Calculus 1

Number sequences, part 2.

Binomial theorem

Binomial coefficients: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ where $k!=1 \cdot 2 \cdot \ldots \cdot k$ and $0!=1$.
Meaning: the number of subsets with k elements of a set with n elements.

Binomial theorem: $(a+b)^{n}=(a+b)(a+b) \ldots(a+b)=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.

Orders of magnitudes

Definition: Suppose that $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ and $b_{n} \xrightarrow{n \rightarrow \infty} \infty$. Then the order of magnitude of $\left(a_{n}\right)$ is smaller than the order of magnitude of $\left(b_{n}\right)$ if $\frac{a_{n}}{b_{n}} \xrightarrow{n \rightarrow \infty} 0$.
Notation: $a_{n} \ll b_{n}$.

Theorem: $n^{n} \gg n!\gg a^{n} \gg n^{k} \gg n^{\frac{1}{k}} \gg \log n, \quad$ where $a>1$ and $k \in \mathbb{N}^{+}$. That is,
a) $\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty$
b) $\lim _{n \rightarrow \infty} \frac{n!}{a^{n}}=\infty$, where $a>1$
c) $\lim _{n \rightarrow \infty} \frac{a^{n}}{n}=\infty$, where $a>1$
d) $\lim _{n \rightarrow \infty} \frac{a^{n}}{n^{k}}=\infty$, where $a>1$ and $k \in \mathbb{N}^{+}$
e) $\lim _{n \rightarrow \infty} \frac{n}{\log _{2} n}=\infty$

Some proofs. a) $\frac{n^{n}}{n!}=\frac{n}{1} \cdot \frac{n}{2} \cdot \frac{n}{3} \cdot \ldots \cdot \frac{n}{n-2} \cdot \frac{n}{n-1} \cdot \frac{n}{n} \geq n \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \cdot 1 \cdot 1=n \rightarrow \infty \Rightarrow \frac{n^{n}}{n!} \rightarrow \infty$
b) For example, if $a=2$, then $\frac{n!}{2^{n}}=\frac{n}{2} \cdot \frac{n-1}{2} \cdot \frac{n-2}{2} \cdot \ldots \cdot \frac{3}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \geq \frac{n}{2} \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \cdot 1 \cdot \frac{1}{2}=\frac{n}{4} \longrightarrow \infty \Longrightarrow \frac{n!}{2^{n}} \longrightarrow \infty$ In general, if $a>1$, then $\frac{n!}{a^{n}}=\frac{n}{a} \cdot \frac{n-1}{a} \cdot \ldots \cdot \frac{[a]+1}{a} \cdot \frac{[a]}{a} \cdot \ldots \cdot \frac{1}{a} \geq \frac{n}{a} \cdot 1 \cdot \ldots \cdot 1 \cdot c=\frac{c}{a} \cdot n \rightarrow \infty \Rightarrow \frac{n!}{a^{n}} \longrightarrow \infty$, where $c=\frac{[a]}{a} \cdot \ldots \cdot \frac{1}{a}$.
c) We will prove that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n}=\infty$, where $a=1+\delta$ and $\delta>0$. By the binomial theorem,

$$
\begin{aligned}
& (1+\delta)^{n}=\sum_{k=0}^{n}\binom{n}{k} \delta^{k}=\binom{n}{0} \delta^{0}+\binom{n}{1} \delta^{1}+\binom{n}{2} \delta^{2}+\ldots+\binom{n}{n} \delta^{n} \geq\binom{ n}{2} \delta^{2}, \text { so } \\
& \frac{(1+\delta)^{n}}{n} \geq \frac{\binom{n}{2} \delta^{2}}{n}=\frac{n(n-1)}{2 n} \delta^{2}=\frac{n-1}{2} \delta^{2} \rightarrow \infty \Longrightarrow \frac{a^{n}}{n} \longrightarrow \infty, \text { where } a>1 .
\end{aligned}
$$

d) We will prove that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n^{k}}=\infty$, where $a>1$ and $k \in \mathbb{N}^{+}$. This is a consequence of case c), since if $a>1$ then $\sqrt[k]{a}>1$ and $\frac{a^{n}}{n^{k}}=\left(\frac{(\sqrt[k]{a})^{n}}{n}\right)^{k}$.
e) Let $a_{n}=\frac{n}{\log _{2} n}$. It can be shown that $\left(a_{n}\right)$ is monotonic increasing (we can prove this later) and $a_{2^{k}}=\frac{2^{k}}{\log _{2} 2^{k}}=\frac{2^{k}}{k} \rightarrow \infty$. From these two properties it follows that $a_{n} \rightarrow \infty$.

$$
\text { Example: } \frac{n^{2}-3^{n}}{n!+n^{4}}=\frac{3^{n}}{n!} \cdot \frac{n^{2}}{3^{2}-1} 1+\frac{n^{4}}{n!} \xrightarrow{n \rightarrow \infty} 0 \cdot \frac{0-1}{1+0}=0 .
$$

Theorem. $\lim _{n \rightarrow \infty} n^{k} a^{n}=0$, if $|a|<1$ and $k \in \mathbb{N}^{+}$.
1st proof. It is a consequence of the following statements:
a) If $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} 0$.
b) If $a>1$ and $k \in \mathbb{N}^{+}$then $\frac{a^{n}}{n^{k}} \xrightarrow{n \rightarrow \infty}$.
c) If $\left|a_{n}\right| \xrightarrow{n \rightarrow \infty} 0$ then $a_{n} \xrightarrow{n \rightarrow \infty} 0$.

