
Calculus 1, 8th and 9th lecture

Bolzano-Weierstrass theorem

Theorem: Every sequence has a monotonic subsequence.

Proof.   First we introduce the following concept: ak is called a peak element if an ≤ ak for all n > k. 
      Then two cases are possible.
    

Case 1: There are infinitely many peak elements. If n1 < n2 < n3 < ... are indexes for which 
      an1, an2, an3, ... are peak elements, then the sequence an1, an2, an3, ...  is monotonically 

      decreasing.

Case 2: There are finitely many peak elements (or none). It means that there exists an index n0 
      such that for all n ≥ n0,  an is not a peak element.
      ⟹  Since an0 is not a peak element, there exists n1 > n0 such that an1 > an0.
          Since an1 is not a peak element, there exists n2 > n1 such that an2 > an1, etc.
      In this case the sequence an0, an1, an2, ... is strictly monotonic increasing.

Case 1:                                                                                      Case 2:
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Theorem (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Proof: Because of the previous theorem there exists a monotonic subsequence and since it is 
    bounded then it is convergent.
    

Remark. The Bolzano-Weierstrass theorem is not true in the set of rational numbers.

          Let (bn) = (1, 1.4, 1.41, 1.414, ...)⟶ 2 ∉, then bn ∈  and bn ∈ [1, 2]  for all n, 
          that is, (bn) is bounded.

Each subsequence of (bn) converges to 2 , so (bn) does not have a subsequence 
converging to a rational number.



Cauchy sequences

Definition. (an) is a Cauchy sequence if for all ε > 0 there exists N(ε) ∈ such that 
    if n, m > N then an - am < ε.

Statement:  If (an) is a Cauchy sequence, then it is bounded, since for all ε > 0 and n ∈,

         min {aN+1 - ε, a1, ..., aN} ≤ an ≤ max {aN+1 + ε, a1, ..., aN}.
         

Theorem. (an) is convergent if and only if it is a Cauchy sequence.

Proof. a) Let ε > 0 be fixed. If lim
n∞

an = A, then for 
ε

2
 there exists N ∈ such that if n > N then 

       an - A <
ε

2
.

        So if n, m > N then an - am = an - A + A - am ≤ an - A + A - am <
ε

2
+
ε

2
= ε.

        
    b) If (an) is a Cauchy sequence then it is bounded. Define cn = inf {an, an+1, ...} and 
    dn = sup {an, an+1, ...}.

Then cn ≤ cn+1 ≤ dn+1 ≤ dn, so by the Cantor-axiom 
n=1

∞

[cn, dn] ≠ ∅. 

Since for all ε > 0 there exists N ∈ such that if n > N then cn - dn < ε, 
then it means that the intersection has only one element A, which is the limit of the 
sequence  ( A - an < max { cn - an , dn - an } < ε).

Remark. The theorem expresses the fact that the terms of a convergent sequence are also arbitrarily 
          close to each other if their indexes are large enough. The theorem can be used to prove 
          convergence even if the limit is not known.
          

Example. an = (-1)n is not convergent, since an - an+1 = (-1)n - (-1)n+1 = 2 ≥ ε if ε ≤ 2.

Remark. A Cauchy sequence is not necessarily convergent in the set of rational numbers.

         For example (an) = (1, 1.4, 1.41, 1.414, ...)⟶ 2 ∉.
          (an) is a Cauchy sequence, since an+k - an < 10-N  if n > N and k ∈ is arbitrary, 

          but the limit of (an) is not rational.
          
          

An important example

Let sn =

k=1

n 1

k
= 1+

1

2
+

1

3
+ ... +

1

n
.  Prove that lim

n∞
sn =∞.
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Solution. Let ε ≤
1

2
 and m = 2 n. Then with

 sn = 1 +
1

2
+

1

3
+ ... +

1

n
   and   sm = s2 n = 1 +

1

2
+

1

3
+ ... +

1

n
+

1

n + 1
+

1

n + 2
+ ... +

1

2 n
,  

we get that

sm - sn = s2 n - sn =
1

n + 1
+

1

n + 2
+ ... +

1

2 n
>

1

2 n
+

1

2 n
+ ... +

1

2 n
= n ·

1

2 n
=

1

2
≥ ε,

so (sn) is not a Cauchy sequence. Since (sn) is monotonically increasing, then sn⟶∞.

