
Calculus 1

Number sequences, part 2.

Binomial theorem

Binomial coefficients: 
n
k

=
n !

k ! (n - k) !
 where k ! = 1 ·2 · ... ·k  and  0 ! = 1.

Meaning: the number of subsets with k elements of a set with n elements.

Binomial theorem: (a + b)n = (a + b) (a + b) ... (a + b) =

k=0

n n
k

ak bn-k.

Orders of magnitudes

Definition: Suppose that an
n∞

∞ and bn
n∞

∞. Then the order of magnitude of (an) is smaller than 

    the order of magnitude of (bn) if 
an

bn

n∞
0. 

Notation: an << bn.

Theorem: nn >> n! >> an >> nk >> n
1

k >> log n, wherea > 1 and k ∈+. That is,

a) lim
n∞

nn

n !
=∞          b) lim

n∞

n !

an
=∞, where a > 1 c) lim

n∞

an

n
=∞, where a > 1      

d) lim
n∞

an

nk
=∞, wherea > 1 and k ∈+                            e) lim

n∞

n

log2 n
=∞

Some proofs. a) 
nn

n !
=
n

1
·
n

2
·
n

3
· ... ·

n

n - 2
·
n

n - 1
·
n

n
≥ n ·1 ·1 · ... ·1 ·1 ·1 = n⟶∞   ⟹   

nn

n !
⟶∞

b) For example, if a = 2, then   
n !

2n
=
n

2
·
n - 1

2
·
n - 2

2
· ... ·

3

2
·

2

2
·

1

2
≥
n

2
·1 ·1 · ... ·1 ·1 ·

1

2
=
n

4
⟶∞   ⟹   

n !

2n
⟶∞

     In general, if a > 1, then  
n !

an
=
n

a
·
n - 1

a
· ... ·

[a] + 1

a
·
[a]

a
· ... ·

1

a
≥
n

a
·1 · ... ·1 ·c =

c

a
·n⟶∞   ⟹   

n !

an
⟶∞, 

     where c =
[a]

a
· ... ·

1

a
.     

c) We will prove that lim
n∞

an

n
=∞, where a = 1 + δ and δ > 0. By the binomial theorem, 

     (1 + δ)n =

k=0

n n
k

δk =
n
0

δ0 +
n
1

δ1 +
n
2

δ2 + ... +
n
n

δn ≥
n
2

δ2, so

    
(1 + δ)n

n
≥

n
2

δ2

n
=
n(n - 1)

2 n
δ2 =

n - 1

2
δ2⟶∞   ⟹    

an

n
⟶∞, where a > 1.

    



d) We will prove that lim
n∞

an

nk
=∞, wherea > 1 and k ∈+. This is a consequence of case c), 

      since if a > 1 then a
k

> 1 and 
an

nk
=

 a
k


n

n

k

.

e) Let an =
n

log2 n
. It can be shown that (an) is monotonic increasing (we can prove this later) 

     and a2k =
2k

log2 2k
=

2k

k
⟶∞. From these two properties it follows that an⟶∞.

     

Example: 
n2 - 3n

n ! + n4
=

3n

n !
·

n2

32 - 1

1 +
n4

n!

n∞
0 ·

0 - 1

1 + 0
= 0.

Theorem. lim
n∞

nk an = 0, if a < 1 and k ∈+.

1st proof. It is a consequence of the following statements:

a) If an
n∞

∞ then 
1

an

n∞
0.

b) If a > 1 and k ∈+ then 
an

nk
n∞

∞.

c) If an
n∞

0   then   an
n∞

0.

2nd proof. It is a consequence of the following statements:

(i) lim
n∞

n
n

= 1  (see the proof later)

(ii) If 0 < lim
n∞

an
n

= L < 1 then an
n∞

0.

Proof of (ii): If L ≤ q < 1 then there exists N ∈ such that for all n > N,  an
n

< q.

Then 0 < an < qn⟶0 so by the Sandwich Theorem an
n∞

0.