2nd proof. It is a consequence of the following statements:
(i) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$ (see the proof later)
(ii) If $0<\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$ then $a_{n} \xrightarrow{n \rightarrow \infty} 0$.

Proof of (ii): If $L \leq q<1$ then there exists $N \in \mathbb{N}$ such that for all $n>N, \sqrt[n]{\left|a_{n}\right|}<q$.

$$
\text { Then } 0<\left|a_{n}\right|<q^{n} \rightarrow 0 \text { so by the Sandwich Theorem } a_{n} \xrightarrow{n \rightarrow \infty} 0 .
$$

Using this, if $|a|<1$ then $\sqrt[n]{\left|n^{k} a^{n}\right|}=(\sqrt[n]{n})^{k} \cdot|a| \rightarrow 1^{k} .|a|<1 \Rightarrow n^{k} a^{n} \rightarrow 0$.

Example: $\lim _{n \rightarrow \infty} \frac{n^{2}+9^{n+1}}{2 n^{5}+3^{2 n-1}}=$?
Solution: $\frac{n^{2}+9^{n+1}}{2 n^{5}+3^{2 n-1}}=\frac{9^{n}}{9^{n}} \cdot \frac{n^{2}\left(\frac{1}{9}\right)^{n}+9}{2 n^{5}\left(\frac{1}{9}\right)^{n}+\frac{1}{3}} \xrightarrow{n \rightarrow \infty} \frac{0+9}{0+\frac{1}{3}}=27$.
We used that $\lim _{n \rightarrow \infty} n^{k} a^{n}=0$, if $|a|<1$. Here $a=\frac{1}{9}$.

Subsequences

Definition. Suppose that $\left(n_{k}\right): \mathbb{N} \longrightarrow \mathbb{N}$ is a strictly monotonically increasing sequence of natural numbers. Then we call the sequence $\left(a_{n_{k}}\right)$ a subsequence of $\left(a_{n}\right)$.

Examples: 1) The prime numbers are a subsequence of the positive integers.
2) $b_{n}=\frac{1}{1+n^{2}}$ is a subsequence of $a_{n}=\frac{1}{1+n} \quad\left(b_{n}=a_{n^{2}}\right)$.
3) $c_{n}=\frac{1}{n!}$ is a subsequence of $a_{n}=\frac{1}{n} \quad\left(c_{n}=a_{n!}\right)$.

Remark. A subsequence can be obtained from a given sequence by deleting some or no elements without changing the order of the remaining elements.
For example, $2,4,6,8, \ldots$ is a subsequence of $1,2,3,4,5,6,7,8, \ldots$, but $4,2,8,6, \ldots$ is not a subsequence of it.

Remark. If $\left(n_{k}\right)$ is a strictly monotonically increasing sequence of natural numbers, then $n_{k} \xrightarrow{k \rightarrow \infty} \infty$ since $n_{k} \geq n_{1}+k-1$.

Theorem. $\lim _{n \rightarrow \infty} a_{n}=A$ if and only for all $\left(a_{n_{k}}\right)$ subsequences $\lim _{k \rightarrow \infty} a_{n_{k}}=A$.

Proof. 1) Assume that all $\left(a_{n_{k}}\right)$ subsequences tend to the same limit A.
Since $\left(a_{n+1}\right)$ is also a subsequence of $\left(a_{n}\right)$, then $\lim _{n \rightarrow \infty} a_{n+1}=A$,
so for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n+1}-A\right|<\varepsilon$.
Then obviously $\left|a_{n}-A\right|<\varepsilon$ if $n>N+1$, so $\lim _{n \rightarrow \infty} a_{n}=A$ also holds.
2) Assume that $\lim _{n \rightarrow \infty} a_{n}=A$ and let $\left(a_{n_{k}}\right)$ be a subsequence of $\left(a_{n}\right)$.

Then for all $\varepsilon>0$ there exists $N \in \mathbb{N}$, such that if $n>N$, then $\left|a_{n}-A\right|<\varepsilon$.
Since $n_{k} \xrightarrow{k \rightarrow \infty} \infty$, then for the number $N \in \mathbb{N}$ above, there exists $S \in \mathbb{N}$ such that
if $k>S$, then $n_{k}>N$, so $\left|a_{n_{k}}-A\right|<\varepsilon$, therefore $a_{n_{k}} \xrightarrow{k \rightarrow \infty} A$.

