sided limits can be defined similarly:

  lim
xx0+

f (x) =
∞

-∞
 if  ∀ P > 0  ∃ δ(P) > 0  such that if x ∈ Df  and x0 < x < x0 + δ(P)  then 

f (x) > P
f (x) < -P

.

  lim
xx0-

f (x) =
∞

-∞
 if  ∀ P > 0  ∃ δ(P) > 0  such that if x ∈ Df  and x0 - δ(P) < x < x0  then 

f (x) > P
f (x) < -P

.

     

Example 3. lim
x2

1

(x - 2)2
=∞, since if P > 0, then f (x) =

1

(x - 2)2
> P  ⟺  0 < x - 2 <

1

P

               ⟹ with the choice δ(P) =
1

P
 the definition holds.

Limit at ∞ and -∞

Definitions. Assume that Df  is not bounded above.
(1) lim

x∞
f (x) = A ∈  if for all ε > 0 there exists K(ε) > 0 such that if x > K(ε) then f (x) - A < ε.

(2) lim
x∞

f (x) =∞  if for all P > 0 there exists K(P) > 0 such that if x > K(P) then f (x) > P.

(3) lim
x∞

f (x) = -∞  if for all P > 0 there exists K(P) > 0 such that if x > K(P) then f (x) < -P.

K > 0

A

A+ ε

A- ε

lim
x∞

f (x) = A
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K > 0

P > 0

lim
x∞

f (x) = ∞

     

K > 0

-P < 0

lim
x∞

f (x) = -∞

Remark. If f  is a sequence, that is, Df =+, then the only accumulation point of Df  is ∞, 
         so we can investigate the limit only here. 

Definitions. Assume that Df  is not bounded below.
(1) lim

x -∞
f (x) = A ∈     if for all ε > 0 there exists K(ε) > 0 such that if x < -K(ε)  then f (x) - A < ε.

(2) lim
x -∞

f (x) =∞  if for all P > 0 there exists K(P) > 0 such that if x < -K(P) then f (x) > P.

(3) lim
x -∞

f (x) = -∞  if for all P > 0 there exists K(P) > 0 such that if x < -K(P) then f (x) < -P.

Summary

The above definitions of the limit can be summarized as follows.

Theorem. Assume that a ∈  is a limit point of Df  and b ∈ . Then lim
xa

f (x) = b if and only if 

for any neighbourhood J of b there exists a neighbourhood I of a such that 
if  x ∈ I⋂ Df   and  x ≠ a  then  f (x) ∈ J.

Examples

  lim
x0-0

1

x2
= lim
x0+0

1

x2
= +∞ ⟹  lim

x0

1

x2
= +∞   lim

x∞

1

x2
= lim
x-∞

1

x2
= 0

  lim
x2-0

1

2 - x
= +∞, lim

x2+0

1

2 - x
= -∞ ⟹  lim

x2

1

2 - x
 doesn’t exist       lim

x∞

1

2 - x
= lim
x-∞

1

2 - x
= 0

x↦
1

x2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3 x↦
1

2 - x

-2 -1 1 2 3

-3

-2

-1

1

2

3
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The sequential criterion for the limit of a function

In the syllabus it is called transference principle.

Theorem. Suppose f : Df ⊂⟶ is a function,  a, b ∈  = ⋃ {-∞, ∞}, and a ∈ Df '. 
Then the following two statements are equivalent.
(1) lim

xa
f (x) = b 

(2) For all sequences (xn)⊂ Df \ {a}  for which xn⟶a,  lim
n∞

f (xn) = b.

a

(xn)

b

f (xn)

Proof. We prove it for a, b ∈ .
(1) ⟹ (2):  Assume that for all ε > 0 there exists δ(ε) > 0 such that if 0 < x - a < δ(ε)  

     then f (x) - b < ε.
   Let (xn) be a sequence for which xn ∈ Df \{a} for all n ∈ and xn⟶a. 

    Then for δ(ε) > 0 there exists a threshold index N(δ(ε)) ∈ such that if n > N(δ(ε)) 
     then xn - a < δ(ε).
   Thus for all n > N(δ(ε)),  f (xn) - b < ε also holds, so f (xn)⟶b.
 

(2) ⟹ (1):  Indirectly, assume that (2) holds but lim
xa

f (x) ≠ b, that is, 

     there exists ε > 0 such that for all δ > 0 there exists x ∈ Df  for which 
     0 < x - a < δ and f (x) - b ≥ ε.

   Let δn =
1

n
> 0 for all n ∈+. Then for δn there exists xn ∈ Df  such that 

     0 < xn - a < δn =
1

n
 and f (xn) - b ≥ ε.

   It means that xn⟶a, but lim
n∞

f (xn) ≠ b, which is a contradiction, so lim
xa

f (x) = b.