Using this, if a < 1 then nk ann =  n
n


k
· a ⟶1k · a < 1  ⟹  nk an⟶0.

Example:  lim
n∞

n2 + 9n+1

2 n5 + 32 n-1
= ?

Solution:  
n2 + 9n+1

2 n5 + 32 n-1
=

9n

9n
·

n2
1

9

n

+ 9

2 n5
1

9

n

+
1

3

n∞ 0 + 9

0 +
1

3

= 27. 

                       We used that  lim
n∞

nk an = 0, if a < 1. Here a =
1

9
.
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Subsequences

Definition. Suppose that (nk) : ⟶ is a strictly monotonically increasing sequence of 
    natural numbers. Then we call the sequence (ank) a subsequence of (an). 

Examples: 1) The prime numbers are a subsequence of the positive integers.

   2) bn =
1

1 + n2
 is a subsequence of an =

1

1 + n
  (bn = an2).

   3) cn =
1

n !
 is a subsequence of an =

1

n
   (cn = an!).

Remark. A subsequence can be obtained from a given sequence by deleting some or no elements 
         without changing the order of the remaining elements.
         For example, 2, 4, 6, 8, ... is a subsequence of   1, 2, 3, 4, 5, 6, 7, 8, ...,
         but 4, 2, 8, 6, ... is not a subsequence of it.

Remark. If (nk) is a strictly monotonically increasing sequence of natural numbers, then nk ⟶
k∞

∞  
         since  nk ≥ n1 + k - 1.
         

Theorem. lim
n∞

an = A if and only for all (ank) subsequences lim
k∞

ank = A.

Proof. 1) Assume that all (ank) subsequences tend to the same limit A.
Since (an+1) is also a subsequence of (an), then lim

n∞
an+1 = A,

so for all ε > 0 there exists N ∈ such that if n > N then an+1 - A < ε. 
Then obviously an - A < ε  if  n > N + 1,  so lim

n∞
an = A also holds.

    2) Assume that lim
n∞

an = A and let (ank) be a subsequence of (an).

         Then for all ε > 0 there exists N ∈, such that if n > N, then an - A < ε.

         Since  nk ⟶
k∞

∞,  then for the number N ∈ above, there exists S ∈ such that 

         if k > S, then nk > N, so ank - A < ε, therefore ank ⟶
k∞

A.         
         

The Sandwich Theorem and two applications

Theorem (Sandwich Theorem). If an
n∞

A ∈ , cn
n∞

A ∈  and an ≤ bn ≤ cn for all n > N, then 
bn

n∞
A ∈ 

Proof. Let ε > 0 be fixed. Then
    there exists N1 ∈ such that if n > N1 then A - ε < an < A + ε and
    there exists N2 ∈ such that if n > N2 then A - ε < cn < A + ε.
    So if n > max {N, N1, N2} then
    A - ε < an ≤ bn ≤ cn < A + ε    ⟹    bn - A < ε.   
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Theorem. lim
n∞

n
n

= 1.

1st proof. Apply the AM-GM inequality for a1 =. ..an-2 = 1, an-1 = an = n . Then 

 1 ≤ n
n

= 1 · ... ·1 · n · nn
≤
(n - 2) + 2 n

n
≤ 1+

2

n
⟶1 + 0 - 0 = 1,

 so by the Sandwich Theorem, n
n

⟶1.
 

2nd proof. Since n
n

≥ 1 then we can write n
n

= 1 + δn, where δn ≥ 0. Then by the binomial theorem, 
   n can be estimated from below:

   n = (1 + δn)
n = 1 + nδn +

n
2

δn
2 + ... +

n
n

δn
2 ≥

n
2

δn
2 =

n(n - 1)

2
δn

2,  from where

   0 ≤ δn ≤
2

n - 1
⟶0, so by the Sandwich Theorem, δn⟶0 and thus n

n
⟶1.

Theorem. If p > 0  then  lim
n∞

pn = 1.