The Sandwich Theorem and two applications

Theorem (Sandwich Theorem). If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}, c_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $a_{n} \leq b_{n} \leq c_{n}$ for all $n>N$, then $b_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$

Proof. Let $\varepsilon>0$ be fixed. Then

there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $A-\varepsilon<a_{n}<A+\varepsilon$ and
there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $A-\varepsilon<c_{n}<A+\varepsilon$.
So if $n>\max \left\{N, N_{1}, N_{2}\right\}$ then
$A-\varepsilon<a_{n} \leq b_{n} \leq c_{n}<A+\varepsilon \Longrightarrow\left|b_{n}-A\right|<\varepsilon$.

Theorem. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
1st proof. Apply the AM-GM inequality for $a_{1}=\ldots a_{n-2}=1, a_{n-1}=a_{n}=\sqrt{n}$. Then $1 \leq \sqrt[n]{n}=\sqrt[n]{1 \cdot \ldots \cdot 1 \cdot \sqrt{n} \cdot \sqrt{n}} \leq \frac{(n-2)+2 \sqrt{n}}{n} \leq 1+\frac{2}{\sqrt{n}} \rightarrow 1+0-0=1$, so by the Sandwich Theorem, $\sqrt[n]{n} \longrightarrow 1$.

2nd proof. Since $\sqrt[n]{n} \geq 1$ then we can write $\sqrt[n]{n}=1+\delta_{n}$, where $\delta_{n} \geq 0$. Then by the binomial theorem, n can be estimated from below:
$n=\left(1+\delta_{n}\right)^{n}=1+n \delta_{n}+\binom{n}{2} \delta_{n}^{2}+\ldots+\binom{n}{n} \delta_{n}^{2} \geq\binom{ n}{2} \delta_{n}^{2}=\frac{n(n-1)}{2} \delta_{n}^{2}$, from where $0 \leq \delta_{n} \leq \sqrt{\frac{2}{n-1}} \rightarrow 0$, so by the Sandwich Theorem, $\delta_{n} \rightarrow 0$ and thus $\sqrt[n]{n} \rightarrow 1$.

Theorem. If $p>0$ then $\lim _{n \rightarrow \infty} \sqrt[n]{p}=1$.
1st proof. Assume that $p \geq 1$ and apply the AM-GM inequality for $a_{1}=. . a_{n-2}=1, a_{n-1}=a_{n}=\sqrt{p}$. Then $1 \leq \sqrt[n]{p}=\sqrt[n]{1 \cdot \ldots \cdot 1 \cdot \sqrt{p} \cdot \sqrt{p}} \leq \frac{(n-2)+2 \sqrt{p}}{n} \leq 1+\frac{2 \sqrt{p}}{n} \rightarrow 1+0=1$, so by the Sandwich Theorem, $\sqrt[n]{p} \rightarrow 1$.
If $0<p<1$, then $\frac{1}{p}>1$, so $\sqrt[n]{p}=\frac{1}{\sqrt[n]{\frac{1}{p}}} \rightarrow 1$.

2nd proof. If $p \geq 1$ then $\sqrt[n]{p} \geq 1$, so we can write $\sqrt[n]{p}=1+\delta_{n}$, where $\delta_{n} \geq 0$. Then by the binomial theorem, n can be estimated from below:
$p=\left(1+\delta_{n}\right)^{n}=1+n \delta_{n}+\binom{n}{2} \delta_{n}^{2}+\ldots+\binom{n}{n} \delta_{n}^{2} \geq n \delta_{n}$,
from where $0 \leq \delta_{n} \leq \frac{p}{n} \longrightarrow 0$, so by the Sandwich Theorem, $\delta_{n} \rightarrow 0$ and thus $\sqrt[n]{p} \rightarrow 1$.
The case $0<p<1$ is the same as before.

3rd proof. If $p \geq 1$ then $\sqrt[n]{p} \geq 1$, so we can write $\sqrt[n]{p}=1+\delta_{n}$, where $\delta_{n} \geq 0$. We show that $\delta_{n} \longrightarrow 0$.
By the Bernoulli inequality $p=\left(1+\delta_{n}\right)^{n} \geq 1+n \delta_{n} \Longrightarrow \frac{p-1}{n} \geq \delta_{n}>0$.
Since $\frac{p-1}{n} \longrightarrow 0$ then by the Sandwich Theorem $\delta_{n} \longrightarrow 0$, so $\sqrt[n]{p} \longrightarrow 1$.
The case $0<p<1$ is the same as before.

Examples

Exercise 1. Calculate the limit of $a_{n}=\sqrt[3 n]{n}$.
1st solution: $a_{n}=\sqrt[3 n]{n}=\sqrt[3 n]{\frac{3 n}{3}}=\frac{\sqrt[3 n]{3 n}}{\sqrt[3 n]{3}} \rightarrow \frac{1}{1}=1$. Here we use that $\sqrt[3 n]{3 n} \rightarrow 1$, since it is a subsequence of $\sqrt[n]{n}$, and similarly $\sqrt[3 n]{3} \rightarrow 1$, since it is a subsequence of $\sqrt[n]{3}$.

