
Calculus 1, 3rd lecture
Axioms for the real numbers. Complex numbers.

Axioms for the real numbers

 is a set whose elements are called real numbers. Two operations, called addition and 
multiplication are defined in  such that  is closed under these operations, that is, 
∀ a, b ∈  (a + b ∈  and a ·b ∈ ).

Addition:
1) ∀ a, b ∈  (a + b = b + a)   (commutativity),
2) ∀ a, b, c ∈  ((a + b) + c) = a + (b + c))  (associativity),
3) ∃ 0 ∈  (∀ a ∈  (a + 0 = 0 + a = 0))   (existence of a zero element),
4) ∀ a ∈  (∃ b ∈  (a + b = 0))   (existence of an additive inverse, notation: b = -a).

Multiplication:
5) ∀ a, b ∈  (a ·b = b ·a)   (commutativity),
6) ∀ a, b, c ∈  ((a ·b) ·c = a · (b ·c))   (associativity),
7) ∃ 1 ∈  (∀ a ∈  (a ·1 = 1 ·a = a))    (existence of a unit element),
8) ∀ a ∈  \ {0} (∃ b ∈  (a ·b = 1))   (existence of a multiplicative inverse, notation: b = a-1).

For the two operations above:
9) ∀ a, b, c ∈  (a + b) ·c = a ·c + b ·c     (the multiplication is distributive with respect to the addition).

Axioms (1)–(9) are the axioms for a field.

Ordering: 10) Exactly one of the following is true: a < b, b < a, a = b    (trichotomy),
 11) ∀ a, b, c ∈  ((a < b) ∧ (b < c)) ⟹ (a < c)    (transitivity),
 12) ∀ a, b, c ∈  ((a < b) ∧ c > 0) ⟹ a ·c < b ·c
 13) ∀ a, b, c ∈  (a < b) ⟹ a + c < b + c   (monotonicity)

Axioms (1)–(13) are the axioms for an ordered field.

Archimedian axiom:
14) ∀ a ∈  (∃ n ∈ (a < n)). 

Axioms 1) - 14) are true both for  and . 

Cantor axiom:
15) Let a1, b1, a2, b2, ... ∈ .
       (∀ n ∈ (an ≤ an+1 ≤ bn+1 ≤ bn)) ⟹ (∃ x ∈  (∀ n ∈ (x ∈ [an, bn] )))

       so 

n=1

∞

[an, bn] ≠ ∅ .

       It states that any nested sequence of closed intervals has a non-empty intersection.



Example: Let    a1 = 1.4
a2 = 1.41
a3 = 1.414
a4 = 1.4142
...

an = 10n · 2  ·10-n

  and            b1 = 1.5
b2 = 1.42
b3 = 1.415
b4 = 1.4143
...

bn = 10n · 2  + 1 ·10-n

   
   where [ . ] denotes the floor function.

   Then  a1 < a2 < a3 < a4 < ... < 2 < ... < b4 < b3 < b2 < b1,   so   
n=1

∞

[an, bn] =  2  ∈  \.

Remark. Closeness is important, for example if  In = 0,
1

n
 then 

n=1

∞

In = ∅.

Consequences

Some elementary laws of algebra and inequalities follow from the axioms. For example:

1) For all a ∈ , exactly one of the following properties hold: a > 0, a = 0, a < 0.
     (a > 0 ⟺ -a < 0)

2) (a < b) ∧ (c < d) ⟹ a + c < b + d
     Specifically: (a > 0) ∧ (b > 0) ⟹ a + b > 0

3) (0 ≤ a < b) ∧ (0 ≤ c < d) ⟹ a c < b d
     Specifically: (a > 0) ∧ (b > 0) ⟹ a b > 0

4) (a < b) ∧ (c < 0) ⟹ a c > b c
     Specifically: a < b ⟹ -a > -b

5) (i) 0 < a < b ⟹
1

a
>

1

b
    (ii) a < b < 0 ⟹

1

a
>

1

b
               (iii) a < 0 < b ⟹

1

a
<

1

b
   
6) For all a, b ∈ ,  a + b ≤ a + b   and || a - b || ≤ a - b .

