Calculus 1, 10th and 11th lecture

Comparison test

Theorem. Assume that 0<c, <a, < b, for n>N where N is some fixed integer. Then

(1) If Zb,, is convergent, then Zan is convergent.

n=1 n=1
) If ch is divergent, then Zan is divergent.

n=1 n=1

Proof. Denote by s, sp, s; the nth partial sums of the numerical series ) a,, > b,and > ¢,
n=1 n=1 n=1

respectively.

(1) 1st proof. We use the Cauchy criterion. Let € > 0 be fixed, then by the convergence of

> by there exists N(e) €N such that if m > n > N(e), then | s, -sp | <&, s0

n=1
m m oo
if m>n>max{N, N(e)} then | s5,-s5 | = > ax< > by=|sh-sh| <&50) ap
k=n+1 k=n+1 n=1

is convergent.

2nd proof. Changing finitely many terms does not affect the convergence or divergence
of a series, so it may be assumed that 0 < a,, < b, holds for all n € N. (If the series does not
start at n = 1 then it can be reindexed.)

a;<b;

Ozsbz

From the condition = si=a1+0y+..+0,<bi+by+..+b, =sg.

a,<b,

Assume that b, is convergent = (sp) is bounded = (7)) is bounded

n=1

= (s9) is convergent since it is monotonically increasing = Za,, is convergent.

n=1

(2) (s,) is monotonically increasing if n > N and not bounded, so s§; - s§ > sf, - sj;— 0 and thus
Sg—)oo.

1
Remark. The convergence of the p-series Z—p can be investigated easily with the comparison test

n=1
for p<landp=2.

o

l l . . > l . .
elfpslthen0<-=<— and ) — isdivergentso Z— is divergent.
n P

p
n n =1
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1 © 1
elfp=2then — < forallneN* andZ =2 is convergent,
n? nn+1) nn+1) r7n(n+1)

S0 Z—2 is convergent.
n=1
1 1 e 1
elfp>2then0<— <— and Z— Is convergent so Z— is convergent.
n’ n2 n=1 n n=1 nP

7.(2

Remark. Leonhard Euler proved in 1734 that Z— =—.
n= ln 6

Examples

1
1) Investigate the convergence of the series Z => an.
12n+1 =

Solution. Here infinitely many terms are omitted from the harmonic series. By the comparison test

we show that this series is still divergent
1 1 1 i
ap = > =— and Z— S Z diverges = > a, diverges.
2n+1 2n+n a1 N nel

S n+2 *
2) Investigate the convergence of the series Z
23nt+5

1
< and Z— converges (p=3>1) = Za,, converges.

Solution. g, =
3n*+5 3n*+0 n on o

n+2 n+2n 1
3

LR
3) Investigate the convergence of the series Z— = ) @e

nln'"8 n=1

Solution. If n 2 4 then the terms of the series are positive. By the comparison test we show that
the series diverges. If n = 6 then n? > 32, so

2n*-32 2n*-n? d
0= ———>———=—and Z— == Z diverges = > a, diverges.
n>+8 n>+8n 9,an

n=1

o 2[1 + 3I7+l o
4) Investigate the convergence of the series Z— = > ap,.
2 2n+3 5 el

. 2"+3-3" 374+3-3" 1/3y\"
Solution. g, = < :—( ) and

8-4"+5  8-4"+0 2\4
oo l 3 o
Z— (—) is a convergent geometric serles( s gl < 1) = Zan converges.
2\4

n=1 n=1
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Error estimation for series with nonnegative terms

Remark. Usually we don’t know the limit s = Za,, =lim Zak =lims, butifnislarge thens, gives

N-eo N—co
n=1 k=1

an estimation of s. The error for the approximations=s,is | E| = | s-5s,|.
If 0 < ay < by for k2 nthen the error can be estimated with the comparison test:

o n - -
|El=1]s-5s =S_Sn=zak_zak= Z ag < Z by.
k=1

k=1 k=n+1 k=n+1
Here s, <s, since (s,) is monotonically increasing.

> 1
Example. Show that the series Z— is convergent and estimate the error if the sum of the series
n!
n=1

is approximated by the sum of the first 6 terms (s = sg).