2nd solution: $a_{n}=\sqrt[3 n]{n}=\sqrt[3]{\sqrt[n]{n}} \rightarrow \sqrt[3]{1}=1$.

3rd solution: Since $1 \leq a_{n}=\sqrt[3 n]{n} \leq \sqrt[3 n]{3 n}$ for all $n \in \mathbb{N}$ and $\sqrt[3 n]{3 n} \longrightarrow 1$ then by the Sandwich Theorem, $a_{n} \longrightarrow 1$.

Exercise 2. Calculate the limit of $a_{n}=\sqrt[n]{\frac{2 n^{5}+5 n}{8 n^{2}-2}}$.
Solution. Estimating a_{n} from above and from below:
$a_{n}=\sqrt[n]{\frac{2 n^{5}+5 n}{8 n^{2}-2}} \leq \sqrt[n]{\frac{2 n^{5}+5 n^{5}}{8 n^{2}-2 n^{2}}}=\sqrt[n]{\frac{7 n^{5}}{6 n^{2}}}=\sqrt[n]{\frac{7}{6}} \cdot(\sqrt[n]{n})^{3} \rightarrow 1 \cdot 1^{3}=1$,
$a_{n}=\sqrt[n]{\frac{2 n^{5}+5 n}{8 n^{2}-2}} \geq \sqrt[n]{\frac{2 n^{5}+0}{8 n^{2}+0}}=\sqrt[n]{\frac{2 n^{5}}{8 n^{2}}}=\sqrt[n]{\frac{2}{8}} \cdot(\sqrt[n]{n})^{3} \rightarrow 1 \cdot 1^{3}=1$,
so by the Sandwich Theorem, $a_{n} \longrightarrow 1$.

Exercise 2. Calculate the limit of $a_{n}=\sqrt[n]{\frac{3^{n}+5^{n}}{2^{n}+4^{n}}}$.
Solution. Estimating a_{n} from above and from below:
$a_{n}=\sqrt[n]{\frac{3^{n}+5^{n}}{2^{n}+4^{n}}} \leq \sqrt[n]{\frac{5^{n}+5^{n}}{0+4^{n}}}=\sqrt[n]{2} \cdot \frac{5}{4} \rightarrow 1 \cdot \frac{5}{4}=\frac{5}{4}$,
$a_{n}=\sqrt[n]{\frac{3^{n}+5^{n}}{2^{n}+4^{n}}} \geq \sqrt[n]{\frac{0+5^{n}}{4^{n}+4^{n}}}=\sqrt[n]{\frac{1}{2}} \cdot \frac{5}{4} \rightarrow 1 \cdot \frac{5}{4}=\frac{5}{4}$,
so by the Sandwich Theorem, $a_{n} \rightarrow \frac{5}{4}$.

Monotonic sequences

Theorem. If $\left(a_{n}\right)$ is monotonically increasing and not bounded above, then $a_{n} \xrightarrow{n \rightarrow \infty} \infty$.
Proof. Let $P>0$ be fixed. Since it is not an upper bound, there exists an $N \in \mathbb{N}$ such that $a_{N}>P$.
By the monotonicity, if $n>N$ then $a_{n} \geq a_{N}>P$.

Consequence. If $\left(a_{n}\right)$ is monotonically decreasing and not bounded below, then $a_{n} \xrightarrow{n \rightarrow \infty}-\infty$.

Theorem. (1) If $\left(a_{n}\right)$ is monotonically increasing and bounded above, then $\left(a_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$.
(2) If $\left(a_{n}\right)$ is monotonically decreasing and bounded below, then $\left(a_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=\inf \left\{a_{n}: n \in \mathbb{N}\right\}$.

Consequence. If $\left(a_{n}\right)$ is monotonic and bounded then $\left(a_{n}\right)$ is convergent.

Proof of part (1).

1. Let $A=\sup \left\{a_{k}: k \in \mathbb{N}\right\}$, then $a_{n} \leq A$ for all $n \in \mathbb{N}$.
2. Assume indirectly that $\lim _{n \rightarrow \infty} a_{n} \neq A$. Then there exists $\varepsilon>0$, such that for all $N \in \mathbb{N}$ there exists $n>N$, such that $a_{n} \leq A-\varepsilon$.
3. By the monotonicity $a_{N} \leq a_{n}$, so $a_{N} \leq A-\varepsilon$ for all $N \in \mathbb{N}$.
4. However, this is a contradiction, since A is the smallest upper bound of the sequence, so $A-\varepsilon$ is not an upper bound.
Therefore for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $A-\varepsilon<a_{n} \leq A<A+\varepsilon$, so $\lim _{n \rightarrow \infty} a_{n}=A$.

Recursive sequences

In many cases, the convergence of recursively given sequences can be investigated by the application of the previous theorem.