7) If n is a positive integer and 0 < a < b then an < bn.
8) ∀ x ∈  (x ·0 = 0)
9) ∀ x ∈  (x ·y = 0 ⟹ x = 0 or y = 0)

Proof of  8):
x ·0 = x ·0 + 0 = x ·0 + (x ·0 - x ·0) = (x ·0 + x ·0) - x ·0 = x · (0 + 0) - x ·0 = x ·0 - x ·0 = 0.

Proof of 9):
x ≠ 0 ⟹ y = 1 ·y = ((1 /x) ·x) ·y = (1 /x) · (x ·y) = (1 /x) ·0 = 0. 
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Bounded subsets of real numbers

Definition. A⊂ is bounded above if there exists a K ∈  such that a ≤ K for all a ∈ A. 
   In this case K is an upper bound of A.

Definition. A⊂ is bounded below if there exists a k ∈  such that a ≥ k for all a ∈ A. 
   In this case k is a lower bound of A.

Definition. A ⊂  is bounded if it is has an upper bound and a lower bound. 
   It means that there exists a K > 0 such that a < K for all a ∈ A.

Remark:    A bounded set has infinitely many lower and upper bounds.      
Examples: 1)  is bounded below
                   2) (0, 1] = {x ∈  : 0 < x ≤ 1} is bounded (for example, upper bounds are 1, 2, π , ..., 
                        lower bounds are 0, -3, -100, ...)
                        3)  has no upper bound or lower bound           

Definition. If a set A is bounded above, then the supremum of A is the least upper bound of A. 
   Notation: sup A. If A is not bounded above, then sup A = ∞.

Definition. If a set A is bounded below then the infimum of A is the greatest lower bound of A.
    Notation: inf A. If A is not bounded below, then inf A = -∞.

Examples: 1) inf  = 1, sup =∞; 2) inf(0, 1] = 0, sup(0, 1] = 1;       3) inf  = -∞, sup =∞

Definition. The minimum of the set A is  a if  a ∈ A and a = inf A. 
    The maximum of the set A is b if  b ∈ A and b = sup A.

Examples: 1) The minimum of  is 1 and it has no maximum.
   2) The maximum of (0, 1] is 1 and it has no minimum.
   3)  has no minimum and no maximum.

Least-upper-bound property

Theorem (Least-upper-bound property, Dedekind):
If a non-empty subset of  is bounded above then it has a least upper bound in .

Consequence. If a non-empty subset of  is bounded below then it has a greatest lower bound in .

Remarks. 1) In the above system of axioms, the axioms of Cantor and Archimedes can be replaced 
                          by this statement.
                          
2) The set of rational numbers does not have the least-upper-bound property under the usual order. 

     For example, x ∈ : x2 ≤ 2 =⋂ - 2 , 2  has an upper bound in  but does not have a least 

     upper bound in  since 2  is irrational.
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Complex numbers

Definition

The complex field  is the set of ordered pairs of real numbers:  =2 = {(a, b) : a, b ∈ } with 
addition and multiplication defined by

(a, b) + (c, d) = (a + c, b + d)
(a, b) (c, d) = (a c - b d, a d + b c).

The field axioms

Commutativity and associativity of addition and multiplication as well as distributivity (see  1), 2), 5), 
6), 9) ) follow easily from the same properties of reals numbers.
3) the additive identity or zero element is (0, 0)
4) the additive inverse of (a, b) is (-a, -b)
7) the multiplicative identity or unit element is (1, 0)
8) the multiplicative inverse of (a, b) ≠ (0, 0) can be found in the following way:

(a, b) (x, y) = (1, 0)  ⟺  a x - b y = 1

b x + a y = 0

  ⟺  x =
a

a2 + b2
, y =

-b

a2 + b2

Thus the complex numbers form a field.

Some consequences

We associate the complex number of the form (a, 0) with the corresponding real number a.  
Then  (a1, 0) + (a2, 0) = (a1 + a2, 0) corresponds to a1 + a2  and
             (a1, 0) (a2, 0) = (a1 a2, 0) corresponds to a1 a2.