 

Remark. The theorem is useful for problems where we prove that the limit doesn’t exist.

Examples

1. Show that the limit  lim
x∞

sin(x)  does not exist.

Solution.  We give two different sequences tending to infinity such that the sequence of the 
  corresponding function values have different limits. For example:
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π

2
π

3π

2
2π

5π

2
3π

7π

2
4π

9π

2
5π

11π

2
6π

13π

2
7π

15π

2
8π

-1

1

  1) If an =
π

2
+ n ·2π , then  an⟶∞  and  sin(an) = 1⟶1.

  2) If bn = n ·π , then bn⟶∞  and  sin(bn) = 0⟶0.

  3) If cn =
3π

2
+ n ·2π , then  cn⟶∞ and sin(cn) = -1⟶-1.    ⟹  lim

x∞
sin(x) doesn’t exist.

          

2. Let f (x) = sin
1

x
, Df = \ {0}. Show that f  does not have a limit at 0.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example. Let xn =
1

nπ
⟶0 and yn =

1
π

2
+ 2 nπ

⟶0. Then 

 lim
n∞

f (xn) = lim
n∞

sin
1

xn
= lim
x∞

sin(nπ) = 0 and

 lim
n∞

f (yn) = lim
x∞

sin
1

yn
= lim
x∞

sin
π

2
+ 2 nπ = 1 ≠ 0    ⟹  lim

x0
sin

1

x
 doesn’t exist.

Consequences

Theorem. Suppose x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg and lim
x x0

f (x) = A ∈ , 

lim
x x0

g(x) = B ∈ , c ∈ . Then 

(1) lim
x x0

(c f ) (x) = c ·A

(2) lim
x x0

(f ± g) (x) = A ± B

(3) lim
x x0

(f ·g) (x) = A ·B

(4) lim
x x0

f

g
(x) =

A

B
 if  B ≠ 0

(5) If lim
x x0

f (x) = 0 and g is bounded in a neighbourhood of x0 then lim
x x0

(f g) (x) = 0.

Remark. The statements (1)-(4) are also true if A, B ∈  and the corresponding operations are defined 
in .
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Theorem. Suppose x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg and 

  lim
x x0

f (x) = A ∈ , lim
x x0

g(x) = B ∈ .

  If f (x) ≤ g(x) for all x ∈ Df ⋂ Dg then A ≤ B.

Theorem (Sandwich theorem for limits). Suppose that 
(1) x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg ⋂ Dh,

 (2) f (x) ≤ g(x) ≤ h(x) for all x in a neighbourhood of x0 and
 (3) lim

x x0

f (x) = lim
x x0

h(x) = b ∈ .

 Then lim
x x0

g(x) = b.

Remark. The theorem is also true for one-sided limits and if b = ±∞ then only one estimation is 
enough.

Example. Show that    a) lim
x 0

x sin
1

x
= 0    and    b) lim

x∞

1

x
sin(x) = 0.

a) b) 

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

               
5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Solution.

a)  lim
x 0

x sin
1

x
= 0, since - x ≤ x sin

1

x
≤ x ,  and  lim

x0
( x ) = lim

x0
(- x ) = 0

     Or:  x⟶0  and sin
1

x
  is bounded, so the product also tends to 0.

     

b)  lim
x∞

sin(x)

x
= 0, since  -

1

x
≤

sin(x)

x
≤

1

x
  if x > 0,  and  lim

x∞
-

1

x
= lim
x∞

1

x
= 0.

     Or:  
1

x
⟶
x∞

0 and sin(x)  is bounded, so the product also tends to 0.

Example

Theorem. lim
x0

sin x

x
= 1

Proof. Since f (x) =
sin x

x
 is even, it is enough to consider the right-hand limit lim

x0+

sin x

x
.

    Let 0 < x <
π

2
. 
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    The area of the POA triangle is T1 =
1 ·sin x

2
. 

    The area of the POA circular sector is T2 =
12 ·x

2
.

    The area of the OAB triangle is T3 =
1 ·tan x

2
.

        

x
O A

P
B

1

sin x

x

tan x

 

    Obviously T1 < T2 < T3   ⟹     
1 ·sin x

2
<

12 ·x

2
<

1 ·tan x

2
.

    Multiplying both sides by 
2

sin x
> 0:   1 <

x

sin x
<

1

cos x
.

    Since lim
x0+

1

cos x
= 1 then lim

x0+

x

sin x
= 1  ⟹  lim

x0+

sin x

x
= 1 = lim

x0-

sin x

x
    

Remark. If 0 < x <
π

2
, then sin x < x  ⟹  sin x ≤ x ∀ x ∈ .