Exercise 1. Let $0<a<1$ and $b_{n}=a^{n}$. Prove that the sequence $\left(b_{n}\right)$ is convergent and find its limit.
Solution. Since $0<b_{n+1}=a^{n+1}<a^{n}=b_{n}<1$ then $\left(b_{n}\right)$ is bounded and monotonically decreasing. So it is convergent, let $A=\lim _{n \rightarrow \infty} b_{n}$. Then

$$
A=\lim _{n \rightarrow \infty} b_{n+1}=\lim _{n \rightarrow \infty} a \cdot b_{n}=a \cdot A \Longleftrightarrow A(1-a)=0, \text { so } A=0
$$

Exercise 2. Let $a_{1}=4$ and $a_{n+1}=8-\frac{15}{a_{n}}$. Prove that the sequence $\left(a_{n}\right)$ is convergent and find its limit.
Solution. The first few terms of the sequence:

$$
a_{1}=4, a_{2}=4.25, a_{3}=4.47059, a_{4}=4.64474, a_{5}=4.77054, \ldots
$$

1) First we calculate the possible limits of $\left(a_{n}\right)$. If $\left(a_{n}\right)$ is convergent then

$$
A=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=8-\frac{15}{A} \Longrightarrow A^{2}-8 A+15=(A-3)(A-5)=0, \text { therefore } A=3 \text { or } A=5
$$

2) Next, we investigate the boundedness and monotonicity of $\left(a_{n}\right)$. If we prove that $\left(a_{n}\right)$ is bounded and monotonically increasing or decreasing, then $\left(a_{n}\right)$ is convergent and its limit is the supremum or the infimum of the sequence.
(i) First we prove boundedness by induction, that is, we prove that $3<a_{n}<5$ for all $n \in \mathbb{N}^{+}$.
I. The statement is true for $n=1: 3<a_{1}=4<5$.
II. Assume that $3<a_{n}<5$. Then

$$
3<a_{n}<5 \Rightarrow \frac{1}{5}<\frac{1}{a_{n}}<\frac{1}{3} \Longrightarrow 3<\frac{15}{a_{n}}<5 \Longrightarrow-3>-\frac{15}{a_{n}}>-5 \Longrightarrow 3<8-\frac{15}{a_{n}}=a_{n+1}<5 .
$$

(ii) Next we prove by induction that $\left(a_{n}\right)$ is monotonically increasing, that is, $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}^{+}$.
I. The statement is true for $n=1$: $a_{1}=4<a_{2}=\frac{17}{4}=4.25$
II. Assume that $a_{n}<a_{n+1}$. Then

$$
a_{n}<a_{n+1} \Longrightarrow \frac{1}{a_{n}}>\frac{1}{a_{n+1}}\left(\text { since } a_{n}>3>0\right) \Longrightarrow-\frac{15}{a_{n}}<-\frac{15}{a_{n+1}} \Longrightarrow a_{n+1}=8-\frac{15}{a_{n}}<8-\frac{15}{a_{n+1}}=a_{n+2}
$$

Since $\left(a_{n}\right)$ is monotonic increasing and bounded then $\left(a_{n}\right)$ is convergent. The limit of $\left(a_{n}\right)$ cannot be $A=3$, since $a_{1}=4$ and the sequence is monotonic increasing. Therefore $\lim _{n \rightarrow \infty} a_{n}=5$.

The sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$

Theorem. The sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is monotonically increasing and bounded, so it is convergent.
1st proof. a) Monotonicity. We use the inequality between the arithmetic and geometric means:
if $a_{1}, a_{2}, \ldots, a_{k} \geq 0$ then $\sqrt[k]{a_{1} a_{2} \ldots a_{k}} \leq \frac{a_{1}+a_{2}+\ldots+a_{k}}{k}$.
Let $a_{1}=\ldots=a_{n}=1+\frac{1}{n}$ and $a_{n+1}=1$. Then $\sqrt[n+1]{\left(1+\frac{1}{n}\right)^{n} \cdot 1} \leq \frac{n\left(1+\frac{1}{n}\right)+1}{n+1}=1+\frac{1}{n+1}$, so $a_{n}=\left(1+\frac{1}{n}\right)^{n} \leq\left(1+\frac{1}{n+1}\right)^{n+1}=a_{n+1}$ for all $n \in \mathbb{N}$.
b) Boundedness. We use the inequality between the arithmetic and geometric means for the numbers $a_{1}=\ldots=a_{n}=1+\frac{1}{n}$ and $a_{n+1}=a_{n+2}=\frac{1}{2}$. Then $\sqrt[n+2]{\left(1+\frac{1}{n}\right)^{n} \cdot \frac{1}{4}} \leq \frac{n\left(1+\frac{1}{n}\right)+2 \cdot \frac{1}{2}}{n+2}=1, \quad$ so $a_{n}=\left(1+\frac{1}{n}\right)^{n} \leq 4$ for all $n \in \mathbb{N}$.