Solution. Estimate the terms from above by the terms of a convergent series:

1 1 1 1 1 2
—_ < = < = —,

o onn-1)-(n-2)-...2:1 n(n-1)-1-..-1-1 p2-n n

=2 : - 1
Since Z—z converges then by the comparison test Z— also converges.

|
n=0 n n=0 n:

Error estimation for the approximation s = s,:

(1+ ! + ! + ! +...=
)! n+2 (n+2)(n+3) (n+2)(n+3)(n+4)

1

|El=1s-sal=> o=

k=n+1
1 1 1 1 1 >
< (l+ + + +...]: Z
(n+1)! n+2 (n+2)? (n+2)> !
1 1 1 n+2

(n+1

T+l 1L (n+D)! n+l
n+2

If n =6 then | s—s, ~0.000226757 and

1
< —.
7!

~N | oo

1 1 1 1 1 o
S¢=1+1+—+—+— +— +— =2.718...= e (here 3 digits are accurate).

21 31 41 5! 6!

Absolute convergence

Definition. We say that the numerical series Za,, is absolutely convergent if the series Z | an |
n=1 n=1

is convergent.

Example. Zal g"!is absolutely convergentif | g | <1.

n=1
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Theorem. If Za,, is absolutely convergent then it is convergent.

n=1

Proof. Let £ > 0 be fixed. If Z | an | is convergent then by the Cauchy criterion there exists Ne N

n=1
suchthatifm>n>Nthen | |ap1 | +|0p2| -+ | am| | <€ Thenforallm>n>N
| Sm=Sn|=|0n1+0n2ec+v@m| < | | Onaa |+ | Gni2| 4| 0m| | <€

also holds, so by the Cauchy criterion Zan is convergent.

n=1

Consequence. If | a, | <b,forn>Nand Zb,, is convergent then Za,, is absolutely convergent

n=1 n=1

and therefore also convergent.

Definition. If Zan is convergent but not absolutely convergent then it is conditionally
n=1

convergent.

e (-1)™1 11 1 1 1 1 1
Example.Z =l-—4+——— - ——+..= ( )
ey 2 3 4 5 6

1 11
2

= Z— is convergent, since

0< < <

2n(2n-1) 2n-n n

On the other h di’(_l)n+l| il hich is di t, 50 the seri i(_lm
n e other nan = — WhNHICN IS |vergen,so e series

n=1 n

and Z—2 is convergent.

n=1

is

n n

n=1 n=1

conditionally convergent.

Rearrangements

Definition. If ;T: N— N is a permutation of the natural numbers (that is, every natural number

appears exactly once in this sequence) then we say that Zan(n) is a rearrangement of Za,,.

n=1 n=1

Theorem (Riemann rearrangement theorem). Suppose that Za,, is conditionally convergent
n=1

and -oo < a < B< . Then there exists a rearrangement Zan' with partial sumss,' such that
n=1

liminfs,'=a, limsups,'=28.

Theorem. If Za,, is absolutely convergent then every rearrangement of Zan converges and

n=1 n=1

they all converge to the same sum.
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Proof: See W. Rudin: Principles of Mathematical Analysis, page 75:
https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. Za,, is an alternating series if a, a,,; <0 forallneN.

n=1

Theorem (Leibniz). Let (a,) be a monotonically decreasing sequence of positive numbers

such that anE;O. Then the alternating series Z(—l)”+l 0p=01-0y+03—04+05—0g + ...
n=1

is convergent.

Remark. A series with this property is called a Leibniz series.
The theorem is called the alternating series test or Leibniz’s test or Leibniz criterion.

Proof. Since a, 2 a,,; >0 forall neN then

San<S2n+ (02041 = 02042) =S2n42 = 2041 = 02142 S S2p41 = S2n-1 = (A2n = 02 41) S S2p-1,
thatis, 0<5,<85;<S¢<Sg<..<S7<S5<S3<S;=0;.

So (s, ) is monotonically increasing and bounded above = it is convergent,
and (s .1) is monotonically decreasing and bounded below = itis convergent.

. N-co .
Since Sy .1 —Son =030, —>0then lims,, =

N—co

lims;y .1 = lims, = the series is convergent.
N—co N—co

(Or, by the Cantor axiom ﬂ[sz,,, Syn-1] is not empty and since s, .1 = Sy = az,,E;O thenis has
n=1

only one element which is the limit of (s,,).)

Error estimation:
Lets=lims,. Ifnisoddthens,,; <s<s,andifniseventhens,<s<s,,;.