Limit points or accumulation points of a sequence

Definition. For any P ∈ , the interval (P, ∞) is called a neighbourhood of +∞ and 
    the interval (-∞, P) is called a neighbourhood of -∞.

Definition. A ∈  ⋃ {∞, -∞} is called a limit point or accumulation point of (an) if 
   any neighbourhood of A contains infinitely many terms of (an). 

   Or equivalently there exists a subsequence (ank) such that ank
n∞

A.

Examples

See the figures on page 1:   https://math.bme.hu/~nagyi/calculus1-2022/calculus1-04-05.pdf

Sequence Limit points Limit

1) an =
1

n
   t = 0    lim

n∞
an = 0 ⟹ (an) converges

2) an =
(-1)n

n
   t = 0    lim

n∞
an = 0 ⟹ (an) converges

3) an = (-1)n            t1 = -1, t2 = 1    lim
n∞

an doesn’t exist ⟹ (an) diverges

4) an = n2  t = +∞    lim
n∞

an = +∞ ⟹ (an) diverges

5) an =
n

n + 1
  t = 1    lim

n∞
an = 1 ⟹ (an) converges 

6) an = (-1)n
n

n + 1
 t1 = -1, t2 = 1    lim

n∞
an doesn’t exist ⟹ (an) diverges

7) an =
1

2n
 t = 0    lim

n∞
an = 0 ⟹ (an) converges 

8) an = (-2)n  t1 = -∞, t2 =∞       lim
n∞

an doesn’t exist ⟹ (an) diverges

Theorem. Every sequence has at least one limit point. 

Proof. We proved that every sequence has a monotonic subsequence.
    If it is bounded, then it has a finite limit, so it is a limit point of the sequence.
    If the subsequence is not bounded, then it tends to ∞ or -∞, so ∞ or -∞ is 
    a limit point of the sequence.
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Definition.  If the set of limit points of (an) is bounded above, then its supremum is called 
       the limes superior of (an) (notation: lim supan).
       
     If the set of limit points of (an) is bounded below, then its infimum is called 
       the limes inferior of (an) (notation: lim inf an).
       
      If (an) is not bounded above, then we define lim supan =∞. 
      If (an) is not bounded below, then we define lim inf an = -∞.

Theorem. (an) is convergent if and only if   lim supan = lim inf an = A ∈ .

Proof. 1) If (an) is convergent, then all of its subsequences tend to the same limit as (an).
Then the only element of the set of the limit points will be the limsup and 
the liminf of the sequence.

     2) Let lim supan = lim inf an = A and let ε > 0 be fixed. 
          If we assume indirectly that lim

n∞
an ≠ A then it means that there are infinitely many terms 

          n1 < n2 < ... ∈ such that an - A ≥ ε. 
         Then (ank) has a limit point which differs from A, so we arrived at a contradiction.

Examples

1. Let an = 2(-1)n n. Find  lim supan  and  lim inf an.

Solution. 1) If n is even: n = 2 k, then (-1)2 k = 1  ⟹  a2 k = 22 k = 4k ⟶ ∞

2) If n is odd: n = 2 k + 1, then (-1)2 k+1 = -1  ⟹  a2 k+1 = 2-2 k+1 =
1

2 ·4k
⟶ 0

The limit points of the sequence are 0 and ∞  ⟹   lim inf an = 0, lim supan =∞

2. Let an =
n2 + n2 sin

nπ

2

2 n2 + 3 n + 7
. Find the limit points of (an).  Calculate  lim supan  and  lim inf an.

Solution.    sin
nπ

2
=

1, if n = 1, 5, 9, ...
0, if n = 0, 2, 4, 6, 8, ...
-1, if n = 3, 7, 11, ...

     ⟹  Depending on the value of n, 

   we have to investigate the behaviour of three subsequences.