2nd proof with the binomial theorem

a) Boundedness. $a_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}=1+1+\sum_{k=2}^{n} \frac{n(n-1) \ldots(n-(k-1))}{k!} \cdot \frac{1}{n^{k}}=$

$$
=1+1+\sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \ldots \cdot \frac{n-(k-1)}{n}<1+1+\sum_{k=2}^{n} \frac{1}{k!} \cdot 1 \cdot \ldots \cdot 1=\sum_{k=0}^{n} \frac{1}{k!}:=s_{n} .
$$

The sequence $\left(s_{n}\right)$ is bounded above since the terms can be estimated from above by the terms of a geometric sequence with ratio $\frac{1}{2}$:
$s_{n}=1+1+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\ldots+\frac{1}{1 \cdot 2 \cdot \ldots \cdot n}<1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n-1}}\right) \leq$

$$
\leq 1+\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=3-\left(\frac{1}{2}\right)^{n-1}<3 \text {. So } a_{n}=\left(1+\frac{1}{n}\right)^{n}<s_{n}=\sum_{k=0}^{n} \frac{1}{k!}<3 \text {. }
$$

b) Monotonicity.

$$
\begin{aligned}
a_{n+1} & =\left(1+\frac{1}{n+1}\right)^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\left(\frac{1}{n+1}\right)^{k}=2+\sum_{k=2}^{n+1} \frac{1}{k!} \cdot \frac{n+1}{n+1} \cdot \frac{n}{n+1} \cdot \frac{n-1}{n+1} \cdot \ldots \cdot \frac{(n+1)-(k-1)}{n+1}= \\
& =2+\sum_{k=2}^{n+1} \frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \ldots\left(1-\frac{k-1}{n+1}\right)= \\
& =2+\sum_{k=2}^{n} \frac{1}{k!}\left(1-\frac{1}{n+1}\right) \ldots\left(1-\frac{k-1}{n+1}\right)+\binom{n+1}{n+1} \frac{1}{(n+1)^{n+1}}> \\
& >2+\sum_{k=2}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)+0=a_{n} . \text { So } a_{n}<a_{n+1} .
\end{aligned}
$$

Definition: The number e is defined as the limit of the above sequence:

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} .
$$

Remark: From the 2 nd proof it follows that $2<e<3$.

Some terms of the sequence are: $a_{1}=2, a_{2}=2.25, a_{3} \approx 2.37, a_{4} \approx 2.44, a_{5} \approx 2.488$

$$
\begin{aligned}
& a_{10} \approx 2.59, a_{20} \approx 2.65, a_{100} \approx 2.70481, a_{200} \approx 2.71152 \\
& a_{1000} \approx 2.71692, a_{10000} \approx 2.71815
\end{aligned}
$$

Theorems. 1) The number e $\approx 2.718281828459045235360287$... is irrational.
2) $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$ for all $x \in \mathbb{R}$
3) If $x_{n} \xrightarrow{n \rightarrow \infty} \infty$, then $\lim _{n \rightarrow \infty}\left(1+\frac{1}{x_{n}}\right)^{x_{n}}=e$.
4) $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}\right)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!}=\sum_{k=0}^{\infty} \frac{1}{k!}$

Remark. The convergence of the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is very fast, for example $\sum_{n=0}^{6} \frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!} \approx 2.718 \ldots$ (3 digits are accurate)
$\sum_{n=0}^{10} \frac{1}{n!} \approx 2.7182818 \ldots$ (7 digits are accurate)
$\sum_{n=0}^{15} \frac{1}{n!} \approx 2.71828182845 \ldots$ (11 digits are accurate)
$\sum_{n=0}^{20} \frac{1}{n!} \approx 2.7182818284590452353 \ldots$... (19 digits are accurate)

Exercises

The sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$

1. $a_{n}=\left(1+\frac{1}{n^{3}+n+6}\right)^{n^{3}+n+6} \rightarrow e$, since it is a subsequence of $\left(1+\frac{1}{n}\right)^{n}$.
2. $a_{n}=\left(1+\frac{1}{n-6}\right)^{n}=\left(1+\frac{1}{n-6}\right)^{n-6} \cdot\left(1+\frac{1}{n-6}\right)^{6} \rightarrow e \cdot 1^{6}=e$
3. $a_{n}=\left(1+\frac{1}{6 n+1}\right)^{6 n-7}=\left(1+\frac{1}{6 n+1}\right)^{6 n+1} \cdot \frac{1}{\left(1+\frac{1}{6 n+1}\right)^{8}} \rightarrow e \cdot \frac{1}{1^{8}}=e$
4. $a_{n}=\left(\frac{n+3}{n+4}\right)^{n-2}=\left(\frac{n+4-1}{n+4}\right)^{n+4-6}=\left(1+\frac{-1}{n+4}\right)^{n+4} \cdot \frac{1}{\left(\frac{n+4}{n+3}\right)^{6}} \rightarrow e^{-1} \cdot \frac{1}{1^{6}}=\frac{1}{e}$

