Calculus 1, 12th and 13th lecture

Basic topological concepts

Open and closed sets

```
Definition. The set B(x, r) := \{y \in \mathbb{R} : |x - y| < r\} = (x - r, x + r) is called an open ball with center x and radius r > 0. This interval is also called an open neighbourhood of x with radius r.
```

Definitions. The set $A \subset \mathbb{R}$ is

- (1) **open** if for all $x \in A$ there exists r > 0 such that $B(x, r) \subset A$.
- (2) **closed** if its complement $\mathbb{R} \setminus A$ is open.
- (3) **bounded** if there exists r > 0 and $x \in \mathbb{R}$ such that $A \subset B(x, r)$.

Examples. (1) (0, 1) is open, [0, 1] is closed, (0, 1] is not open and not closed

- (2) Q is not open and not closed
- (3) The empty set Ø and R are both open and closed (and they are the only such sets)
 R is open, since it contains all open balls ⇒ R \ R = Ø is closed.
 - \emptyset is open, since it does not contain any points $\Longrightarrow \mathbb{R} \setminus \emptyset = \mathbb{R}$ is closed.

Intersection and union

Theorem. (1) The intersection of any finite collection of open subsets of R is open.(2) The union of arbitrarily many open subsets of R is open.

Proof. (1) Suppose $A_1, A_2, ..., A_n$ are open sets and let $x \in \bigcap^n A_i$.

Then for all i = 1, ..., n there exists $r_i > 0$ such that $B(x, r_i) \subset A_i$.

If
$$R = \min\{r_i : i = 1, ..., n\}$$
 then $R > 0$ and $B(x, R) \subset \bigcap_{i=1}^n A_i$, so $\bigcap_{i=1}^n A_i$ is open.

(2) Suppose $\{A_i : i \in I\}$ is a collection of open sets, indexed by *I*. If $x \in \bigcup_{i \in I} A_i$ then $x \in A_k$ for some $k \in I$. Since A_k is open, there exists r > 0, such that $B(x, r) \subset A_k \subset \bigcup_{i \in I} A_i$, so $\bigcup_{i \in I} A_i$ is open.

Theorem.

- (1) The union of any finite collection of closed subsets of $\mathbb R$ is closed.
- (2) The intersection of arbitrarily many closed subsets of R is closed.

Proof. (1) Suppose $\bigcup_{i=1}^{n} A_i$ is a finite union of closed sets. Then $\mathbb{R} \setminus \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (\mathbb{R} \setminus A_i)$. The complement of $\bigcup_{i=1}^{n} A_i$ is finite intersection of open sets, so it is open, and therefore $\bigcup_{i=1}^{n} A_i$ is closed. (2) Suppose $\{A_i : i \in I\}$ is a collection of closed sets, indexed by *I*. Then $\mathbb{R} \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (\mathbb{R} \setminus A_i)$. The complement of $\bigcap_{i \in I} A_i$ is a union of a collection of open sets, so it is open, and therefore $\bigcap_{i \in I} A_i$ is closed.

Remarks. (1) An infinite intersection of open sets is not necessarily open.

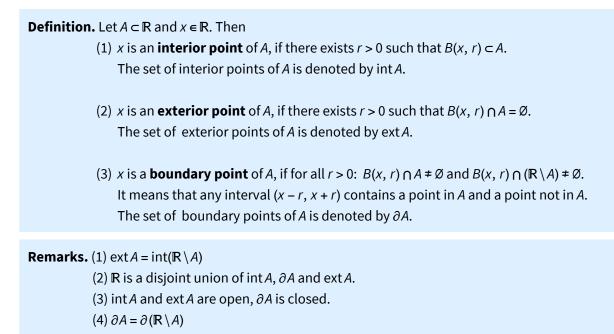
For example,
$$A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 are open but $\bigcap_{n=1}^{\infty} A_n = \{0\}$ is closed.

(2) An infinite union of closed sets is not necessarily closed.

For example,
$$A_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right]$$
 are closed but $\bigcup_{n=1}^{\infty} A_n = (-1, 1)$ is open.

Examples. (1) If $x \in \mathbb{R}$, then $\{x\} \subset \mathbb{R}$ is closed, since $\mathbb{R} \setminus \{x\}$ is the union of two open intervals. (2) \mathbb{Z} is closed, since $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n=1}^{\infty} ((-n-1, -n) \cup (n-1, n))$ is a union of open sets, so $\mathbb{R} \setminus \mathbb{Z}$ is open.

Interior, exterior and boundary points



Limit points and isolated points

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

- (1) x is a **limit point** or **accumulation point** of A, if for all r > 0: $(B(x, r) \setminus \{x\}) \cap A \neq \emptyset$ It means that any interval (x - r, x + r) contains a point in A that is distinct from x. The set of limit points of A is denoted by A'.
- (2) x is an **isolated point** of A, if there exists r > 0 such that $B(x, r) \cap A = \{x\}$ It means that x is not a limit point of A.