Since   (0, 1) (0, 1) = (-1, 0) = -1, then  we can say that (0, 1) is a square root of -1 and 
it will be denoted by i. That is, i2 = -1, where i is called the imaginary unit.
Remark: i2 = (-i)2 = -1.

The algebraic form of complex numbers

We can rewrite any complex number in the following way:

(a, b) = (a, 0) + (0, b) = a + b i

where a, b ∈  and i2 = -1. 

⟹  Addition: (a + b i) + (c + d i) = (a + b) + (c + d) i
        Multiplication:   (a + b i) (c + d i) = a c + b d i2 + a d i + b c i = (a c - b d) + (a d + b c) i

4     calculus1-03.nb



The complex plane

To each complex number z = a + b i we associate the point (a, b) in the Cartesian plane. 
Real numbers are thus associated with points on the x-axis, called the real axis and 
the purely imaginary numbers b i  correspond to points on the y-axis, called the imaginary axis.

  
a

b i

-b i

z = a+b i

z = a-b i

r

r

φ
-φ

Definitions

If z = a + b i then 
   the real part of z is  Re(z) = a ∈ 
   the imaginary part of z is  Im(z) = b ∈ 
   the conjugate of z is z = a - b i

   the absolute value or modulus of z is   r = z = a2 + b2 ≥ 0   (the length of the vector z)

   the argument of z, defined for z ≠ 0, is the angle which the vector originating from 0 to z 
      makes with the positive x-axis. Thus arg(z) = φ (modulo 2π) for which

cosφ =
Re (z)

z
=
a

r
    and    sinφ =

Im (z)

z
=
b

r

Some identities

   z z = (a + b i) (a - b i) = a2 - b2 i2 = a2 + b2 = z 2

   z1 ± z2 = z1 ± z1,          z1 ·z2 = z1 ·z1,          
z1

z2
=
z1

z2
,          z = z

   Re(z) =
z + z

2
,   Im(z) =

z - z

2 i

The trigonometric form (or polar form) of complex numbers

Let  z = a + b i ≠ 0,  r = z   and   φ = arg(z). Then  a = r cosφ  and  b = r sinφ and

z = r(cosφ + i sinφ)

where r and φ are called the polar coordinates of z.
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Multiplication and division

Let z1 = r1(cosφ1 + i sinφ1) and z2 = r2(cosφ2 + i sinφ2). Then

   z1 z2 = r1 r2(cos (φ1 + φ2) + i sin (φ1 + φ2))

   
z1

z2
=
r1

r2
(cos (φ1 - φ2) + i sin (φ1 - φ2))     (if r2 ≠ 0) 

Reciprocal, conjugation, nth power

Let  z = r(cosφ + i sinφ). Then

   
1

z
=

1

r
(cos(-φ) + i sin(-φ))   (if r ≠ 0)

   z = r(cos(-φ) + i sin(-φ))
   zn = rn(cos(nφ) + i sin (nφ))   (n ∈+) If r ≠ 0 then it holds for n ∈.

The nth root

If z ≠ 0 and n ∈+ then w ∈  is an nth root of z if wn = z. Then 

w = r(cosφ + i sinφ)
n

= r
n

cos
φ + k ·2π

n
+ i sin

φ + k ·2π

n
   where  k = 0, 1, ..., n - 1.

Some identities

z1 z2 = z1 · z2 ,   
1

z
=

1

z
,   

z1

z2
=

z1

z2
,   zn = z n,   z = z

Fundamental theorem of algebra

Every degree n polynomial with complex coefficients has exactly n complex roots, if counted with 
multiplicity.

Exercise

1. Using the field and ordering axioms prove that ∀ a ∈  a2 ≥ 0.
2. Show that no ordering can make the field of complex numbers into an ordered field.

Solution: See exercises 1.1.8 and 1.1.9 here:

http://etananyag.ttk.elte.hu/FiLeS/downloads/4b_FeherKosToth_MathAnExII.pdf
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