Continuity

Definition. The function f : Df ⊂⟶ is 
continuous
continuous from the left
continuous from the right

  at the point x0 ∈ Df  if

    for all ε > 0 there exists δ(ε) > 0 such that if  x ∈ Df   and  
x - x0 < δ (ε)

x0 - δ(ε) < x ≤ x0

x0 ≤ x < x0 + δ(ε)

  

    then  f (x) - f (x0) < ε.

x0x0 -δ x0 +δ

f (x0)

f (x0) + ε

f (x0) - ε
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Remarks.  1) f  is continuous at x0 ∈ Df   ⟺  for all ε > 0 there exists δ > 0 such that 
       if x ∈ (B(x0, δ) ⋂ Df  then f (x) ∈ B(f (x0), ε).

  2) f  is 
continuous from the right
continuous from the left

 at x0 ∈ Df   ⟺  
f Df⋂[x0,∞)

f Df⋂(-∞,x0]

  is continuous at x0.

  3)  f  is continuous at x0 ∈ Df   ⟺  f  is continuous at x0 from the right and from the left.     

Theorem. Suppose f : Df ⊂⟶ and x0 ∈ Df ⋂ Df '. Then f  is continuous at x0 
  if and only if lim

x x0

f (x) exists and lim
x x0

f (x) = f (x0).

Definition. f  is continuous if f  is continuous for all x ∈ Df .

Notation. If A⊂ then C(A, ) or C(A) denotes the set of continuous functions f : A⟶. 
 For example, f ∈ C([a, b]) means that f : [a, b]⟶ is continuous.
 

The sequential criterion for continuity

Theorem:  The function f : Df ⊂⟶ is continuous at x0 ∈ Df  if and only if 
   for all sequences (xn)⊂ Df  for which xn⟶x0,  lim

n∞
f (xn) = f (x0).

Consequences

Theorem. If f  and g are continuous at x0 ∈ Df ⋂ Dg then c f , f ± g and f g is continuous at x0  (c ∈ ).

  If g(x0) ≠ 0 then 
f

g
 is also continuous at x0.

Theorem (Sandwich theorem for continuity): Suppose that 
(1) there exists δ > 0 such that I = (x0 - δ, x0 + δ)⊂ Df ⋂ Dg ⋂ Dh
(2) f  and h are continuous at x0

(3) f (x0) = h(x0)

(4) f (x) ≤ g(x) ≤ h(x) for all x ∈ I
Then g is continuous at x0.

Definition. The composition of the functions  f  and g  is (f ◦ g) (x) = f (g(x)) whose domain is
   Df ◦ g = x ∈ Dg : g(x) ∈ Df .

Theorem. If g is continuous at x0 ∈ Dg and f  is continuous at g(x0) ∈ Df  then f ◦ g is continuous at x0.

Theorem (Limit of a composition). Let a be a limit point of Df ◦ g for which lim
xa

g(x) = b.

Assume that
(1) b ∈ Df , f  is continuous at b and f (b) = c  or
(2) b ∈ Df ' \Df  and lim

xb
f (x) = c  or

(3) g is injective, b ∈ Df ' and lim
xb

f (x) = c.

Then lim
xa

(f ◦ g) (x) = c.
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Examples

1. Show that the constant function f : ⟶, f (x) = c is continuous for all x0 ∈ .

Solution. Let ε > 0, then with any δ > 0 if x - x0 < δ, then f (x) - f (x0) = c - c = 0 < ε.

x0

c

c+ ε

c- ε

ε

f (x) = c

     

x0x0 -δ x0 +δ

f (x0)

f (x0) + ε

f (x0) - ε

f (x) = x

2. Show that the function f : ⟶, f (x) = x is continuous for all x0 ∈ .    

Solution. Let ε > 0, then with δ(ε) = ε if x - x0 < δ(ε) = ε, then f (x) - f (x0) = x - x0 < ε.   

3. f : ⟶, f (x) = xn is continuous for all x0 ∈ , n ∈, since 
    f (x) = xn = x ·x · ... ·x⟶x0 ·x0 · ... ·x0 = x0

n = f (x0)

4. Polynomials (Pn(x) = an xn + an-1 xn-1 + ... + a1 x + a0, ai ∈ ) are continuous for all x0 ∈ .

5. f (x) = sin x  and  g(x) = cos x  are continuous for all x ∈ .

Proof. We show that f (x) = sin x is continuous at a ∈ . Let x ∈ , x ≠ a and consider the right-angled 
    triangle with vertices (cosa, sina), (cos x, sin x), (cos x, sina). Then the lengths of the legs are 
    less than the length of the hypotenuse, which is less then the arc length x - a, that is, 
   sin x - sina ≤ x - a .

     If ε > 0 and δ = ε then for all x ∈  for which x - a < δ we have that 
             f (x) - f (a) = sin x - sina ≤ x - a < ε, so f  is continuous at a.