Remarks. (1) int $A \subset A'$, that is, every interior point of A is a limit point of A. (2) If x is a boundary point of A, then x is a limit point or an isolated point of A.

The closure of a set

Definition. The **closure** of the set $A \subset \mathbb{R}$ is $\overline{A} := \{x \in \mathbb{R} \mid \forall r > 0 : B(x, r) \cap A \neq \emptyset\}$.

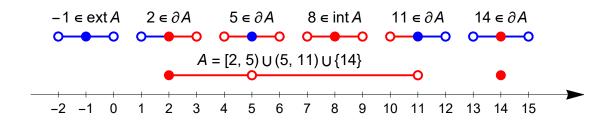
```
Remarks. (1) \overline{A} = \operatorname{int} A \cup \partial A
(2) \overline{A} = A \cup A'
(3) \overline{A} is closed.
```

Exercise 1

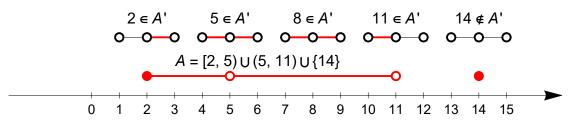
Let $A = [2, 5] \cup (5, 11) \cup \{14\}$. Find the set of interior points, boundary points, exterior points, limit points, isolated points of A and the closure of A.

Solution.

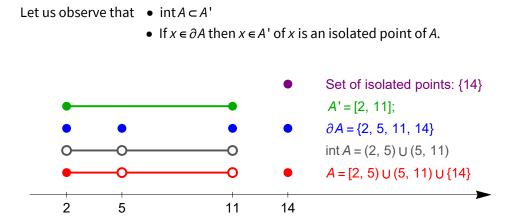
- int $A = (2, 5) \cup (5, 11)$, since these points have a neighbourhood that is a subset of A.
- $\partial A = \{2, 5, 11, 14\}$, since any neighbourhood of these points contains a point in A and a point not in A.
- ext A = (-∞, 2) ∪ (11, 14) ∪ (14, ∞), since these points have a neighbourhood that is disjoint from A.



• A' = [2, 11], since if $x \in A'$ then any interval (x - r, x + r) contains a point in Athat is distinct from x.



- The only isolated point of A is x = 14, since there exists an interval (x r, x + r) such that $(x r, x + r) \cap A = \{x\}$.
- $\overline{A} = [2, 11] \cup \{14\}$, since if $x \in \overline{A}$ then any interval (x r, x + r) contains a point in A.



Exercise 2

Let $A = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\}$. Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

- Set of interior points: $int A = \emptyset$, since there is no interval that is a subset of A.
- Set of boundary points: $\partial A = A \cup \{0\}$.
 - a) All points of *A* are boundary points, since for all r > 0, the interval $B\left(\frac{1}{n}, r\right) = \left(\frac{1}{n} r, \frac{1}{n} + r\right)$ contains a point in *A*, that is, $\frac{1}{n}$, and a point not in *A*, that is, a real number that is different from the points of *A*.
 - b) The point $0 \notin A$ is also a boundary point of A. Since for all r > 0 there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < r$, then B(0, r) contains a point in A and a point not in A, say 0.

• Set of isolated points: A. All points of A are isolated points, since if $r = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$, then

$$B\left(\frac{1}{n},r\right) \cap A = \left\{\frac{1}{n}\right\}.$$

• Set of limit points: $A' = \{0\}$. The point $0 \notin A$ is the only limit point of A, since for all r > 0there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < r$, so $B(0, r) \cap (A \setminus \{0\}) \neq \emptyset$.

	Set of isolated points: A		•	•	•
	$\mathcal{A}' = \{0\}$	•			
	$\partial A = A \cup \{0\}$	• • • • •	•	•	•
	$A = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\}$		•	•	•
_		$0 \ \ \frac{1}{n} \ \ \frac{1}{5} \ \frac{1}{4}$	1 - 3	1 2	1

Exercise 3

Let $A = [0, 1] \cap \mathbb{Q}$. Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

Using that any (non-empty) open interval contains both rational and irrational numbers, we get the following:

- Set of interior points: $int A = \emptyset$.
- Set of boundary points: $\partial A = [0, 1]$.
- Set of isolated points: Ø.
- Set of limit points: A' = [0, 1].

Some examples

	Set of interior points	Set of boundary points	Set of limit points	Set of isolated points
$A = (1, 2) \cup (2, 3)$	А	{1, 2, 3}	[1, 3]	Ø
$A = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$	Ø	A∪{0}	{0}	А
Z	Ø	Z	Ø	Z
Q	Ø	R	R	Ø

Theorems about open and closed sets

Theorem. Let $A \subset \mathbb{R}$. Then

(1) int *A* is open;
(2) int *A* is the largest open set contained in *A*;
(3) *A* is closed;
(4) *A* is the smallest closed set containing *A*.

