Practice exercises 2.

Supremum, infimum

1. Are the following sets bounded below or above? If so, determine their supremum and infimum. Do these sets have a minimum or a maximum?

$$a) H = \left\{ \frac{1}{n} + (-1)^{n} : n \in \mathbb{N} \right\} \subset \mathbb{R} \qquad b) H = \left\{ \frac{(-1)^{n}}{n} + 1 : n \in \mathbb{N} \right\} \subset \mathbb{R} c) H = \left\{ \frac{1}{2^{n}} + \frac{1}{2^{m}} : m, n \in \mathbb{N} \right\} \subset \mathbb{R} \qquad d) H = \left\{ \frac{x^{2} + 1}{3x^{2} + 2} : x \in \mathbb{R} \right\} \subset \mathbb{R} e) H = \left\{ \frac{2x + 3}{3x + 1} : x \in \mathbb{Z} \right\} \subset \mathbb{R} \qquad f) H = \left\{ \frac{x}{y} : 0 < x < 1, 0 < y < 1 \right\} \subset \mathbb{R} g) H = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, p^{2} < q^{2} \right\} \subset \mathbb{R} \qquad h) H = \left\{ r \in Q^{+} : r^{2} < 2 \right\} \subset \mathbb{R}$$

2.* Let $\omega \in \mathbb{R}$ be a positive irrational number. Let

 $A = \{m + n \, \omega \colon m + n \, \omega > 0, \ m, n \in \mathbb{Z}\}$

Prove that $\inf A = 0$.

- 3. Let $A \subset \mathbb{R}$ be a nonempty set that is bounded above. Show that the set $B = \{-a : a \in A\}$ is bounded below and $\inf B = -\sup A$.
- 4. Let A, $B \subset \mathbb{R}$ be nonempty bounded sets. Prove that a) $\inf(A \cup B) = \min \{\inf A, \inf B\}$ b) $\sup(A \cup B) = \max \{\sup A, \sup B\}$ c) $\inf A \cap B \neq \emptyset$ then $\inf(A \cap B) \ge \max \{\inf A, \inf B\}$ d) $\inf A \cap B \neq \emptyset$ then $\sup(A \cap B) \le \min \{\sup A, \sup B\}$ e) $\inf A \subset B$ then $\inf A \ge \inf B$ and $\sup A \le \sup B$

Complex numbers

1. Find the algebraic form (a + ib) of the following complex numbers:

a)
$$\frac{3-2i}{-2+i}$$
 b) $\frac{2+i}{i(1-4i)}$ c) i^2 , i^3 , i^4 , ..., i^{2021} d) $(2+i)^{37} (2-i)^{38}$

- 2. Find the trigonometric form $(r \cos \varphi + i r \sin \varphi)$ of the following complex numbers: a) $\sqrt{6} - i \sqrt{2}$ b) -4i c) 8
- 3. Find the algebraic (or trigonometric) form of the following complex numbers:

a)
$$(1+i)^8$$
 b) $(1-i)^4$ c) $(1+i\sqrt{3})^{100}$ d) \sqrt{i} e) $\sqrt[3]{1}$

f)
$$\sqrt[4]{-16}$$
 g) $\frac{\sqrt{i}}{1-i}$ h) $\sqrt{-5+12i}$

4. Plot the following sets on the complex plane:

 $\begin{array}{ll} a) \{z \in \mathbb{C} : |z-3| \leq 2\} & b) \{z \in \mathbb{C} : |z|^2 = \operatorname{Re}(z)\} \\ c) \{z \in \mathbb{C} : \operatorname{Re}(z+1) = |z-1|\} & d) \{z \in \mathbb{C} : |z| > 5, \operatorname{Im}(z) \geq \operatorname{Re}(z)\} \\ e) \{z \in \mathbb{C} : |z| < |z-2i|, |z-i| \leq 1\} & f) \{z \in \mathbb{C} : |z+i| + |z+3| = 7\} \\ g)^* \left\{z \in \mathbb{C} : \left|\frac{z-1}{z+i}\right| = 2\right\} \end{array}$

5. Solve the following equations and equation systems on the set of complex numbers:

a) $z^{6} + 16 z^{2} = 0$ b) $(3 - i) z^{2} + 3 i z + 6 - i = 0$ c) |z| - z = 1 + 2id) $z^{2} = \overline{z}$ e) $z^{2} + (1 + i) \overline{z} + 4i = 0$ f) $2 i z^{3} = (1 + i)^{8}$ g) $\operatorname{Re}(z) + 2 \operatorname{Im}(z) = 0$ and $\operatorname{Re}(z^{2}) - 2 \operatorname{Im}(z) = 1$ h) $\operatorname{Re}(z^{2}) = 2 \operatorname{Im}(z)$ and $\operatorname{Im}(z^{2}) = 2 \operatorname{Re}(z)$

6. Assume that for the complex number z, $Im(z) \neq 0$ and $Im\left(z + \frac{1}{z}\right) = 0$. Find |z|.

7. For which values of n ($n \in \mathbb{N}$) is the complex number $(\sqrt{3} - i)^n$ real?

- 8. How many complex roots can a seventh-order real-coefficient polynomial have?
- 9. One vertex of a regular hexagon is 2 + i, its center is 3 + 2i. Find the other vertices.
- 10.* Prove that the sum of the vectors pointing from the center of a regular *n*-sided polygon to its vertices is the zero vector.
- 11.* Without solving the following equations, decide how many solutions they have on the set of complex numbers. Give a reason for your answer.

a)
$$\frac{1+i}{(z+i)^3} = (\overline{z}-i)^3$$
 b) $(\overline{z}+1)^7 = \frac{1}{(\overline{z})^7} - 1$

12.* It is an interesting fact that a product of two sums of squares is itself a sum of squares. For example,

$$(1^2 + 2^2) \cdot (3^2 + 4^2) = 125 = 5^2 + 10^2 = 2^2 + 11^2$$

Show that for any two pairs of integers $\{a, b\}$ and $\{c, d\}$, we can find integers u, v with

$$(a^2 + b^2)(c^2 + d^2) = u^2 + v^2$$