1st proof. Assume that p ≥ 1 and apply the AM-GM inequality for a1 =. ..an-2 = 1, an-1 = an = p . Then 

 1 ≤ pn = 1 · ... ·1 · p · pn ≤
(n - 2) + 2 p

n
≤ 1+

2 p

n
⟶1 + 0 = 1,

 so by the Sandwich Theorem, pn ⟶1.

 If 0 < p < 1, then 
1

p
> 1, so pn =

1

1
p

n

⟶1.

 

2nd proof. If p ≥ 1 then pn ≥ 1, so we can write pn = 1 + δn, where δn ≥ 0. Then by the 

  binomial theorem, n can be estimated from below:

  p = (1 + δn)
n = 1 + nδn +

n
2

δn
2 + ... +

n
n

δn
2 ≥ nδn,

  from where  0 ≤ δn ≤
p

n
⟶0, so by the Sandwich Theorem, δn⟶0 and thus pn ⟶1.

  The case 0 < p < 1 is the same as before.
  

3rd proof. If p ≥ 1 then pn ≥ 1, so we can write pn = 1 + δn, where δn ≥ 0. We show that δn⟶0. 

  By the Bernoulli inequality   p = (1 + δn)
n ≥ 1 + nδn   ⟹   

p - 1

n
≥ δn > 0.

  Since 
p - 1

n
⟶0 then by the Sandwich Theorem δn⟶0, so pn ⟶1.

  The case 0 < p < 1 is the same as before.
  

4     calculus1-05.nb



Examples

Exercise 1. Calculate the limit of an = n
3 n

.

1st solution: an = n
3 n

=
3 n

3
3 n =

3 n
3 n

3
3 n

⟶
1

1
= 1. Here we use that 3 n

3 n
⟶1, since it is a 

       subsequence of n
n

, and similarly 3
3 n

⟶1, since it is a subsequence of 3
n

.
       

2nd solution: an = n
3 n

= n
n3

⟶ 1
3

= 1.

3rd solution:  Since  1 ≤ an = n
3 n

≤ 3 n
3 n

 for all n ∈ and 3 n
3 n

⟶1 then by the 
          Sandwich Theorem, an⟶1.
          

Exercise 2. Calculate the limit of  an =
2 n5 + 5 n

8 n2 - 2
n .

Solution. Estimating an from above and from below:

an =
2 n5 +5 n

8 n2 -2
n ≤

2 n5 +5 n5

8 n2 -2 n2
n =

7 n5

6 n2
n =

7

6
n · n

n


3
⟶1 ·13 = 1,

an =
2 n5 +5 n

8 n2 -2
n ≥

2 n5 +0

8 n2 +0
n =

2 n5

8 n2
n =

2

8
n · n

n


3
⟶1 ·13 = 1,

so by the Sandwich Theorem, an⟶1.

Exercise 2. Calculate the limit of  an =
3n + 5n

2n + 4n
n .

Solution. Estimating an from above and from below:

an =
3n + 5n

2n + 4n
n ≤

5n + 5n

0 + 4n
n = 2

n
·

5

4
⟶1 ·

5

4
=

5

4
,

an =
3n + 5n

2n + 4n
n ≥

0 + 5n

4n + 4n
n =

1

2
n ·

5

4
⟶1 ·

5

4
=

5

4
,

so by the Sandwich Theorem, an⟶
5

4
.

Monotonic sequences

Theorem. If (an) is monotonically increasing and not bounded above, then an
n∞

∞.

Proof. Let P > 0 be fixed. Since it is not an upper bound, there exists an N ∈ such that aN > P. 
    By the monotonicity, if n > N then an ≥ aN > P.
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Consequence. If (an) is monotonically decreasing and not bounded below, then an
n∞

-∞.

Theorem. (1) If (an) is monotonically increasing and bounded above, then (an) is convergent and 
         lim

n∞
an = sup {an : n ∈}.

  (2) If (an) is monotonically decreasing and bounded below, then (an) is convergent and 
         lim

n∞
an = inf {an : n ∈}.