   1) If n = 2 k then sin
nπ

2
= 0, so the subsequence is  an =

n2

2 n2 + 3 n + 7
⟶

1

2

   2) If n = 4 k + 1 then sin
nπ

2
= 1, so the subsequence is  an =

2 n2

2 n2 + 3 n + 7
⟶1

   3) If n = 4 k - 1 then sin
nπ

2
= -1, so the subsequence is  an = 0⟶0

   The limit points of the sequence are 0,
1

2
, 1  ⟹   lim inf an = 0, lim supan = 1
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3. Let an =
32 n+1 + (-4)n

5 + 9n+1
  and  bn = an ·cos(nπ) 

    Find  lim supan,  lim inf an,  lim supbn,  lim inf bn.

Solution. 1) an =
3 ·9n + (-4)n

5 + 9 ·9n
=

9n

9n
·

3 + -
4

9

n

5 ·
1

9

n

+ 9

⟶
3 + 0

0 + 9
=

1

3
  

 ⟹  lim
n∞

an = lim inf an = lim supan =
1

3
The sequence (-an) is convergent, since it has only one limit point.

2) cos(nπ) = (-1)n  ⟹    if n is even, then bn = an⟶
1

3

if n is odd, then bn = -an⟶-
1

3

⟹  lim inf bn = -
1

3
,  lim supbn =

1

3
, so lim

n∞
bn does not exist.

4. Calculate the limit of the following sequences (if it exists) and find the limit superior 
     and limit inferior.

     a) an =
-4n + 3n+1

1 + 4n
b) bn =

(-4)n + 3n+1

1 + 4n
c) cn =

(-4)n + 3n+1

1 + 42 n

Solution. a) an =
-4n + 3 ·3n

1 + 4n
=

4n

4n
·

-1 + 3 ·
3

4

n

1

4

n

+ 1

⟶
-1 + 0

0 + 1
= -1  

 ⟹  lim
n∞

an = lim inf an = lim supan = -1

 

 b) bn =
(-4)n + 3 ·3n

1 + 4n
=
(-4)n

4n
·

1 + 3 · -
3

4

n

1

4

n

+ 1

= (-1)n ·βn,  where  βn =
1 + 3 · -

3

4

n

1

4

n

+ 1

⟶
1 + 0

0 + 1
= 1

 If n is even: bn = βn⟶1
 If n is odd: bn = -βn⟶-1 
 ⟹  lim inf bn = -1,  lim supbn = 1, so lim

n∞
bn does not exist.

 

 c) cn =
(-4)n + 3 ·3n

1 + 16n
=
(-4)n

16n
·

1 + 3 · -
3

4

n

1

16

n

+ 1

⟶0 ·
1 + 0

0 + 1
= 0  

 ⟹  lim
n∞

cn = lim inf cn = lim sup cn = 0
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Numerical series

Definition

Definition. Suppose that (an) is a sequence and define the sequence of partial sums as 

    sn =

k=1

n

ak = a1 + a2 + ...an. 

    If (sn) is convergent, then the numerical series 
n=1

∞

an is convergent, 

   and its sum is 
n=1

∞

an = lim
n∞



k=1

n

ak = lim
n∞

sn = s ∈ . 

Examples

1. a) 
k=1

∞

1 = ? b) 
k=1

∞

(-1)k+1 = ?

Solution. a) 
k=1

∞

1 = 1 + 1 + 1 + 1 + ... =∞

     Here sn =

k=1

n

1 = n   ⟹   lim
n∞

sn =∞   ⟹   the series is divergent (and its sum is infinity).

b)  
k=1

∞

(-1)k+1 = 1 - 1 + 1 - 1 + ... + (-1)k + ... 

                 Here s2 k+1 = 1⟶1 and s2 k = 0⟶0, so (sn) has two limit points.
                 ⟹ The series is divergent (and its sum doesn’t exist).

2. 
k=1

∞ 1

2

k
= lim
n∞



k=1

n 1

2

k

= lim
n∞

1

2
+

1

2

2
+ ... +

1

2

n
= lim
n∞

1

2
·

1

2

n

- 1

1

2
- 1

=
1

2
·

0 - 1

-
1

2

= 1,

    so the series is convergent.

