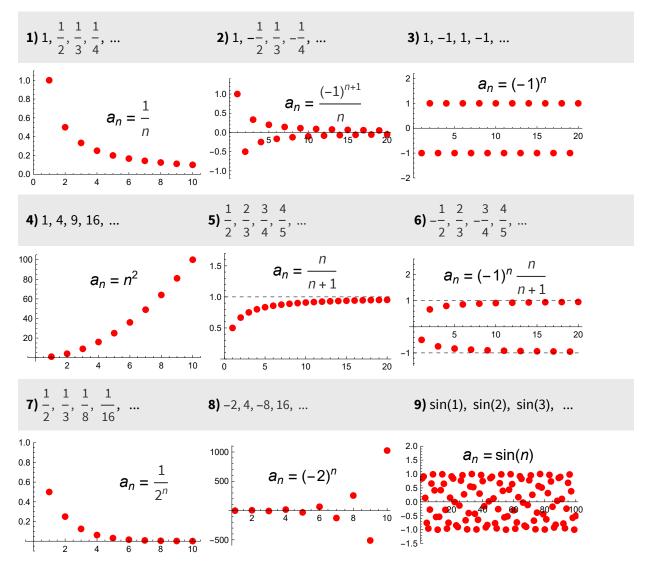
Calculus 1

Number sequences, part 1.

The concept and properties of sequences

Definition: A number sequence is a function $f : \mathbb{N} \longrightarrow \mathbb{R}$ defined on the set of natural numbers. Usual notation: $f(n) = a_n$ is the *n*th term of the sequence. The notation of the sequence is (a_n) or a_n , n = 1, 2, ...

Remark: The function $f : \{k, k + 1, k + 2, ...\} \rightarrow \mathbb{R}$ is also a sequence where k = 0, 1, 2, ...



Examples

Monotonicity

Definition:			
The sequence (<i>a_n</i>) is	monotonically increasing, strictly monotonically increasing, monotonically decreasing, strictly monotonically decreasing,	if for all <i>n</i> ∈ ℕ	$\begin{cases} a_n \le a_{n+1} \\ a_n < a_{n+1} \\ a_n \ge a_{n+1} \\ a_n > a_{n+1} \end{cases}$

Examples: Strictly monotonically decreasing: **1**) $a_n = \frac{1}{n}$, **7**) $a_n = \frac{1}{2^n}$ Strictly monotonically increasing: **4**) $a_n = n^2$, **5**) $a_n = \frac{n}{n+1}$

The other sequences are not monotonic.

Boundedness

Definition: The sequence (a_n) is

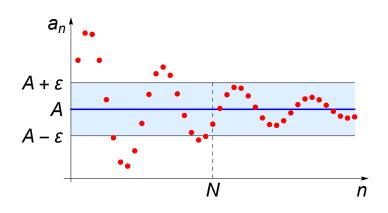
- bounded below, if there exists $A \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $A \le a_n$.
- bounded above, if there exists $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $a_n \leq B$.
- bounded, if there exist $A \in \mathbb{R}$ and $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $A \le a_n \le B$.

Examples: Bounded sequences: **1**)
$$a_n = \frac{1}{n}$$
, **2**) $a_n = \frac{(-1)^n}{n}$, **3**) $a_n(-1)^n$, **5**) $a_n = \frac{n}{n+1}$,
6) $a_n = (-1)^n \frac{n}{n+1}$, **7**) $a_n = \frac{1}{2^n}$, **9**) $a_n = \sin(n)$

Convergent sequences

Definition: A sequence $(a_n) : \mathbb{N} \longrightarrow \mathbb{R}$ is **convergent**, and it tends to the limit $A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$, $|a_n - A| < \varepsilon$. **Notation:** $\lim_{n \to \infty} a_n = A$ or $a_n \xrightarrow{n \to \infty} A$. If a sequence if not convergent then it is **divergent**.

Remark: It is equivalent with the definition that for all $\varepsilon > 0$, the sequence has only finitely many terms outside of the interval $(A - \varepsilon, A + \varepsilon)$. (And the sequence has infinitely many terms in the interval.)



Examples for convergent sequences: **1**)
$$a_n = \frac{1}{n}$$
, **2**) $a_n = \frac{(-1)^n}{n}$, **5**) $a_n = \frac{n}{n+1}$, **7**) $a_n = \frac{1}{2^n}$

Exercises

1) Using the definition of the limit, show that a)
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
 b) $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.

Solution. Let $\varepsilon > 0$ be fixed. In both cases $|a_n - A| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$

so with the choice $N(\varepsilon) \ge \left[\frac{1}{\varepsilon}\right]$ the definition holds.

For example, if $\varepsilon = 0.001$, then N = 1000 (or N = 1500 or N = 2000 etc.) is a suitable threshold index.