Consequence. If (an) is monotonic and bounded then (an) is convergent.

Proof of part (1). 
1. Let A = sup {ak : k ∈}, then an ≤ A for all n ∈.
2. Assume indirectly that lim

n∞
an ≠ A. Then there exists ε > 0, such that for all N ∈ 

     there exists n > N, such that an ≤ A - ε. 
3. By the monotonicity aN ≤ an, so  aN ≤ A - ε  for all N ∈. 
4. However, this is a contradiction, since A is the smallest upper bound of the sequence,
    so A - ε is not an upper bound.

              Therefore for all ε > 0 there exists N ∈ such that if n > N then A - ε < an ≤ A < A + ε, so lim
n∞

an = A.

Recursive sequences

In many cases, the convergence of recursively given sequences can be investigated by the application 
of the previous theorem.

Exercise 1. Let 0 < a < 1 and bn = an. Prove that the sequence (bn) is convergent and find its limit.

Solution. Since 0 < bn+1 = an+1 < an = bn < 1 then (bn) is bounded and monotonically decreasing. 
So it is convergent, let A = lim

n∞
bn. Then

A = lim
n∞

bn+1 = lim
n∞

a ·bn = a ·A  ⟺  A(1 - a) = 0, so A = 0.

Exercise 2. Let a1 = 4 and an+1 = 8 -
15

an
. Prove that the sequence (an) is convergent and find its limit.

Solution. The first few terms of the sequence:
 a1 = 4, a2 = 4.25, a3 = 4.47059, a4 = 4.64474, a5 = 4.77054, ...

1) First we calculate the possible limits of (an). If (an) is convergent then 

     A = lim
n∞

an = lim
n∞

an+1 = 8 -
15

A
   ⟹    A2 - 8 A + 15 = (A - 3) (A - 5) = 0, therefore A = 3 or A = 5.

2) Next, we investigate the boundedness and monotonicity of (an). If we prove that (an) is bounded 
     and monotonically increasing or decreasing, then (an) is convergent and its limit is the supremum 
     or the infimum of the sequence.
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(i) First we prove boundedness by induction, that is, we prove that 3 < an < 5 for all n ∈+.
I. The statement is true for n = 1:  3 < a1 = 4 < 5.
II. Assume that 3 < an < 5. Then 

    3 < an < 5 ⟹
1

5
<

1

an
<

1

3
⟹ 3 <

15

an
< 5 ⟹ -3 > -

15

an
> -5  ⟹  3 < 8 -

15

an
= an+1 < 5.

    
(ii) Next we prove by induction that (an) is monotonically increasing, that is, an < an+1 for all n ∈+.

I. The statement is true for n = 1:  a1 = 4 < a2 =
17

4
= 4.25

II. Assume that an < an+1. Then  

    an < an+1 ⟹  
1

an
>

1

an+1
  (since an > 3 > 0)  ⟹  -

15

an
< -

15

an+1
 ⟹  an+1 = 8 -

15

an
< 8 -

15

an+1
= an+2.

Since (an) is monotonic increasing and bounded then (an) is convergent. The limit of (an) cannot be 
A = 3, since a1 = 4 and the sequence is monotonic increasing. Therefore lim

n∞
an = 5.

The sequence an = 1+
1

n

n

Theorem. The sequence an = 1 +
1

n

n

 is monotonically increasing and bounded, so it is convergent.

1st proof. a) Monotonicity. We use the inequality between the arithmetic and geometric means: 

       if a1, a2, ..., ak ≥ 0 then a1 a2 ...ak
k

≤
a1 + a2 + ... + ak

k
.

       Let a1 = ... = an = 1 +
1

n
 and an+1 = 1. Then   1 +

1

n

n

·1n+1 ≤
n1 +

1
n
 + 1

n + 1
= 1 +

1

n + 1
,

       so an = 1 +
1

n

n

≤ 1 +
1

n + 1

n+1

= an+1 for all n ∈.