N—->co

In both cases the error for the approximation s = s, is

[E|l=1]s=Sa| < |Sn1=5n|=0na1.
Examples
: & : 1. . :
1. The alternating series Z is convergent, since a, = — is monotonically decreasing
n=1 n n
and a,—0.
R = 1 1 = 1
2. Is the series > (-1)™' ——— = (-1)""" ¢, convergent?

n=1 3\/2 n+1l n=1
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1
Solution. Sincec, = is monotonically decreasing and c,— 0 then this is a Leibniz
3
V2n+1

series so it is convergent.
l oo

3. Is the series S (-1 — =
% V2n+1 r;

(-1)"! ¢, convergent?

1 1 1 1
Solution. Since = < =c, < -1
V3-4n N2n+n R2n+1 Yo+1
1 1
—>—— =1then by the sandwich theorem lim¢, = 1.
N—>c0

a

nd —
Q/E. % 1-1
So lim (-1)™! ¢, doesn’t exist, and thus by the nth term test the series diverges.

N—oco

i n+l 2
4. s the series ) (-1)"" = > (-1)"! ¢, convergent?
n=1 nZ +2 n=1
1 1
s
) n+l p p2 0+0
Solution.1)0<c¢, = = — =0.
n?+2 2 1+0
1+—
n2

2) It is not obvious that (c,) is monotonically decreasing, since both the numerator and

the denominator increases.
(n+1)+1 n+1
<

Chi1SChp &= <
(n+1)2+2 n*+2

& (n+2)(n*+2)<(n+1)(n*+2n+3)

S n+2n?+2n+4<n*+n*+2n*+2n+3n+3

& 0=<n?+3n-1 andthisistrueforallneN.
Since the steps are equivalent then c,,; < ¢, also holds for alln e N, so (c,,) is
monotonically decreasing. Then by the Leibniz criterion the series converges.

Remark. If the sum of the series is approximated by s, then the error is
101+1

| E|=|S=Sw0| SCio1= ra—
101°+2

Root test (Cauchy)

Theorem (Root test): Assume that a, >0 and limsup ya, =R. Then
(1)ifR<1,then > a, is convergent;

n=1

(2)ifR>1,then ) a, is divergent.

n=1

Proof. (1) e Suppose that R < 1, then there exists e >0 such that R + e < 1.
o By the definition of the limsup, for this € there exists N e N such that if n > N then

Q/aj <R+¢g,sinceif Q/aj 2 R + £ would hold for infinitely many n then this subsequence

would have a limit point greater than R.
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e Thusa, < (R+¢)"ifn>N, and since Z(R +¢)" is a convergent geometric series

n=1
then by the comparison test, Za,, is also convergent.
n=1

(2) @ Suppose that R > 1, then there exists £ > 0 and a subsequence of y/a, such that

n\k,ank 2R-¢e>1.
e Then for the terms of this subsequence a,, =2 (R- €)™ > 1
= lima,, #0 = lima, *0 = the seriesis divergent by the nth term test.

Nj—>o0 N—o0

Consequence. Assume limsup 4/ | a, | =R. Then

(1)ifR< 1, then Za,, is convergent, since it is absolutely convergent;

n=1

(2)ifR>1, then Zan is divergent, sinceif lim | a, | #0,then lima, #0.
N—>oco N—oco
n=1

Remark. If R=1then we don’t know anything about the convergence of the series, for example

> 1 1
1) § - isdivergentand [- —1
N n

n

© 1 1
2) ) —isconvergentand nf— —1
n? n?

n=1

Ratio test (D’Alambert)

Theorem (Ratio test): Assume that a, > 0. Then

@ @
(1) if limsup e 1, then Za,, is convergent;

n n=1

(2) if lim e 1, then Zan is divergent.

an n=1

a + . . . . .
Proof. (1) e Suppose that R=lim sup e 1, then similarly as in the previous proof, there exists £ > 0
an

Ony
andNel\lsuchthatifnZNthenLl <R+e<l1.
dn

e Thusay,, <(R+¢€)ay

a2 < (R+€) na1 < (R+€)* ay

On <(R+€)a,=(R+¢&)™Nay= (R + &)™

(R+¢)N
so we can apply the comparison test similarly as in the proof of the root test.

ap. . .
(2) @ Suppose that lim inf LN 1, then there exists € >0 and N e N such that if n = N then
ap

On+1

>R-¢e>1.
an
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e Since a, > 0then a,,; > a,, so (a,) is monotonic increasing = lima, =0

N—co

= the series is divergent by the nth term test.