2) Using the definition of the limit, show that $\lim_{n \to \infty} \frac{6+n}{5.1-n} = -1$

Solution. Let $\varepsilon > 0$ be fixed. Then $|a_n - A| = \left|\frac{6+n}{5\cdot 1 - n} - (-1)\right| = \left|\frac{11\cdot 1}{5\cdot 1 - n}\right| \stackrel{\text{if } n > 5}{=} \frac{11\cdot 1}{n - 5\cdot 1} < \varepsilon \implies n > 5\cdot 1 + \frac{11\cdot 1}{\varepsilon}$, so $N(\varepsilon) \ge \left[5\cdot 1 + \frac{11\cdot 1}{\varepsilon}\right]$.

3) Using the definition of the limit, show that $\lim_{n \to \infty} \frac{n^2 - 1}{2n^5 + 5n + 8} = 0$

Solution. Let $\varepsilon > 0$ be fixed. Then $|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8} < \varepsilon$.

This equation cannot be solved for *n*. However, it is not necessary to find the least possible threshold index, it is enough to show that a threshold index exists. So for the solution we use the transitive property of the inequalities, for example in the following way:

$$|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8} < \frac{n^2 - 0}{2n^5 + 0 + 0} < \frac{1}{2n^3} < \varepsilon \iff n > \sqrt[3]{\frac{1}{2\varepsilon}}, \text{ so}$$
$$N(\varepsilon) \ge \left[\sqrt[3]{\frac{1}{2\varepsilon}} \right].$$

Here we estimated the fraction from above in such a way that we increased the numerator and decreased the denominator.

4) Using the definition of the limit, show that $\lim_{n \to \infty} \frac{8n^4 + 3n + 20}{2n^4 - n^2 + 5} = 4.$

Solution. Let
$$\varepsilon > 0$$
 be fixed. Then $|a_n - A| = \left| \frac{8n^4 + 3n + 20}{2n^4 - n^2 + 5} - 4 \right| = \left| \frac{4n^2 + 3n}{2n^4 - n^2 + 5} \right| = \frac{4n^2 + 3n}{2n^4 - n^2 + 5} < \frac{4n^2 + 3n^2}{2n^4 - n^4 + 0} = \frac{7}{n^2} < \varepsilon \iff n > \sqrt{\frac{7}{\varepsilon}}, \text{ so } N(\varepsilon) \ge \left[\sqrt{\frac{7}{\varepsilon}} \right].$

Divergent sequences

If a sequence if not convergent then it is **divergent**.

```
Example: Show that a_n = (-1)^n is divergent.
```

Solution. Since the terms of the sequence are −1, 1, −1, 1, ... then the possible limits are only 1 and −1. We show that *A* = 1 is not the limit.

For example for $\varepsilon = 1$, the interval $(A - \varepsilon, A + \varepsilon) = (0, 2)$ contains infinitely many terms (the terms a_{2n}), however, there are infinitely many terms outside of this interval (the terms a_{2n-1}). It means that there is no suitable threshold index $N(\varepsilon)$ for $\varepsilon = 1$, so A = 1 is not the limit. Similarly, A = -1 is not the limit either, so the sequence is divergent.

```
Definition: The sequence (a_n) : \mathbb{N} \longrightarrow \mathbb{R} tends to +\infty if for all P > 0 there exists a threshold index N(P) \in \mathbb{N} such that for all n > N(P), a_n > P.
```

```
Notation: \lim_{n \to \infty} a_n = +\infty or a_n \xrightarrow{n \to \infty} +\infty.
```

- **Definition:** The sequence $(a_n) : \mathbb{N} \longrightarrow \mathbb{R}$ tends to $-\infty$ if for all M < 0 there exists a threshold index $N(M) \in \mathbb{N}$ such that for all n > N(M), $a_n < M$.
- **Notation:** $\lim_{n \to \infty} a_n = -\infty$ or $a_n \xrightarrow{n \to \infty} -\infty$.
- **Remark:** $\lim_{n \to \infty} a_n = -\infty$ if and only if $\lim_{n \to \infty} (-a_n) = +\infty$.

Exercises

5) Let $a_n = 2n^3 + 3n + 5$. Show that $\lim_{n \to \infty} a_n = \infty$.

Solution. Let
$$P > 0$$
 be fixed. Then $a_n = 2n^3 + 3n + 5 > 2n^3 > P \iff n > \sqrt[3]{\frac{P}{2}}$, so $N(P) \ge \left[\sqrt[3]{\frac{P}{2}}\right]$

For example, if $P = 10^6$ then N(P) = 80 is a suitable threshold index.