A telescoping series



k=1

∞ 1

k(k + 1)
= lim
n∞



k=1

n 1

k(k + 1)
= lim
n∞

1

1 ·2
+

1

2 ·3
+ ... +

1

n(n + 1)
=

= lim
n∞

1 -
1

2
+

1

2
-

1

3
+

1

3
-

1

4
... +

1

n
-

1

n + 1
= lim
n∞

1 -
1

n + 1
= 1, so the series is convergent.
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The harmonic series

Theorem. The harmonic series 
n=1

∞ 1

n
 diverges.

Proof.     s2n =

k=1

2n 1

k
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ ... +

1

2n-1 + 1
+ ... +

1

2n
≥

              ≥ 1 +
1

2
+ 2 ·

1

4
+ 4 ·

1

8
+ ... +2n-1 ·

1

2n
= 1+

n

2

n∞
∞,  so lim

n∞
s2n =∞.

        If n > 2k then sn ≥ s2k , so  lim
n∞

sn =∞  and  therefore 
n=1

∞ 1

n
=∞.

                 

Remark. The name of the harmonic series comes from the fact that for all n ≥ 2, an is the 
harmonic mean of an-1 and an+1, that is, 

an =
2

1

an-1
+

1

an+1

=
2

1

1

n - 1

+
1

1

n + 1

=
2

(n - 1) + (n + 1)
=

1

n
.

The divergence of the series is very slow, for example



n=1

100 1

n
≈ 5.18738,   

n=1

104 1

n
≈ 9.78761,   

n=1

105 1

n
≈ 12.0901,    

n=1

106 1

n
≈ 14.3927

Remark. If a finite number of terms in a series are omitted or changed then the fact of convergence 
         or divergence doesn’t change. However, the sum of a convergent series changes.         
         

The geometric series

Theorem.   1 + q + q2 + ... =

n=0

∞

qn =
1

1 - q
if q < 1 and the series is divergent otherwise.

Proof. If an = qn then sn =

k=1

n

ak =

k=0

n

qk =
qn+1 - 1

q - 1
if q ≠ 1

n + 1 if q = 1
    1) If q = 1 then lim

n∞
sn =∞.

    2) If q > 1 then lim
n∞

sn =∞, since lim
n∞

qn+1 =∞.

    3) If -1 < q < 1 then lim
n∞

sn =
1

1 - q
, since lim

n∞
qn+1 = 0.

    4) If q ≤ -1 then lim
n∞

sn does not exist, since lim
n∞

qn does not exist.

    Similarly,   
n=0

∞

a ·qn =
a

1 - q
,     

n=k

∞

a ·qn =
a ·qk

1 - q
   if q < 1.    sum =

first term

1 - ratio
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Sum and constant multiple

Theorem: Assume 
n=1

∞

an and 
n=1

∞

bn are convergent, 
n=1

∞

dn is divergent, and c ∈ \{0}. Then

(1) 
n=1

∞

(an + bn) =

n=1

∞

an +

n=1

∞

bn

(2) 
n=1

∞

c an = c
n=1

∞

an

(3) 
n=1

∞

(an + dn) is divergent

(4) 
n=1

∞

c dn is divergent

Proof. All statements follow from the properties of the sequences.

Example. 
k=2

∞ 3k+1 + 5 (-2)k+3

4k
= ?                     

Solution. 
k=2

∞ 3k+1 + 5 (-2)k+3

4k
=

k=2

n 3 ·3k - 5 ·8 · (-2)k

4k
= 3 ·

k=2

∞ 3

4

k
- 40 ·

k=2

∞

-
2

4

k
=

                     = 3 ·

3

4

2

1 -
3

4

-40 ·

-
1

2

2

1 - -
1

2

=
1

12

                     The series is the sum of two convergent geometric series. 
                     

Cauchy criterion

Theorem: The numerical series 
n=1

∞

an converges if and only if for all ε > 0 there exists N ∈ 

  such that if m > n > N  then sm - sn = 

k=n+1

m

ak = an+1 + an+2 + ... + am < ε.