Here we used that $\frac{n+4}{n+3}=\frac{1+\frac{4}{n}}{1+\frac{3}{n}} \rightarrow \frac{1+0}{1+0}=1$.
Another solution: $a_{n}=\left(\frac{n+3}{n+4}\right)^{n-2}=\frac{\left(1+\frac{3}{n}\right)^{n}}{\left(1+\frac{4}{n}\right)^{n}} \cdot\left(\frac{n+4}{n+3}\right)^{2} \rightarrow \frac{e^{3}}{e^{4}} \cdot 1^{2}=\frac{1}{e}$
5. $a_{n}=\left(\frac{n^{2}-2}{n^{2}+3}\right)^{n^{2}}=\frac{\left(1+\frac{-2}{n^{2}}\right)^{n^{2}}}{\left(1+\frac{3}{n^{2}}\right)^{n^{2}}} \rightarrow \frac{e^{-2}}{e^{3}}=e^{-5}$
6. $a_{n}=\left(\frac{n+1}{n+6}\right)^{2 n}=\left(\frac{\left(1+\frac{1}{n}\right)^{n}}{\left(1+\frac{6}{n}\right)^{n}}\right)^{2} \rightarrow\left(\frac{e^{1}}{e^{6}}\right)^{2}=\left(e^{-5}\right)^{2}=e^{-10}$
7. $a_{n}=\left(\frac{2 n+2}{2 n+9}\right)^{2 n}=\frac{\left(1+\frac{2}{2 n}\right)^{2 n}}{\left(1+\frac{9}{2 n}\right)^{2 n}} \rightarrow \frac{e^{2}}{e^{9}}=e^{-7}$
8. Calculate the limit of $a_{n}=\left(\frac{2 n^{2}+5}{2 n^{2}+3}\right)^{4 n^{2}}$

1st solution. $a_{n}=\left(\frac{\left(1+\frac{5}{2 n^{2}}\right)^{2 n^{2}}}{\left(1+\frac{3}{2 n^{2}}\right)^{2 n^{2}}}\right)^{2} \rightarrow\left(\frac{e^{5}}{e^{3}}\right)^{2}=e^{4}$
2nd solution. $a_{n}=\frac{\left(1+\frac{5 \cdot 2}{4 n^{2}}\right)^{4 n^{2}}}{\left(1+\frac{3 \cdot 2}{4 n^{2}}\right)^{4 n^{2}}} \rightarrow \frac{e^{10}}{e^{6}}=e^{4}$
9. Calculate the limit of the following sequences:

$$
\begin{array}{ll}
a_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n^{2}}, & b_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{9 n^{2}} \\
c_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n^{3}}, & d_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n}
\end{array}
$$

Solution. $a_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n^{2}}=\frac{\left(1+\frac{1}{3 n^{2}}\right)^{3 n^{2}}}{\left(1+\frac{-2}{3 n^{2}}\right)^{3 n^{2}}} \rightarrow \frac{e}{e^{-2}}=e^{3}=A$
$b_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{9 n^{2}}=\left(a_{n}\right)^{3} \Longrightarrow b_{n} \rightarrow A^{3}=e^{9}$
$c_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n^{3}}=\left(a_{n}\right)^{n}$
In the estimation below we use that $2<e<3$, so $e^{3}>2^{3}=8$.
Since $a_{n} \longrightarrow e^{3}$ then $\exists N_{1}$ such that if $n>N_{1}$ then $c_{n}=\left(a_{n}\right)^{n}>8^{n} \longrightarrow \infty \Longrightarrow c_{n} \rightarrow \infty$
$d_{n}=\left(\frac{3 n^{2}+1}{3 n^{2}-2}\right)^{3 n}=\sqrt[n]{a_{n}}$
Since $a_{n} \rightarrow e^{3}$ then for $\varepsilon=0.1 \exists N_{2}$ such that if $n>N_{2}$ then $\sqrt[n]{e^{3}-0.1} \leq d_{n} \leq \sqrt[n]{e^{3}+0.1}$.
Since $\sqrt[n]{e^{3}-0.1} \rightarrow 1$ and $\sqrt[n]{e^{3}+0.1} \rightarrow 1$ then by the Sandwich Theorem $d_{n} \rightarrow 1$.

Recursive sequences

1. Let $a_{1}=\frac{4}{3}$ and $a_{n+1}=\frac{3+a_{n}^{2}}{4}, n=1,2, \ldots$.

Prove that the sequence $\left(a_{n}\right)$ is convergent and find its limit.
Solution. $a_{1} \approx 1.33>a_{2}=\frac{3+\left(\frac{4}{3}\right)^{2}}{4} \approx 1.194>a_{3} \approx 1.1067$
Conjecture: $\left(a_{n}\right)$ is monotonically decreasing, so $a_{n}>a_{n+1}>0$.
Proof: by induction.
I. $a_{1}>a_{2}>a_{3}>0$ is satisfied.
II. Assume that $a_{n-1}>a_{n}$. From the definition of the sequence it is obvious that $a_{n}>0$

$$
\begin{aligned}
& \left(a_{n}=\frac{3+a_{n-1}^{2}}{4} \geq \frac{3}{4}>0\right) \text {. Then } \\
& a_{n-1}>a_{n}>0 \Longrightarrow a_{n-1}^{2}>a_{n}^{2} \Longrightarrow 3+a_{n-1}^{2}>3+a_{n}^{2} \Longrightarrow a_{n}=\frac{3+a_{n-1}^{2}}{4}>\frac{3+a_{n}^{2}}{4}=a_{n+1} \\
& \Longrightarrow a_{n}>a_{n+1} .
\end{aligned}
$$

Since $\left(a_{n}\right)$ is monotonic decreasing and bounded below (since $a_{n}>0$) then $\left(a_{n}\right)$ is convergent, therefore $A=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3+a_{n}^{2}}{4}$
$\Longrightarrow A=\frac{3+A^{2}}{4} \Longrightarrow A^{2}-4 A+3=(A-1)(A-3)=0 \Longrightarrow A=1$ or $A=3$.