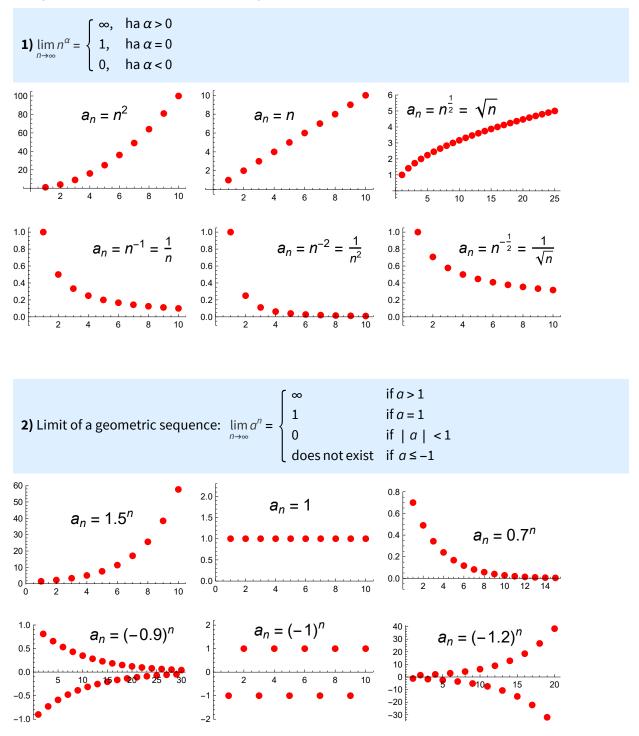
6) Let $a_n = \frac{6 - n^2}{2 + n}$. Show that $\lim_{n \to \infty} a_n = -\infty$.

Solution. We have to show that $a_n = \frac{6 - n^2}{2 + n} < M$ (< 0) if n > N(M). It is equivalent with the following condition: $-a_n = \frac{n^2 - 6}{n + 2} > -M$ (> 0) if n > N(M). The exercise can be simplified with an estimation since we do not need to find the least possible threshold index: $\frac{n^2 - 6}{n + 2} > \frac{n^2 - \frac{n^2}{2}}{n + 2n} = \frac{n}{6} > -M \implies n > -6M$

In the estimation we used that $\frac{n^2}{2} > 6$ if $n \ge 4$. Therefore, $N(M) \ge \max \{4, [-6M]\}$ is a suitable threshold index.

Examples

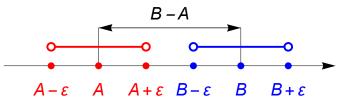
Using the above definitions, the following statements can easily be proved:



Theorems about the limit

Theorem (uniqueness of the limit): If $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} a_n = B$ then A = B.

Proof. We assume indirectly that $A \neq B$, for example A < B. Let $\varepsilon = \frac{B - A}{3} > 0$.



Since $a_n \rightarrow A$ and $a_n \rightarrow B$ then there exist threshold indexes $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that

- if $n > N_1$ then $A \varepsilon < a_n < A + \varepsilon$ and
- if $n > N_2$ then $B \varepsilon < a_n < B + \varepsilon$.

But in this case if $n > \max\{N_1, N_2\}$ then $a_n < A + \varepsilon < B - \varepsilon < a_n$. This is a contradiction, so A = B.

Theorem: If (a_n) is convergent, then it is bounded.

- **Proof.** 1) Let $A = \lim_{n \to \infty} a_n$. Then for $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that if n > N then
 - $A \varepsilon < a_n < A + \varepsilon.$
 - 2) It means that the set $\{a_1, a_2, ..., a_N\}$ is finite, so the smallest element of $\{A \varepsilon, a_1, ..., a_N\}$ is a lower bound and the largest element of $\{a_1, ..., a_N, A + \varepsilon\}$ is an upper bound of the set $\{a_n : n \in \mathbb{N}\}$.
 - 3) Therefore for all *n* we have $\min \{A \varepsilon, a_1, ..., a_N\} \le a_n \le \max \{a_1, ..., a_N, A + \varepsilon\}$.
- **Remark.** Boundedness is a necessary but not sufficient condition for the convergence of a sequence. The converse of the statement is false, for example $a_n = (-1)^n$ is bounded but not convergent.

	$\int 2n + 1$,	if <i>n</i> is even
Example: Is the following sequence convergent or divergent? $a_n =$	$\left\{\frac{1}{3n^2+1},\right.$	if <i>n</i> is odd

Solution. The sequence is divergent, since it is not bounded. If $a_{2m} = 2 \cdot 2m + 1 = 4m + 1 \le k \quad \forall m \in \mathbb{N}$ then it contradicts the Archimedian axiom.

Operations with convergent sequences

Theorem 1. If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then $a_n + b_n \xrightarrow{n \to \infty} A + B$. (Sum Rule)

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \xrightarrow{n \to \infty} A$ and $b_n \xrightarrow{n \to \infty} B$, then for $\frac{\varepsilon}{2}$ there exists $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that

- if $n > N_1$, then $\left| a_n A \right| < \frac{\varepsilon}{2}$ and
- if $n > N_2$, then $\left| b_n B \right| < \frac{\varepsilon}{2}$.

Thus, if $n > N = \max \{N_1, N_2\}$ then $|(a_n + b_n) - (A + B)| \le |a_n - A| + |b_n - B| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Here we used the triangle inequality: $|a + b| \le |a| + |b|$.