Proof: It is trivially true, since the Cauchy criterion for number sequences can be applied for (sn).

Example. Is the series 
k=1

∞

(-1)n+1 1

n
 convergent or divergent?      (alternating harmonic series)        

Solution. The series is convergent. Let m > n and m = n + k. Then 

sm - sn = sn+k - sn = an+1 + an+2 + ... + an+k =
(-1)n+2

n + 1
+
(-1)n+3

n + 2
+
(-1)n+4

n + 3
+ ... +

(-1)n+k+1

n + k
=

=
1

n + 1
-

1

n + 2
+

1

n + 3
- ... +

(-1)k+1

n + k
.
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Using that 
1

n + 1
-

1

n + 2
> 0, 

1

n + 2
-

1

n + 3
> 0 etc. we get the following.

1) If k is even then 

   sn+k - sn =
1

n + 1
-

1

n + 2
+

1

n + 3
-

1

n + 4
+ ... +

1

n + k - 1
-

1

n + k
=

          =
1

n + 1
-

1

n + 2
-

1

n + 3
- ... -

1

n + k
<

1

n + 1
          
 2) If k is odd then   

    sn+k - sn =
1

n + 1
-

1

n + 2
+

1

n + 3
-

1

n + 4
+ ... +

1

n + k - 2
-

1

n + k - 1
+

1

n + k
=

          =
1

n + 1
-

1

n + 2
-

1

n + 3
- ... -

1

n + k - 1
-

1

n + k
<

1

n + 1
.

   

   Then sn+k - sn <
1

n + 1
< ε  if  n >

1

ε
- 1, so with the choice N(ε) ≥ 

1

ε
- 1 the statement holds.

   
   Later we will see that this is a Leibniz series, so it is convergent.
          

The nth term test

Theorem: If 
n=1

∞

an is convergent then lim
n∞

an = 0.

1st proof: Apply the Cauchy criterion with the choice m = n + 1. Then

sn+1 - sn = an+1 < ε  if n > N(ε), so lim
n∞

an = 0.

2nd proof: Let lim
n∞

sn = s ∈ , then sn = sn-1 + an  ⟹  an = sn - sn-1⟶s - s = 0.

Remark. The theorem can also be stated in the following form:

If lim
n∞

an ≠ 0 or if the limit doesn’t exist then 
n=1

∞

an diverges.

Remark. The condition lim
n∞

an = 0 is necessary but not sufficient for the convergence of 
n=1

∞

an.

         For example, the harmonic series 
n=1

∞ 1

n
 is divergent but lim

n∞

1

n
= 0.
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Series with nonnegative terms

Theorem. A series with nonnegative terms converges if and only if its partial sums form 
 a bounded sequence.

Proof. If an ≥ 0 for all n ∈ then sn+1 = an+1 + sn ≥ sn for all n ∈, so (sn) is monotonically increasing.

    If 
n=1

∞

an converges, then (sn) converges  ⟹  (sn) is bounded.

    If (sn) is bounded, then (sn) converges since it is monotonically increasing.

Remark. If an ≥ 0 then 
n=1

∞

an either converges or its sum is ∞.

Cauchy Condensation Test

Theorem. Suppose a1 ≥ a2 ≥ a3 ≥ ... ≥ 0. Then the series 
n=1

∞

an converges if and only if 

 the series 
k=0

∞

2k a2k = a1 + 2a2 + 4a4 + 8a8 + ... converges.