Since $a_{n}<a_{1}=\frac{4}{3}$ then $A=3$ cannot be the case, so $A=\lim _{n \rightarrow \infty} a_{n}=1$.
2. Let $a_{1}=1$ and $a_{n+1}=\sqrt{6+a_{n}}, n=1,2, \ldots$.

Is the sequence convergent? If so, what is the limit?
Solution. The first few terms of the sequence: $a_{1}=1, a_{2} \approx 2.646, a_{3} \approx 2.94, \ldots$
Since $\sqrt{6+a_{n}} \geq 0$ then the terms of the sequence are positive.

1) First we calculate the possible limits of $\left(a_{n}\right)$. If $\left(a_{n}\right)$ is convergent then
$A=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{6+a_{n}}=\sqrt{6+A} \Longrightarrow A^{2}-A-6=(A-3)(A+2)=0$, from where $A=3$ or $A=-2$. Since $a_{n}=\sqrt{6+a_{n-1}}>0$ then $A=-2$ cannot be the case, so the only possible limit is $A=3$.
2) Next, we investigate the boundedness and monotonicity of $\left(a_{n}\right)$.
(i) First we prove by induction that $\left(a_{n}\right)$ is monotonically increasing and the terms are positive, that is, $0<a_{n}<a_{n+1}$ for all $n \in \mathbb{N}^{+}$.
I. The statement is true for $n=1$: $0<a_{1}=1<a_{2}=\sqrt{7} \approx 2.646$
II. Assume that $0<a_{n}<a_{n+1}$. Then

$$
0<a_{n}<a_{n+1} \Longrightarrow 0<0+6<6+a_{n}<6+a_{n+1} \Longrightarrow 0<\sqrt{6+a_{n}}<\sqrt{6+a_{n+1}} \Longrightarrow 0<a_{n+1}<a_{n+2}
$$

(ii) Next we prove that the sequence is bounded above. $A=3$ is a suitable choice for the upper bound, that is, we show that $a_{n}<3$ for all $n \in \mathbb{N}^{+}$.
I. The statement is true for $n=1$: $a_{1}=1<3$
II. Assume that $a_{n}<3$. Then $a_{n+1}=\sqrt{6+a_{n}}<\sqrt{6+3}=3$.

Since $\left(a_{n}\right)$ is monotonic increasing and bounded above then $\left(a_{n}\right)$ is convergent, so $\lim _{n \rightarrow \infty} a_{n}=3$.
We have seen that this is the only possible limit.

Remark. Monotonicity can also be proved as follows.
$0<a_{n}<a_{n+1}=\sqrt{6+a_{n}} \Longleftrightarrow a_{n}^{2}<6+a_{n} \Longleftrightarrow a_{n}^{2}-a_{n}-6<0 \Longleftrightarrow-2<a_{n}<3$.
Here $-2<a_{n}$ trivially holds, since $a_{n}>0$, and $a_{n}<3$ can be proved by induction.
3. Let $a_{1}=-3$ and $a_{n+1}=\frac{5-6 a_{n}^{2}}{13}, n=1,2, \ldots$. Is the sequence convergent?

Solution. $a_{1}=-3, a_{2} \approx-3.769, a_{3} \approx-6.1725$,
Is the sequence monotonic decreasing?
$a_{n+1}=\frac{5-6 a_{n}^{2}}{13}<a_{n} \Longleftrightarrow 6 a_{n}^{2}+13 a_{n}-5>0 \quad\left(6 x^{2}+13 x-5=0 \Longleftrightarrow x_{1}=-\frac{5}{2}, x_{2}=\frac{1}{3}\right)$
It means that the sequence is monotonic decreasing if and only if $a_{n}<-\frac{5}{2}$ or $a_{n}>\frac{1}{3}$.
Homework: It can be proved by induction that $a_{n} \leq-3\left(<-\frac{5}{2}\right)$.
Therefore the sequence is monotonic decreasing with initial value $a_{1}=-3$.

If the sequence were bounded from below then it would be convergent and for the limit we would have $A=\frac{5-6 A^{2}}{13} \Longrightarrow$ the possible values of A could be $A=-\frac{5}{2}$ or $A=\frac{1}{3}$.
Since $a_{n} \leq-3$ for all n then these numbers cannot be the limit, so $\left(a_{n}\right)$ is not convergent and therefore not bounded from below. Since $\left(a_{n}\right)$ is monotonic decreasing then $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