Theorem 2. If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $c \in \mathbb{R}$ then $c a_n \xrightarrow{n \to \infty} c A$. (Constant Multiple Rule)

Proof. Let $\varepsilon > 0$ be fixed.

(i) If c = 0 then the statement is trivial.

(ii) If $c \neq 0$ then because of the convergence of a_n , for $\frac{\varepsilon}{|c|}$ there exists $N \in \mathbb{N}$ such that

if
$$n > N$$
 then $\left| a_n - A \right| < \frac{\varepsilon}{|c|}$. Thus, if $n > N$ then
 $\left| ca_n - cA \right| = \left| c(a_n - A) \right| = \left| c \right| \cdot \left| a_n - A \right| < \left| c \right| \cdot \frac{\varepsilon}{|c|} = \varepsilon$.

Here we used that |ab| = |a| |b|.

Consequence. (i) If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 then $-a_n \xrightarrow{n \to \infty} -A$. (Here $c = -1$.)
(ii) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then
 $a_n - b_n = a_n + (-b_n) \xrightarrow{n \to \infty} A + (-B) = A - B$. (Difference Rule)

Theorem 3. (i) If $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} 0$ then $a_n b_n \xrightarrow{n \to \infty} 0$. (ii) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then $a_n b_n \xrightarrow{n \to \infty} AB$. (Product Rule)

Proof. Let $\varepsilon > 0$ be fixed.

(i) Since $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} 0$, then

• for $\frac{\varepsilon}{2}$ there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $\left| \begin{array}{c} a_n - 0 \end{array} \right| < \frac{\varepsilon}{2}$ and • for 2 there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $\left| \begin{array}{c} b_n - 0 \end{array} \right| < 2$. Thus, if $n > N = \max \{N_1, N_2\}$ then $\left| \begin{array}{c} a_n b_n - 0 \end{array} \right| = \left| \begin{array}{c} a_n \end{array} \right| \cdot \left| \begin{array}{c} b_n \end{array} \right| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$.

(ii) It is obvious that if $c_n \equiv A$ for all $n \in \mathbb{N}$ (constant sequence) then $c_n \xrightarrow{n \to \infty} A$. Thus $a_n - A \xrightarrow{n \to \infty} A - A = 0$ and $b_n - B \xrightarrow{n \to \infty} B - B = 0$. Applying part (i) we get that $(a_n - A)(b_n - B) \xrightarrow{n \to \infty} 0$, that is, $a_n b_n - A b_n - B a_n + A B \xrightarrow{n \to \infty} 0$.

Then

$$a_n b_n = (a_n b_n - A b_n - B a_n + A B) + (A b_n + B a_n - A B) \xrightarrow{n \to \infty} 0 + (A B + A B - A B) = A B_n$$

Theorem 4. If $a_n \xrightarrow{n \to \infty} 0$ and (b_n) is bounded then $a_n b_n \xrightarrow{n \to \infty} 0$.

Proof. Let $\varepsilon > 0$ be fixed.

Since (b_n) is bounded then there exists K > 0 such that $|b_n| < K$ for all $n \in \mathbb{N}$. Since $a_n \xrightarrow{n \to \infty} 0$ then for $\frac{\varepsilon}{K}$ there exists $N \in \mathbb{N}$ such that if n > N then $|a_n - 0| = |a_n| < \frac{\varepsilon}{K}$. Thus, if n > N then $|a_n b_n - 0| = |a_n| \cdot |b_n| < \frac{\varepsilon}{K} \cdot K = \varepsilon$. **Theorem 5.** If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ then $|a_n| \xrightarrow{n \to \infty} |A|$.

Proof. $| a_n | - |A|| \le |a_n - A| < \varepsilon \text{ if } n > N(\varepsilon).$

Remark. The converse of the statement is not true.

For example, $a_n = (-1)^n$ is divergent but $|a_n| = 1^n = 1 \xrightarrow{n \to \infty} 1$. However, the following statement is true: $|a_n| \xrightarrow{n \to \infty} 0 \implies a_n \xrightarrow{n \to \infty} 0$. Since $||a_n| - 0| = |a_n| = |a_n - 0| < \varepsilon$ if $n > N(\varepsilon)$.

