Power series, interval of convergence

Exercise 1: Find the interval of convergence of the following power series:
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and the base point is o = 1. Applying the root test:
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We investigate the convergence at the endpoints:
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The interval of convergence is: (—1, 3].
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Exercise 2: Find the radius of convergence of the following power series:
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and the base point is xg = —7. Applying the ratio test:
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Exercise 3: Find the radius of convergence of the following power series:
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The coefficients are a,, = W and the base point is g = 0. Applying the root test:
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Here we used that 1 < /n+6 < /7 {/n and thus {/n+6 — 1 by the Sandwich Theorem.
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Exercise 4: Find the radius of convergence of the following power series:
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Exercise 5: Find the interval of convergence of the following power series:
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The coefficients are a,, = % and the base point is xg = 0. Applying the ratio test:
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Exercise 6: Find the interval of convergence of the following power series:
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The interval of convergence is: {—2, —2} .
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Exercise 7: Find the radius of convergence of the following power series:
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2nd solution:

By the substitution y = 3 the series can be written in the form
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The coeflicients are b, = 2% and the base point is yo = 0. Applying the root test:
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The radius of convergence of the original series can be determined in the following way:
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Exercise 8: Find the interval of convergence of the following power series:
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By the substitution y := (z — 2)? the series can be written in the form: Z 9—; y"
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The coefficients are a,, = on and the base point is yg = 0. Applying the ratio test:
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The radius of convergence of the original series can be determined in the following way:
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The endpoints:
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This series is divergent by the nth term test, so the interval od convergence is (—1,5).

Remark: The endpoints can be investigated in both the original and the new series.

Practice exercises

Exercise 9: Find the interval of convergence of the following power series:
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Exercise 10: Find the interval of convergence of the following power series:
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Exercise 11: Find the interval of convergence of the following power series:
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Exercise 12: Find the interval of convergence of the following power series:
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Exercise 13: Find the interval of convergence of the following power series:
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