Consequence. Assume a, #0 for allneN. Then

<1, then Za,, is convergent, since it is absolutely convergent;

n=1

On+1
(1) iflimsup | —
an

N—co

(o) -
(2) if lim inf | i |>1, then Zan is divergent, since if lim | a, | #0, then lima, #0.
an N—>co

n=1

Qns+ .. Ons .
Remark. Iflimsup % —1orliminf—= = 1 then we don’t know anything about the convergence
a, an

of the series, for example

1
=1 a n
1) Z— is divergent and —— = 2+1 = —1
in a 1 n+1
n=1 n _
n
1
> 1 a 2 n?
2) Z— is convergent and e (n+ll) = —1
o’ an - (n + 1)
n2

Remark. The ratio test is a consequence of the root test and the following theorem.
The proof of this theorem contains a very interesting step.
1) Recall that
o if x<B(orx<B) forall B>0 then x<0.
2) Similarly, we can prove x <y in the following way:
oif x<B forall B>y thenx<y.

On, @
Theorem. Assume that a, >0. Then lim inf —— < lim inf 4 a, <limsup % <limsup Sy
Qn an
Qn+
Proof. 1) We prove that lim sup Q/a_ <limsup iy
ap

0ps .
Letlim supLl = C and let B> C be an arbitrary real number.
an

(e
Then by the definition of the lim sup, there exists N e N such that if k= N then -1 B,
Ak

2
= On.a1<Bay, ano<Bani<BTay,

. _ n _ ay
Soifn>Nthen a,<B"™May = A a, < {B"" Yay =8 HEI
. n . an
= limsup \/a <lim B- nf—N =B.
N—oc0 B

We obtained that the following implication holds for all B > C:
an+l n
limsup— <B = limsup\/a_sB.

n
Op+1

From this it follows that lim sup Q/a_slimsup —=,

n
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2) liminf Q/a— <limsup Y/ a, is obvious.

an+
3) The proof of lim inf —= <liminf %/a, is similar to case 1).
ap

On+
Consequence. Ifa, >0forallnand 3 lim 2 geRthen 3 lim & a, =a.

N—>oco an N—>oco

Remark. Itis a consequence of the previous inequalities that the root test is “stronger” than
the ratio test. Consider the series

& 1 1 1 1 1 1 1
p=—+—+—+—+—+—+. whereazkl-—andazk-

—,k=21.
o 2 3 22 32 B 3 2K 3k

1 1
. . 2k-1
With the root test: e If nis odd, then \"/a,, = \/azk_l =2k-1 ; — — and

e if nis even, then «/a—,,_ \/02 =2k[ —
3k \/’

1
= limsup \"/a = — <1 = the series is convergent.

2
1
. . Un+1 02k+1 k+1 k
With the ratio test: e If nis even, then . =27 % — and
an ark i 2
3k

e if nis odd, then = =
an sz-l

1
On+1 as 3k 2k
1

. An+1 . . On+1
= limsup— =w>1landliminf— =0<1
(o an

= the ratio test cannot be used here.

Cauchy product

Definition: The Cauchy product of the series > a,and ) b, is the series > ¢,
n=0 n=0 n=0
where

Cn=0o by + a1 by + ...+ Uy b= by
k=0

do a1 a ds

be dg b@ =R bg ar bg as be
b; [agb; a;b; a;bg
b2 dg b2 =R b2

b3 a@ b3
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Mertens’ theorem

Theorem (Mertens). If Za,, is absolutely convergent and an is convergent, then their Cauchy

n=0 n=0
oo (=) n oo (o)
product is convergent and its sumis > ¢,=> > axbpi= (Zan) (Zb,,).
n=0 n=0k=0 n=0 n=0
Proof. LetA= ) a,, B=) by,
n=0 n=0
n n n n k
An= Zak, B,= Zbk: Ch= ch = Zzai bk—i: Bn =B,-B.
k=0 k=0 k=0 k=0 i=0

Then
Ch=a0by+(agby+ay bg)+(agby +ay by +a,bg) + ...+ (ag by + a1 bp_y + ... + A, bg) =
=a9B,+01B.1+0,Bpo+...+0,Bg=
=0o(B+ Bn) + a1(B + By-1) + 02(B + Bp2) + ... + (B + Bo) =
=AnB+(aoBn+ayBn-1+0a;Bp2+... + 0, o).

Let yn =00 By + a1 Bn-1 + a2 Bp2 + ... + ap Po.
We have to show that C,—AB. Since A, B—A B, it is enough to show that limy, = 0.