Proof. Let   sn = a1 + a2 + ... + an =

k=1

n

ak    and    tn = a1 + 2a2 + 4a4 + 8a8 + ... + 2n a2n =

k=1

n

2k a2k

    
   1) (sn) is monotonically increasing, since the terms of (an) are nonnegative and 
   n ≤ 2n - 1 for all n ∈+ so sn ≤ s2n-1. Then

sn ≤ s2n-1 = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + ... + (a2n-1 + ... + a2n-1) ≤

                  ≤ a1 + (a2 + a2) + (a4 + a4 + a4 + a4) + ... + (a2n-1 + ... + a2n-1) =

                  = a1 + 2 a2 + 4 a4 + ... + 2n-1 a2n-1 =

                  =
1

2
(a1 + 2a2 + 4a4 + 8a8 + ... + 2n a2n) = tn-1

                  

Assume that 
k=1

n

2k a2k  is convergent  ⟹   (tn) is convergent, so it is bounded ⟹  (sn) is bounded above 

since sn ≤ s2n-1 ≤ tn-1  ⟹  (sn) is convergent since it is monotonically increasing.

2) s2n = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + ... + (a2n-1+1 + ... + a2n) ≥

                ≥
1

2
a1 + a2 + (a4 + a4) + (a8 + a8 + a8 + a8) + ... + (a2n + ... + a2n) =

                =
1

2
a1 + a2 + 2 a4 + 4 a8 + ... + 2n-1 a2n =

1

2
tn        

 Assume that 
n=1

∞

an is convergent  ⟹   (sn) is convergent, so it is bounded  ⟹  (tn) is bounded above 

since 
1

2
tn ≤ s2n   ⟹  (tn) is convergent since it is monotonically increasing  ⟹  

k=0

∞

2k a2k  is convergent.
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The p-series (or hyperharmonic series)

Theorem. 
n=1

∞ 1

np
  converges if p > 1 and diverges if p ≤ 1.

Proof. 1) If p ≤ 0 then lim
n∞

an = lim
n∞

1

np
= lim
n∞

n p ≠ 0, so by the nth term test, the series diverges.

    2) If p > 0 then an =
1

np
 is monotonically decreasing, so the Cauchy condensation theorem is 

         applicable, that is, 
n=1

∞ 1

np
 and 

k=1

∞

2k ·
1

2kp
 are both convergent or both divergent. Then

         

         
k=1

∞

2k ·
1

2kp
=

k=1

∞ 1

2-k
·

1

2k p
=

k=1

∞ 1

2(p-1) k
=

k=1

∞ 1

2

p-1 k

.

         

        This is a geometric series with ratio r =
1

2

p-1

 and it is convergent if and only if

                  r =
1

2

p-1

< 1  ⟺  p - 1 > 0  ⟺  p > 1.

Examples

1. Is the series 
n=n1

∞ 1

n · log2 n
 convergent or divergent?

Solution. The sequence an =
1

n · log2 n
 is monotonic decreasing and the terms are nonnegative,

so the Cauchy Condensation Test can be applied.



k=k1

∞

2k ·a2k = 

k=k1

∞

2k ·
1

2k · log22
k

=

k=k1

∞ 1

k
, this the harmonic series which is divergent

⟹  the series 
n=n1

∞

an is divergent.

2. Show that 
n=n1

∞ 1

n · log2 n
p

 converges if p > 1 and diverges if p ≤ 1.

Solution. If p > 0 then the sequence an =
1

n · log2 n
p

 is monotonic decreasing and the terms are 

nonnegative, so the Cauchy Condensation Test can be applied.



k=k1

∞

2k ·a2k = 

k=k1

∞

2k ·
1

2k · log22
k
p
=

k=k1

∞ 1

kp
, this the p-series which converges if p > 1 and 

diverges if p ≤ 1.

If p ≤ 0 then for example the comparison test can be used to show divergence (see later).

Then an ≥
1

n
 and 

n=n1

∞ 1

n
 diverges ⟹ 

n=n1

∞

an also diverges.
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3. Is the series 
n=n1

∞ 1

n · log2 n · log2 log2 n
 convergent or divergent?

Solution. The sequence an =
1

n · log2 n · log2 log2 n
 is monotonic decreasing and the terms are 

nonnegative, so the Cauchy Condensation Test can be applied.



k=k1

∞

2k ·a2k = 

k=k1

∞

2k ·
1

2k · log22
k · log2log22

k
= 

k=k1

∞ 1

k · log2 k
, this is divergent (see example 1.)

⟹  the series 
n=n1

∞

an is also divergent.
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