       

 b) Boundedness. We use the inequality between the arithmetic and geometric means 

           for the numbers a1 = ... = an = 1 +
1

n
 and an+1 = an+2 =

1

2
. Then

                 1 +
1

n

n

·
1

4
n+2 ≤

n1 +
1
n
 + 2 · 1

2

n + 2
= 1,   so an = 1 +

1

n

n

≤ 4  for all n ∈.

2nd proof with the binomial theorem

a) Boundedness.   an = 1 +
1

n

n
=

k=0

n n
k

1

n

k
= 1 + 1 +

k=2

n n(n - 1) ... (n - (k - 1))

k !
·

1

nk
=

 = 1 + 1 +

k=2

n 1

k !
·
n

n
·
n - 1

n
· ... ·

n - (k - 1)

n
< 1 + 1 +

k=2

n 1

k !
·1 · ... ·1 =

k=0

n 1

k !
:= sn.

The sequence (sn) is bounded above since the terms can be estimated from above by the terms 

of a geometric sequence with ratio 
1

2
:

sn = 1 + 1 +
1

1 ·2
+

1

1 ·2 ·3
+

1

1 ·2 ·3 ·4
+ ... +

1

1 ·2 · ... ·n
< 1+ 1+

1

2
+

1

22
+

1

23
+ ... +

1

2n-1
≤
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    ≤ 1 +
1 - 

1
2

n

1 -
1
2

= 3-
1

2

n-1
< 3.   So an = 1 +

1

n

n
< sn =

k=0

n 1

k !
< 3.

b) Monotonicity. 

      an+1 = 1 +
1

n + 1

n+1
=

k=0

n+1 n + 1
k

1

n + 1

k
= 2 +

k=2

n+1 1

k !
·
n + 1

n + 1
·
n

n + 1
·
n - 1

n + 1
· ... ·

(n + 1) - (k - 1)

n + 1
=

              = 2 +

k=2

n+1 1

k !
1 -

1

n + 1
1 -

2

n + 1
... 1 -

k - 1

n + 1
=

              = 2 +

k=2

n 1

k !
1 -

1

n + 1
... 1 -

k - 1

n + 1
+
n + 1
n + 1

1

(n + 1)n+1
>

              > 2 +

k=2

n 1

k !
1 -

1

n
... 1 -

k - 1

n
+ 0 = an.  So an < an+1.

              

Definition: The number e is defined as the limit of the above sequence: 

    e := lim
n∞

1 +
1

n

n

.

Remark: From the 2nd proof it follows that 2 < e < 3.

Some terms of the sequence are: a1 = 2, a2 = 2.25, a3 ≈ 2.37, a4 ≈ 2.44, a5 ≈ 2.488
a10 ≈ 2.59, a20 ≈ 2.65, a100 ≈ 2.70481, a200 ≈ 2.71152
a1000 ≈ 2.71692, a10 000 ≈ 2.71815

Theorems.    1) The number e ≈ 2.718281828459045235360287 ... is irrational.

       2) lim
n∞

1 +
x

n

n
= ex  for all  x ∈ 

       3) If xn
n∞

∞, then lim
n∞

1 +
1

xn

xn
= e.

       4) e = lim
n∞

1 +
1

1 !
+

1

2 !
+

1

3 !
+ ... +

1

n !
= lim
n∞



k=0

n 1

k !
=

k=0

∞ 1

k !
       

Remark. The convergence of the series 
n=0

∞ 1

n !
 is very fast, for example



n=0

6 1

n !
= 1 + 1 +

1

2 !
+

1

3 !
+

1

4 !
+

1

5 !
+

1

6 !
≈ 2.718 ... (3 digits are accurate)



n=0

10 1

n !
≈ 2.7182818 ...  (7 digits are accurate)



n=0

15 1

n !
≈ 2.71828182845 ...   (11 digits are accurate)



n=0

20 1

n !
≈ 2.7182818284590452353 ...  (19 digits are accurate)
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Exercises

The sequence an = 1+
1

n

n

1. an = 1 +
1

n3 + n + 6

n3+n+6
⟶ e, since it is a subsequence of 1 +

1

n

n

.