            

a

x

sin x - sin a
x - a
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6. Investigate the continuity of the following functions:

     a) the sign function or signum function:   sgn(x) =
1, ha x > 0
0, ha x = 0

-1, ha x < 0
     b) the floor function: f (x) = [x], where [x] = max {k ∈ : k ≤ x}
     c) the fractional part function: f (x) = {x} = x - [x]

Solution. a) lim
x0+

sgn(x) = 1 ≠ sgn(0) = 0  ⟹  f (x) = sgn(x) is not continuous at 0 from the right

         (and similarly not continuous at 0 from the left) ⟹ f  is not continuous at 0.
         If x ≠ 0 then f  is continuous at x.

b) If k ∈ then lim
xk-0

[x] = k - 1, lim
xk+0

[x] = k = [k]  

    ⟹  f (x) = [x] is continuous at k from the right but not from the left.

c) If k ∈ then lim
xk-0

{x} = 1,  lim
xk+0

{x} = {k} = 0  

    ⟹  f (x) = {x} is continuous at k from the right but not from the left. 

f (x) = sgn(x)

-3 -2 -1 1 2 3

1

-1

   

f (x) = [x]

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

   

f (x) = {x}

-3 -2 -1 1 2 3 4

-2

-1

1

2

7. f (x) =
x sin

1

x
if x ≠ 0

0 if x = 0
 is continuous for all x ∈ .

8. Show that the Dirichlet function f (x) =
1 if x ∈

0 if x ∉
 is not continuous at any x ∈ .

Solution.    If x0 ∈, then let xn ∈  \ ∀ n such that xn⟶x0. Then f (xn) = 0⟶0 ≠ 1 = f (x0).
                   If x0 ∈  \, then let xn ∈ ∀ n such that xn⟶x0. Then f (xn) = 1⟶1 ≠ 0 = f (x0).    

9. Show an example for a function f : ⟶ that is continuous only at one point.

Solution. Let f (x) =
x, ha x ∈

-x, ha x ∈  \
. Then f  is continuous only at 0

.
          Since f (x) = x  for all x ∈ , then
          xn⟶0  ⟺  xn ⟶0  ⟺  f (xn) ⟶0  ⟺  f (xn)⟶0.

  

Similar examples: f (x) =
x, ha x ∈

0, ha x ∈  \
,  f (x) =

x, ha x ∈
2 x, ha x ∈  \

  etc. 
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Types of discontinuities

Definition. We say that the function f  is discontinuous at x0 ∈  or f  has a discontinuity at x0 ∈  
    if x0 is a limit point of Df  and f  is not continuous at x0.

Classification of discontinuities:

1) Discontinuity of the first kind:
     a) f  has a removable discontinuity at x0 if ∃ lim

x x0

f (x) ∈  but lim
x x0

f (x) ≠ f (x0) or f (x0) is not defined.

     b) f  has a jump discontinuity at x0 if ∃ lim
x x0-

f (x) ∈  and ∃ lim
x x0+

f (x) ∈   but lim
x x0-

f (x) ≠ lim
x x0+

f (x).

2) Discontinuity of the second kind:
     f  has an essential discontinuity or a discontinuity of the second kind at x0 if f  has a discontinuity 
     at x0 but not of the first kind. 

Remarks: 1. In the case of a discontinuity of the first kind, both one-sided limits exist and are finite.
            2. In the case of an essential discontinuity, at least one of the one-sided limits doesn’t exist 
                 or exists but is not finite.

Examples

 1. Discontinuity of the first kind

     a) f (x) =
x2 - 1

x - 1
 has a removable discontinuity at x0 = 1.

     
x ↦

x2 - 1

x - 1

-2 -1 1 2 3

-2

-1

1

2

3

   

x ↦ sgn(x)

-3 -2 -1 1 2 3

1

-1

   

x ↦ [x]

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

     b) f (x) = sgn(x) has a jump discontinuity at x = 0.
     c) f (x) = [x] has a jump discontinuity for all x ∈.
    
2. Discontinuity of the second kind

     a) f1(x) =
1

x
, f2(x) =

1

x2
  and f3 = sin

1

x
 have an essential discontinuity at x = 0.
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x↦
1

x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

   

x↦
1

x2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

   

x ↦ sin
1

x

-1 1

-1

1

  
     b) The Dirichlet function has essential discontinuities for all x ∈ .

     c) The function f (x) = e
1
x  has an essential discontinuity at x = 0.

 If x⟶0 +, then 
1

x
⟶∞, and since lim

x∞
ex =∞, then lim

x 0+0
e

1
x =∞.

 If x⟶0 -, then 
1

x
⟶-∞, and since lim

x -∞
ex = 0, then lim

x 0-0
e

1
x = 0.

x ↦ e
1

x

-5 -4 -3 -2 -1 1 2 3 4

-4
-3
-2
-1

1
2
3
4
5
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