Theorem 6. (i) If
$$b_n \xrightarrow{n \to \infty} B \neq 0$$
 then $\frac{1}{b_n} \xrightarrow{n \to \infty} \frac{1}{B}$.
(ii) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $b_n \xrightarrow{n \to \infty} B \neq 0$ then $\frac{a_n}{b_n} \xrightarrow{n \to \infty} \frac{A}{B}$. (Quotient Rule)

Proof. (i) First, by the convergence of (b_n) and by Theorem 5, $\begin{vmatrix} b_n \end{vmatrix} \xrightarrow{n \to \infty} |B| \neq 0$ and thus there exists $N_1 = N_1 \left(\frac{|B|}{2}\right) \in \mathbb{N}$ such that if $n > N_1$ then $\begin{vmatrix} b_n \end{vmatrix} - |B| \end{vmatrix} < \frac{|B|}{2} \iff |B| - \frac{|B|}{2} < |b_n| < |B| + \frac{|B|}{2}$. Then $\begin{vmatrix} b_n \end{vmatrix} > \frac{|B|}{2}$ for all $n > N_1$. Second, for a fixed $\varepsilon > 0$ there exists $N_2 = N_2 \left(\frac{|B|^2 \varepsilon}{2}\right) \in \mathbb{N}$ such that if $n > N_2$ then $\begin{vmatrix} b_n - B \end{vmatrix} < \frac{|B|^2 \varepsilon}{2}$. Therefore, if $n > N = \max\{N_1, N_2\}$ then $\begin{vmatrix} \frac{1}{b_n} - \frac{1}{B} \end{vmatrix} = \begin{vmatrix} \frac{B - b_n}{B \cdot b_n} \end{vmatrix} = \frac{|B - b_n|}{|B| \cdot |b_n|} < \frac{1}{|B|} \cdot \frac{|B|}{2} = \varepsilon$.

(ii) By Theorem 3 and Theorem 6, part (i): $\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \xrightarrow{n \to \infty} A \cdot \frac{1}{B} = \frac{A}{B}$

Remark. By induction it can be proved that Theorem 1 and Theorem 3 can be generalized to the sum and product of **finitely many** convergent sequences. However, they are not true for infinitely many terms, as the following examples show.

Example. $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{10} = 1^{10} = 1 \text{ or } \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^k = 1^k = 1, \text{ where } k \in \mathbb{N}^+ \text{ is a fixed constant,}$ independent of *n*. However, $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \neq 1^n = 1. \text{ Later we will see that } \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$

Example. $a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{500}{n^2} \longrightarrow 0 + 0 + \dots + 0 = 0$

The number of the terms is 500 which is independent of *n* and thus applying Theorem 1 finitely many times, the correct result is 0.

Example.
$$b_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \rightarrow 0 + 0 + \dots + 0 = 0$$
 is a WRONG SOLUTION!

Since
$$b_1 = \frac{1}{1^2}$$
, $b_2 = \frac{1}{2^2} + \frac{2}{2^2}$, $b_3 = \frac{1}{3^2} + \frac{2}{3^2} + \frac{3}{3^2}$, $b_4 = \frac{1}{4^2} + \frac{2}{4^2} + \frac{3}{4^2} + \frac{4}{4^2}$, ...,

then it can be seen that the number of the terms depends on n, so b_n is not the sum of finitely many sequences and thus Theorem 1 cannot be generalized to this case. The correct solution is:

$$b_n = \frac{1+2+\ldots+n}{n^2} = \frac{(1+n)\cdot\frac{n}{2}}{n^2} = \frac{1+n}{2n} = \frac{\frac{1}{n}+1}{2} \longrightarrow \frac{0+1}{2} = \frac{1}{2}$$

Example.
$$a_n = \frac{8n^2 - n + 3}{n^2 + 9} = \frac{n^2}{n^2} \cdot \frac{8 - \frac{1}{n} + \frac{3}{n^2}}{1 + \frac{9}{n^2}} \longrightarrow 1 \cdot \frac{8 - 0 + 0}{1 + 0} = 8$$

Example. Calculate the limit of
$$a_n = \left(\frac{2n+1}{3-n}\right)^3 \cdot \frac{3n^2 + 2n}{2+6n^2}$$

Solution. $a_n = \left(\frac{2n}{-n}\right)^3 \cdot \left(\frac{1+\frac{1}{2n}}{1-\frac{3}{n}}\right)^3 \cdot \frac{3n^2}{6n^2} \cdot \frac{1+\frac{2}{3n}}{1+\frac{1}{3n^2}} \longrightarrow -8 \cdot 1^3 \cdot \frac{1}{2} \cdot 1 = -4$

Here the product rule is used for the power.

Example. Calculate the limit of
$$a_n = \frac{n^2 - 5}{2n^3 + 6n} \cdot \sin(n^4 + 5n + 8)$$

Solution. $a_n \to 0$, since $b_n = \frac{n^2 - 5}{2n^3 + 6n} = \frac{n^2}{2n^3} \cdot \frac{1 - \frac{5}{n^2}}{1 + \frac{3}{n^2}} \to 0.1$ and $c_n = \sin(n^4 + 5n + 8)$ is bounded.

Example.
$$a_n = \frac{2^{2n} + \cos(n^2)}{4^{n+1} - 5} = \frac{4^n}{4^n} \cdot \frac{1 + \left(\frac{1}{4}\right)^n \cdot \cos(n^2)}{4 - 5 \cdot \left(\frac{1}{4}\right)^n} \longrightarrow \frac{1 + 0}{4 - 0} = \frac{1}{4}$$

Theorem 7. If $a_n \ge 0$ and $a_n \xrightarrow{n \to \infty} A \ge 0$ then $\sqrt{a_n} \xrightarrow{n \to \infty} \sqrt{A}$.