2. an = 1 +
1

n - 6

n
= 1 +

1

n - 6

n-6
· 1 +

1

n - 6

6
⟶ e ·16 = e

3. an = 1 +
1

6 n + 1

6 n-7
= 1 +

1

6 n + 1

6 n+1
·

1

1 +
1

6 n + 1

8
⟶ e ·

1

18
= e

4. an =
n + 3

n + 4

n-2
=

n + 4 - 1

n + 4

n+4-6
= 1 +

-1

n + 4

n+4

·
1

n + 4

n + 3

6
⟶ e-1 ·

1

16
=

1

e

       Here we used that 
n + 4

n + 3
=

1 +
4
n

1 +
3
n

⟶
1 + 0

1 + 0
= 1.

Another solution: an =
n + 3

n + 4

n-2
=

1 +
3

n

n

1 +
4

n

n ·
n + 4

n + 3

2
⟶

e3

e4
·12 =

1

e

5. an =
n2 - 2

n2 + 3

n2

=

1 +
-2

n2

n2

1 +
3

n2

n2 ⟶
e-2

e3
= e-5

6. an =
n + 1

n + 6

2 n
=

1 +
1

n

n

1 +
6

n

n

2

⟶
e1

e6

2

= e-5
2
= e-10

7. an =
2 n + 2

2 n + 9

2 n
=

1 +
2

2 n

2 n

1 +
9

2 n

2 n ⟶
e2

e9
= e-7

8. Calculate the limit of an =
2 n2 + 5

2 n2 + 3

4 n2
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1st solution.  an =
1 +

5

2 n2

2 n2

1 +
3

2 n2

2 n2

2

⟶
e5

e3

2

= e4

2nd solution.  an =
1 +

5 ·2

4 n2

4 n2

1 +
3 ·2

4 n2

4 n2 ⟶
e10

e6
= e4

9. Calculate the limit of the following sequences:

an =
3 n2 + 1

3 n2 - 2

3 n2

, bn =
3 n2 + 1

3 n2 - 2

9 n2

cn =
3 n2 + 1

3 n2 - 2

3 n3

, dn =
3 n2 + 1

3 n2 - 2

3 n

Solution. an =
3 n2 + 1

3 n2 - 2

3 n2

=

1 +
1

3 n2

3 n2

1 +
-2

3 n2

3 n2
⟶

e

e-2
= e3 = A

bn =
3 n2 + 1

3 n2 - 2

9 n2

= (an)3  ⟹  bn⟶A3 = e9

cn =
3 n2 + 1

3 n2 - 2

3 n3

= (an)n 

In the estimation below we use that 2 < e < 3, so e3 > 23 = 8.
Since an⟶e3 then ∃ N1 such that if n > N1  then cn = (an)n > 8n⟶∞   ⟹  cn⟶∞

dn =
3 n2 + 1

3 n2 - 2

3 n

= an
n

Since an⟶e3 then for ε = 0.1  ∃ N2 such that if n > N2  then e3 - 0.1
n

≤ dn ≤ e3 + 0.1
n

.

Since e3 - 0.1
n

⟶1 and e3 + 0.1
n

⟶1 then by the Sandwich Theorem dn⟶1.

Recursive sequences

1. Let a1 =
4

3
 and an+1 =

3 + an
2

4
, n = 1, 2, ... . 

     Prove that the sequence (an) is convergent and find its limit.

Solution. a1 ≈ 1.33 > a2 =

3 +
4

3

2

4
≈ 1.194 > a3 ≈ 1.1067

Conjecture: (an) is monotonically decreasing, so an > an+1 > 0.
Proof: by induction.
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I. a1 > a2 > a3 > 0 is satisfied.
II. Assume that an-1 > an. From the definition of the sequence it is obvious that an > 0

     an =
3 + an-1

2

4
≥

3

4
> 0 . Then

     an-1 > an > 0  ⟹  an-1
2 > an

2  ⟹  3 + an-1
2 > 3 + an

2  ⟹  an =
3 + an-1

2

4
>

3 + an
2

4
= an+1

     ⟹  an > an+1.