N—>oco

Leta= Z | an | . (Here we use that Zan is absolutely convergent.) Let £ > 0 be given.

n=0 n=0

Since B= Zb,, then B,—0, so there exists Ne N such that | 8, | <€ifn=N.In this case

n=0
| Vol S| Boan+...BvGnn | + | Brvs1Gnon-i+ oo+ BrGo | <
= | Boan+... By An_p | + | B+ | : | an-n-1 | +...+ | Bn | : | Qo | =
n-N-1
< |ﬁoan+...,3,\,an_N|+£- Z |(Jn <
n=0
S| Boan+...Bn0nn | +EQ.

If Nis fixed and n— oo then | Byap, +... By an_y | — 0 since ay—> o as k—> oo.
Sowe getthat limsup | y, | €a.Since gis arbitrary, it follows that lim y, = 0.

N—>c0

Remark. If both Za,, and an are absolutely convergent then their Cauchy product is also

n=0 n=0

absolutely convergent.

Theorem (Abel). Assume that Zan and Zb,, are two convergent series and their Cauchy product
n=0 n=0

is also convergent. Then its sum is icn = iiak bpi = (ian) (ib”)'

n=0 n=0k=0 n=0 n=0
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Remark. In generalitis not true that the Cauchy-product of two convergent series is convergent.

- - > (-1) _— .
For example let Zan = Zb,, = Z . These are Leibniz series, so they are convergent.
n=0 n=0 n=0 Yn+1

- O G i -
Thenc,= ) ayb,_,= 1)"
! l; " l;\jk+l \jn—k+l 1; k+l \n- k+l

ab,we get that

n n n

| cn | = = (n+1),since
" go«jk+ “An-k+1 l<z(k+l (n-k+1) kg”

the terms are independent of k.

n+1
Therefore | | 22 —2,s0 limc, #0 = the Cauchy-product is divergent.
n+2 -0
Examples
< k 2 3 1
Example 1. If | x| <1then ) x=1+x+x®+x>+..= — and
=0 1-x
Z(—X) =1x+x2=-x3+..= .
1+x

k=0

x X2 x
1 x x* i
X -x* =3
x? x3

The Cauchy-product is ZZX"(—X)”"" =1+(x=x)+ (x> =x*+x)+ (P -+ =) + .=

=1+0+X2+0+x*+0+x°+. =Z

n=0k=0

S S

Example 2. Since Zx — |f | x| <1then
k=0

© 1 2 o n o n! * 1 2/n
Example 3. (Z '] ZZWZZ;H“(”‘W:Z; (k)zn_on!

=(§X] S5 S K= S S =S ey

(1- n=0k=0 n=0k=0 n=0

k=01
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Power series

Definitions. The series Zan(x - Xo)" = ag + ay(X — Xo) + Az(X — Xo)? + ... is called a power series with
n=0

center x,, where a, is the coefficient of the nth term.

The domain of convergence of the power series is H = {x eR: Zan(x -xp)" converges}.

n=0

1
lim sup \”/ | an |

The radius of convergence of the power series is R =

Remarks. H is not empty, since the series converges for x = x.

Since 4/ | @, | 20,thenO<limsup v/ | @, | Soo.
Iflimsup 4 | a, | =eothenR=0and if limsup 4 | a, | =0thenR=co.

. On+1 . . an
If lim | — | exists then R =lim |
dn

N—>oco N—o0 an+l

Theorem (Cauchy-Hadamard): Denote by R the radius of convergence of the power series

ian(x -x)". Then
n=0
(1)
(2)

if | x=Xo| <R,then the seriesis absolutely convergent, and
if | x=xo| >R,then the seriesis divergent.

1 1
Proof. We define — = +00 and — = 0. By the root test

+0 +00
. . - . . | X-Xo |
l|msup\/|an| lx=x|" = |x—x0| limsup 4 | ap | =——
R
| X=xo |

Then e <l & | x-xy| <R = theseriesis absolutely convergent

| X=Xo | Lo
and ————>1 < | x-X | >R = theseriesis divergent.
R

Consequence. (1) If R=0thenforallx #xp, | x-xo| >0=R,so the series diverges
and if x = x, then it converges. Then H = {x,}.
(2)IfR=oothenforallxeR, | x-xo | <R,so theseriesisabsolutely convergent.
Then H=R.
(3)If0<R< oo, then (o - R, Xo + R) € H c [Xy — R, Xo + R] and the endpoints of the
interval must be investigated separately.