Proof. Let $\varepsilon > 0$ be fixed.

- (i) If $a_n \xrightarrow{n \to \infty} A = 0$ then there exists $N_1 = N_1(\varepsilon^2) \in \mathbb{N}$ such that if $n > N_1$ then $|a_n 0| = a_n < \varepsilon^2$. Therefore, if $n > N_1$ then $|\sqrt{a_n} - 0| = \sqrt{a_n} < \varepsilon$.
- (ii) If $a_n \xrightarrow{n \to \infty} A > 0$ then there exists $N_2 = N_2(\varepsilon \sqrt{A}) \in \mathbb{N}$ such that if $n > N_2$ then $|a_n A| < \varepsilon \sqrt{A}$. Therefore, if $n > N_2$ then

$$\left| \sqrt{a_n} - \sqrt{A} \right| = \left| \frac{a_n - A}{\sqrt{a_n} + \sqrt{A}} \right| = \frac{\left| a_n - A \right|}{\sqrt{a_n} + \sqrt{A}} \le \frac{\left| a_n - A \right|}{0 + \sqrt{A}} < \frac{\varepsilon \sqrt{A}}{\sqrt{A}} = \varepsilon.$$

Remark. If $a_n \xrightarrow{n \to \infty} A \ge 0$ then $\sqrt[k]{a_n} \xrightarrow{n \to \infty} \sqrt[k]{A}$ for all $k \in \mathbb{N}^+$.

It can be proved by using the following identity: $a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + \dots + ab^{k-1} + b^{k-1})$.

Example. Calculate the limit of $a_n = \sqrt{4n^2 + 5n - 1} - \sqrt{4n^2 + n + 3}$ (it has the form $\infty - \infty$)

Solution.
$$a_n = \alpha - \beta = \frac{(\alpha - \beta)(\alpha + \beta)}{\alpha + \beta} = \frac{(4n^2 + 5n - 1) - (4n^2 + n + 3)}{\sqrt{4n^2 + 5n - 1} + \sqrt{4n^2 + n + 3}} =$$

$$= \frac{4n - 4}{\sqrt{4n^2 + 5n - 1} + \sqrt{4n^2 + n + 3}} = \frac{4n}{\sqrt{4n^2}} \frac{1 - \frac{1}{n}}{\sqrt{1 + \frac{5}{4n} - \frac{1}{4n^2}}} \rightarrow \frac{1 - \frac{1}{n}}{\sqrt{1 + \frac{5}{4n} - \frac{1}{4n^2}}} \rightarrow \frac{1 - 2n}{\sqrt{1 + 2n^2}} \rightarrow \frac{1 - 2n}{\sqrt{1 + 2n^2}} = 1.$$

Additional theorems about the limit

Theorem. If $a_n \xrightarrow{n \to \infty} \infty$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} 0$.

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \xrightarrow{n \to \infty} \infty$, then for $P = \frac{1}{\varepsilon}$ there exists $N \in \mathbb{N}$ such that if n > N then $a_n > \frac{1}{\varepsilon} > 0$, so $\left| \frac{1}{a_n} - 0 \right| = \frac{1}{a_n} < \varepsilon$.

Question: Is it true that if $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} \infty$?

Answer: No, for example, if
$$a_n = -\frac{2}{n} \rightarrow 0$$
 then $\frac{1}{a_n} = -\frac{n}{2} \rightarrow -\infty$.
Or, if $a_n = \left(-\frac{1}{2}\right)^n \rightarrow 0$ then for $b_n = \frac{1}{a_n} = (-2)^n$, $b_{2k} \rightarrow \infty$ and $b_{2k} \rightarrow -\infty$, so $\lim_{n \rightarrow \infty} \frac{1}{a_n} \neq \infty$.
However, the following statements hold.

Theorem. a) If
$$a_n > 0$$
 and $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} \infty$. Notation: $\frac{1}{0+} \longrightarrow +\infty$.
b) If $a_n < 0$ and $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} -\infty$. Notation: $\frac{1}{0-} \longrightarrow -\infty$.
c) If $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{|a_n|} \xrightarrow{n \to \infty} \infty$.

Proof. a) Let P > 0 be fixed. Since $0 < a_n \xrightarrow{n \to \infty} 0$, then for $\varepsilon = \frac{1}{p}$ there exists $N \in \mathbb{N}$ such that if n > N then $a_n = \left| a_n - 0 \right| < \frac{1}{p}$, so $\frac{1}{a_n} > P$.

b), c): homework.

Theorem. If $a_n \xrightarrow{n \to \infty} \infty$ and $b_n \ge a_n$ for n > N, then $b_n \longrightarrow \infty$.