Since (an) is monotonic decreasing and bounded below (since an > 0) then (an) is 

convergent, therefore   A = lim
n∞

an = lim
n∞

3 + an
2

4

⟹  A =
3 + A2

4
  ⟹  A2 - 4 A + 3 = (A - 1) (A - 3) = 0  ⟹  A = 1  or  A = 3.

Since an < a1 =
4

3
  then A = 3 cannot be the case, so A = lim

n∞
an = 1.

2. Let a1 = 1 and an+1 = 6 + an , n = 1, 2, ... . 

     Is the sequence convergent? If so, what is the limit?

Solution. The first few terms of the sequence:  a1 = 1, a2 ≈ 2.646, a3 ≈ 2.94, ...

Since 6 + an ≥ 0 then the terms of the sequence are positive.

1) First we calculate the possible limits of (an). If (an) is convergent then 

     A = lim
n∞

an = lim
n∞

an+1 = lim
n∞

6 + an = 6 + A    ⟹    A2 - A - 6 = (A - 3) (A + 2) = 0, from where

     A = 3 or A = -2. Since an = 6 + an-1 > 0 then A = -2 cannot be the case, so the only 

     possible limit is  A = 3.

2) Next, we investigate the boundedness and monotonicity of (an).
     
(i) First we prove by induction that (an) is monotonically increasing and the terms are positive,
     that is, 0 < an < an+1 for all n ∈+.

I. The statement is true for n = 1:  0 < a1 = 1 < a2 = 7 ≈ 2.646
II. Assume that 0 < an < an+1. Then  

    0 < an < an+1  ⟹  0 < 0 + 6 < 6 + an < 6 + an+1  ⟹  0 < 6 + an < 6 + an+1   ⟹  0 < an+1 < an+2.

    
(ii) Next we prove that the sequence is bounded above.  A = 3 is a suitable choice for the 
       upper bound, that is, we show that  an < 3 for all n ∈+.
           I. The statement is true for n = 1:  a1 = 1 < 3

 II. Assume that an < 3. Then  an+1 = 6 + an < 6 + 3 = 3.

Since (an) is monotonic increasing and bounded above then (an) is convergent, so lim
n∞

an = 3.

We have seen that this is the only possible limit.
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Remark. Monotonicity can also be proved as follows.

0 < an < an+1 = 6 + an   ⟺  an
2 < 6 + an  ⟺  an

2 - an - 6 < 0  ⟺  -2 < an < 3.

Here -2 < an trivially holds, since an > 0, and an < 3 can be proved by induction.

3. Let a1 = -3 and an+1 =
5 - 6an

2

13
, n = 1, 2, ... . Is the sequence convergent?

Solution.  a1 = -3, a2 ≈ -3.769, a3 ≈ -6.1725, ...
Is the sequence monotonic decreasing?

an+1 =
5 - 6an

2

13
< an  ⟺  6an

2 + 13an - 5 > 0 6 x2 + 13 x - 5 = 0 ⟺ x1 = -
5

2
, x2 =

1

3

It means that the sequence is monotonic decreasing if and only if  an < -
5

2
  or  an >

1

3
.

Homework: It can be proved by induction that an ≤ -3 < -
5

2
.

Therefore the sequence is monotonic decreasing with initial value a1 = -3.

If the sequence were bounded from below then it would be convergent and for the limit 

we would have   A =
5 - 6 A2

13
  ⟹  the possible values of A could be  A = -

5

2
or A =

1

3
.

Since an ≤ -3 for all n then these numbers cannot be the limit, so (an) is not convergent
and therefore not bounded from below. Since (an) is monotonic decreasing then 
lim
n∞

an = -∞.
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