Consequence. Let $A \subset \mathbb{R}$. Then (1) *A* is open if and only if A = int A; (2) *A* is closed if and only if $A = \overline{A}$.

Theorem. A set $A \subset \mathbb{R}$ is closed if and only if it contains all of its limit points.

Proof. a) Assume that A is closed. Then $\mathbb{R} \setminus A$ is open

- \implies for all $x \in \mathbb{R} \setminus A$ there exists r > 0 such that $B(x, r) \subset \mathbb{R} \setminus A$
- \implies if x is not in A, then x is not a limit point of A
- \implies if x is a limit point of A, then x is in $A \implies A' \subset A$.
- b) Assume that $A' \subset A$ and let $x \in \mathbb{R} \setminus A$. Since $x \notin A$ and $x \notin A'$ then there exists r > 0 such that $B(x, r) \cap A = \emptyset$ \implies for all $x \in \mathbb{R} \setminus A$ there exists r > 0 such that $B(x, r) \subset \mathbb{R} \setminus A$ $\implies \mathbb{R} \setminus A$ is open $\implies A$ is closed.

Example. The set $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is not closed, since $0 \in A' \setminus A$. It is not open either, since it has no interior points.

Theorem. Let $A \subset \mathbb{R}$ be bounded. Then (1) if $A \subset \mathbb{R}$ is closed then inf A, sup $A \in A$ (that is, A has a minimum and a maximum); (2) if $A \subset \mathbb{R}$ is open then inf A, sup $A \notin A$.

Dense sets

Definition. Let $X, Y \subset \mathbb{R}$. Then (1) **X** is dense in **Y** if $\overline{X} = Y$; (2) X is dense if $\overline{X} = \mathbb{R}$.

Theorem. (1) \mathbb{Q} is dense in \mathbb{R} ; (2) $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Compact sets

Definition. A set $A \subset \mathbb{R}$ is **sequentially compact** if every sequence in A has a convergent subsequence whose limit belongs to A.

Theorem (Bolzano-Weierstrass).

A set $A \subset \mathbb{R}$ is sequentially compact if and only if it is closed and bounded.

Definition. A **cover** of the set $X \subset \mathbb{R}$ is a collection of sets $C = \{A_i \subset \mathbb{R} : i \in I\}$, whose union contains X, that is, $X \subset \bigcup A_i$.

An **open cover** of *X* is a cover such that A_i is open for every $i \in I$. A **subcover** *S* of the cover *C* is a sub-collection $S \subset C$ that covers *X*, that is,

$$S = \{A_{i_k} \in C : k \in J\}, \quad X \subset \bigcup A_{i_k}$$

A **finite subcover** is a subcover $\{A_{i_1}, A_{i_2}, ..., A_{i_n}\}$ that consists of finitely many sets.

Definition. A set $A \subset \mathbb{R}$ is **compact** if every open cover of A has a finite subcover.

Theorem (Heine-Borel or Borel-Lebesgue theorem).

A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Consequence. A subset of **R** is compact if and only if it is sequentially compact.

The extended set of real numbers

Definition. Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ denote the extended set of real numbers. We define $-\infty \le x \le \infty$ for all $x \in \overline{\mathbb{R}}$. The arithmetic operations on \mathbb{R} can be partially extended to $\overline{\mathbb{R}}$ as follows.

(1) $a + \infty = +\infty + a = \infty$,	$a \neq -\infty$	$(5) \frac{\alpha}{\pm \infty} = 0,$	$a \in \mathbb{R}$
(2) $a - \infty = -\infty + a = -\infty$,	<i>a</i> ≠ +∞	$(6) \ \frac{\pm \infty}{a} = \pm \infty,$	$a \in (0,+\infty)$
(3) $a \cdot (\pm \infty) = \pm \infty \cdot a = \pm \infty$,	$a \in (0, +\infty]$	$(7) \frac{\pm \infty}{a} = \mp \infty,$	$a \in (-\infty,0)$
(4) $a \cdot (\pm \infty) = \pm \infty \cdot a = \mp \infty$,	$a\in [-\infty,0)$		

Definitions. The interval $(a - \varepsilon, a + \varepsilon)$ is called a neighbourhood of a if $\varepsilon > 0$. For any $P \in \mathbb{R}$, the interval (P, ∞) is called a neighbourhood of $+\infty$ and the interval $(-\infty, P)$ is called a neighbourhood of $-\infty$.

Remark. The definition of a limit point can be extended to $\overline{\mathbb{R}}$ as follows. Let $A \subset \overline{\mathbb{R}}$ and $x \in \overline{\mathbb{R}}$. Then x is a limit point of A, if any neighbourhood of x contains a point in A that is distinct from x.

Remark. Examples for the set of limit points in $\overline{\mathbb{R}}$: $(\mathbb{N}^+)' = \{\infty\}, \mathbb{Z}' = \{\infty, -\infty\}, \mathbb{Q}' = \overline{\mathbb{R}}, \mathbb{R}' = \overline{\mathbb{R}}.$