Proof. Let P > 0 be fixed. Since $a_n \xrightarrow{n \to \infty} \infty$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $a_n > P$. So if $n > \max\{N, N_1\}$ then $b_n > P$.

Consequence. Suppose that
$$a_n \xrightarrow{n \to \infty} \infty$$
, $b_n \xrightarrow{n \to \infty} \infty$, $c_n \xrightarrow{n \to \infty} c > 0$ and $|d_n| \leq K$ for all $n > \in \mathbb{N}$. Then

a)
$$a_n + b_n \xrightarrow{n \to \infty} \infty$$

b) $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$
c) $c_n \cdot a_n \xrightarrow{n \to \infty} \infty$
d) $a_n + d_n \xrightarrow{n \to \infty} \infty$

Proof. a) Since $a_n \xrightarrow{n \to \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_n \ge 0$ for n > N. Then $a_n + b_n \ge b_n \xrightarrow{n \to \infty} \infty$, so $a_n + b_n \xrightarrow{n \to \infty} \infty$.

b) Since $a_n \xrightarrow{n \to \infty} \infty$ and $b_n \xrightarrow{n \to \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_n \ge 1$ and $b_n \ge 0$ for n > N. Then $a_n \cdot b_n \ge b_n \xrightarrow{n \to \infty} \infty$, so $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$.

c) Let *P* > 0 be fixed.

- Since $c_n \xrightarrow{n \to \infty} c > 0$ then there exists $N_1 = N_1 \left(\frac{c}{2}\right) \in \mathbb{N}$ such that $c_n > \frac{c}{2}$ if $n > N_1$. • Since $a_n \xrightarrow{n \to \infty} \infty$ then there exists $N_2 = N_2 \left(\frac{2P}{c}\right) \in \mathbb{N}$ such that $a_n > \frac{2P}{c}$ if $n > N_2$. So if $n > \max\{N_1, N_2\}$ then $c_n \cdot a_n > \frac{2P}{c} \cdot \frac{c}{2} = P$.
- d) Let P > 0 be fixed. $a_n + d_n \ge a_n K > P$ if and only if $a_n > K + P$. Since $a_n \xrightarrow{n \to \infty} \infty$ then for K + P there exists $N \in \mathbb{N}$ such that $a_n > K + P$ if n > N. Then for n > N, $a_n + d_n > P$ also holds, so $a_n + d_n \xrightarrow{n \to \infty} \infty$.

Example. $a_n = 5 n^2 + 2^n \cdot n - (-1)^n \xrightarrow{n \to \infty} \infty$.

Remark. The above statements can be denoted in the following way:

a) $\infty + \infty \longrightarrow \infty$ b) $\infty \cdot \infty \longrightarrow \infty$ c) $c \cdot \infty \longrightarrow \infty$ (where c > 0) d) $\infty +$ bounded $\longrightarrow \infty$.

Similar statements can be proved, for example,

$$\frac{0}{\infty} \longrightarrow 0, \ \frac{\text{bounded}}{\infty} \to 0, \ \frac{\infty}{+0} \to \infty, \ \frac{\infty}{-0} \to -\infty.$$

The meaning of $\frac{0}{\infty} \longrightarrow 0$ is that if $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} \infty$ then $\frac{a_n}{b_n} \longrightarrow 0.$

Undefined forms: $\infty - \infty$, $0 \cdot \infty$, $\frac{\infty}{-\infty}$, $\frac{0}{-0}$, 1^{∞} , ∞^{0} , 0^{0}

Examples for undefined forms:

1) Limit of the form $\infty - \infty$:

 $a_n = n^2, \quad b_n = n, \qquad a_n - b_n = n^2 - n \to \infty$ $a_n = n, \qquad b_n = n, \qquad a_n - b_n = n - n = 0 \to 0$ $a_n = n, \qquad b_n = n^2, \qquad a_n - b_n = n - n^2 \to -\infty$

2) Limit of the form $0 \cdot \infty$:

 $\frac{1}{n} \cdot n^2 = n \to \infty, \qquad \frac{1}{n} \cdot n = 1 \to 1, \qquad \frac{1}{n^2} \cdot n = \frac{1}{n} \to 0, \qquad \frac{(-1)^n}{n} \cdot n = (-1)^n$ (it doesn't have a limit)

3) Limit of the form $\frac{\infty}{\infty}$: $\frac{n}{n^2} = \frac{1}{n} \to 0$, $\frac{n^2}{n} = n \to \infty$, $\frac{n^2}{n^2} = 1 \to 1$

4) Limit of the form $\frac{0}{0}$: $\frac{1}{\frac{n}{n}} = n \rightarrow \infty, \quad \frac{1}{\frac{n^2}{1}} = \frac{1}{n} \rightarrow 0, \quad \frac{1}{\frac{1}{n}} = 1 \rightarrow 1, \quad \frac{(-1)^n \frac{1}{n}}{\frac{1}{n^2}} = (-1)^n \cdot n \quad (\text{it doesn't have a limit})$

Such statements are summarized in the following tables where $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ denotes the extended set of real numbers. The meaning of $| \cdot |$ is that $\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = \infty$.

Addition:

$\lim(a_n)$	$\lim(b_n)$	$\lim(a_n+b_n)$
$a \in \mathbb{R}$	$\pmb{b} \in \mathbb{R}$	<i>a</i> + <i>b</i>
ω	$\pmb{b} \in \mathbb{R}$	8
- ∞	$b \in \mathbb{R}$	- ∞
œ	ω	8
- ∞	- ∞	- ∞
ω	- ∞	?

Multiplication:

$\lim(a_n)$	$\lim(b_n)$	$\lim (a_n b_n)$
$a \in \mathbb{R}$	$\pmb{b} \in \mathbb{R}$	a b
8	<i>b</i> > 0	∞
8	<i>b</i> < 0	- ∞
- ∞	<i>b</i> > 0	- ∞
$-\infty$	<i>b</i> < 0	∞
8	8	ω
8	- ∞	- ∞
- ∞	- ∞	ω
ω	0	?
- ∞	0	?

Subtraction:

$\lim(a_n)$	$\lim(b_n)$	$\lim (a_n - b_n)$
$a \in \mathbb{R}$	$\pmb{b} \in \mathbb{R}$	a – b
ω	$\pmb{b} \in \mathbb{R}$	∞
- ∞	$\pmb{b} \in \mathbb{R}$	- ∞
ω	- ∞	ω
ω	ω	?
- ∞	- ∞	?

Division:

$lim(a_n)$	$\lim(b_n)$	$\lim (a_n/b_n)$
$a \in \mathbb{R}$	$b \in \mathbb{R} \setminus \{0\}$	a / b
ω	<i>b</i> > 0	8
ω	<i>b</i> < 0	- ∞
- ∞	<i>b</i> > 0	- ∞
- ∞	<i>b</i> < 0	8
$a \in \mathbb{R}$	$\pm \infty$	0
0	$b\in\overline{\mathbb{R}}$, $b eq 0$	0
$a\in\overline{\mathbb{R}}$, $a\neq 0$	0	• = ∞
0	0	?
$\pm \infty$	$\pm \infty$?

Exercises

1) Calculate the limit of
$$a_n = \frac{3n^5 + n^2 - n}{n^3 + 3}$$
.
Solution. $a_n = \frac{3n^5 + n^2 - n}{n^3 + 3} > \frac{3n^5 + 0 - n^5}{n^3 + 3n^3} = \frac{n^2}{2} \longrightarrow \infty \implies a_n \longrightarrow \infty$
or:
 $a_n = \frac{3n^5 + n^2 - n}{n^3 + 3} \ge \frac{n^5}{n^3} \cdot \frac{3 + \frac{1}{n^3} - \frac{1}{n^4}}{1 + \frac{3}{n^3}} \longrightarrow \infty$,
since $b_n = \frac{n^5}{n^3} = n^2 \longrightarrow \infty$ and $c_n = \frac{3 + \frac{1}{n^3} - \frac{1}{n^4}}{1 + \frac{3}{n^3}} \longrightarrow \frac{3 + 0 - 0}{1 + 0} = 3 > 0$.

2) Calculate the limit of
$$a_n = \frac{3^{2n}}{4^n + 3^{n+1}}$$

Solution.
$$a_n = \frac{3^{2n}}{4^n + 3^{n+1}} = \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot \left(\frac{3}{4}\right)^n} > \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot 1} \longrightarrow \infty \implies a_n \longrightarrow \infty$$

or:

$$a_n = a_n = \frac{3^{2n}}{4^n + 3^{n+1}} = \left(\frac{9}{4}\right)^n \cdot \frac{1}{1 + 3 \cdot \left(\frac{3}{4}\right)^n} \longrightarrow \infty,$$

since
$$b_n = \left(\frac{9}{4}\right)^n \longrightarrow \infty$$
 and $c_n = \frac{1}{1 + 3 \cdot \left(\frac{3}{4}\right)^n} \longrightarrow \frac{1}{1 + 3 \cdot 0} = 1 > 0.$

3) Calculate the limit of
$$a_n = \frac{2^{2n} + (-3)^{n-1}}{5^{n+2} + 7^{n+1}}$$
.

Solution.
$$a_n = \frac{2^{2n} + (-3)^{n-1}}{5^{n+2} + 7^{n+1}} = \frac{4^n - \frac{1}{3} \cdot (-3)^n}{25 \cdot 5^n + 7 \cdot 7^n} = \left(\frac{4}{7}\right)^n \cdot \frac{1 - \frac{1}{3} \cdot \left(-\frac{3}{4}\right)^n}{25 \cdot \left(\frac{5}{7}\right)^n + 7} \longrightarrow 0 \cdot \frac{1 - 0}{0 + 7} = 0.$$

Here we used that $a^n \rightarrow 0$ if |a| < 1.