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5 Periods of Stagnation in the Growth of Quasi-Empirical Theories.

INTRODUCTION

According to logical empiricist orthodoxy, while science is a posteriori,
contentful and (at least in principle) fallible, mathematics is a priori,
tautologous and infallible.1 It may therefore come as a surprise for the
historian of ideas to find statements by some of the best contemporary
experts in foundational studies that seem to herald a renaissance of Mill's
radical assimilation of mathematics to science. In the next section I present
a rather long list of such statements. I then go on (in section 2) to explain

• This paper developed out of some remarks made in the course of a discussion at a
conference in 1965. This discussion was initiated by a paper of Professor Kalmar's on
an empirical approach to mathematics. (The whole discussion is published in Lakatos
(ed.) [1967]).

The paper was originally accepted for publication in this Journal in 1967. Certain
changes were suggested, however, and whilst making these Lakatos decided the paper
needed further modifications. Only some of these had been made at the time of his
death in February 1974.

Lakatos's general epistemological position changed considerably in the period 1967—74
(see particularly his [1970]). No doubt this would have induced substantial changes in
this paper, especially in Sections 2, 4 and 5.

In preparing the paper for the press we have introduced a few minor changes in style and
presentation. We have also added a few footnotes (indicated by a ' • ' ) .

JOHN WORRALL a n d GREGORY CURHIE

1 This empiricist position (and one of its central difficulties) is very clearly described by
Ayer in his [1936]:

. . . Whereas a scientific generalisation is readily admitted to be fallible, the truths
of mathematics and logic appear to everyone to be necessary and certain. But if
empiricism is correct no proposition which has a factual content can be necessary or
certain. Accordingly the empiricist must deal with the truths of logic and mathematics
in one of the two following ways: he must say either that they are not necessary
truths, in which case he must account for the universal conviction that they are; or he
must say that they have no factual content, and then he must explain how a pro-
position which is empty of all factual content can be true and useful and surprising,
(pp. 72-3)
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202 Imre Lakatot

the motivation and rationale of these statements. I then argue (in section 3)
for what I call the 'quasi-empirical' nature of mathematics, as a whole.
This presents a problem—namely what kind of statements may play the
role of potential falsifiers in mathematics. I investigate this problem in
section 4. Finally, in section 5, I examine briefly periods of stagnation in
the growth of 'quasi-empirical' theories.

I EMPIRICISM AND INDUCTION: THE NEW VOGUE IN
MATHEMATICAL PHILOSOPHY?

Russell was probably the first modern logician to claim that the evidence
for mathematics and logic may be 'inductive'. He, who in 1901 had claimed
that the 'edifice of mathematical truths stands unshakable and inexpug-
nable to all the weapons of doubting cynicism',1 in 1924 thought that
logic (and mathematics) is exactly like Maxwell's equations of electro-
dynamics : both 'are believed because of the observed truth of certain of
their logical consequences.'2

Fraenkel claimed in 1927 that:

the intuitive or logical self-evidence of the principles chosen as axioms [of set
theory] naturally plays a certain but not decisive role; some axioms receive
their full weight rather from the self-evidence of the consequences which could
not be derived without them.3

And he compared the situation of set theory in 1927 with the situation of
the infinitesimal calculus in the eighteenth century, recalling d'Alembert's
'Allez en avant, et lafoi vous viendra''.*

Carnap, who at the 1930 conference in Konigsberg still thought that
'any uncertainty in the foundations of the "most certain of all the sciences"
is extremely disconcerting',6 had decided by 1958 that there is an analogy—
if only a distant one—between physics and mathematics: 'the impossibilty
of absolute certainty'.6

Curry drew similar conclusions in 1963:

The search for absolute certainty was evidently a principal motivation for both
Brouwer and Hilbert. But does mathematics need absolute certainty for its
justification? In particular, why do we need to be sure that a theory is consistent,
1 Russell [1901], p. 57
1 Russell [1924], pp. 325-6. He obviously hesitated between the view that one can put

up with this state of affairs (and work out some sort of inductive logic for the Principia),
and the view that one has to go on with the search for self-evident axioms. In the Intro-
duction to the second edition of the Principia, he says that one cannot rest content with
an axiom that has mere inductive evidence (p. xiv), while on p. 59 he devotes a little
chapter to the 'Reasons for Accepting the Axiom of Reducibility" (although still not
giving up the hope of deducing it from some self-evident truth).

• Fraenkel [1927], p. 61. * Fraenkel, op. at., p. 61.
1 Carnap [1931], p. 31. English translation in Benacerraf and Putnam (edi.) [1964].
• Carnap [1958!, p. 240.
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A Renaissance of Empiricism in the Recent Philosophy of Mathematics? 203

or that it can be derived by an absolutely certain intuition of pure time, before
we use it? In no other science do we make such demands. In physics all
theorems are hypothetical; we adopt a theory so long as it makes useful predic-
tions and modify or discard it as soon as it does not. This is what has happened
to mathematical theories in the past, where the discovery of contradictions had
led to modifications in the mathematical doctrines accepted up to the time of
that discovery. Why should we not do the same in the future? Using formalistic
conceptions to explain what a theory is, we accept a theory as long as it is useful,
satisfies such conditions of naturalness and simplicity as are reasonable at that
time, and is not known to lead us into error. We must keep our theories under
surveillance to see that these conditions are fulfilled and to get all the presumptive
evidence of adequacy that we can. The Godel theorem suggests that this is all
we can do; an empirical philosophy of science suggests it is all we should do.1

To quote Quine:

We may more reasonably view set theory, and mathematics generally, in much
the way in which we view theoretical portions of the natural sciences themselves;
as comprising truths or hypotheses which are to be vindicated less by the pure
light of reason than by the indirect systematic contribution which they make to
the organizing of empirical data in the natural sciences.8

And later he said:

To say that mathematics in general has been reduced to logic hints at some new
firming up of mathematics at its foundations. This is misleading. Set theory is
less settled and more conjectural than the classical mathematical superstructure
than can be founded upon it.3

Rosser too belongs to the new fallibilist camp:

According to a theorem of Godel . . . if a system of logic is adequate for even a
reasonable facsimile of present-day mathematics, then there can be no adequate
assurance that it is free from contradiction. Failure to derive the known para-
doxes is very negative assurance at best and may merely indicate lack of skill on
our part. . .*

Church, in 1939 thought that: 'there is no convincing basis for a belief
in the consistency either of Russell's or of Zermelo's system, even as
probable'.6

Godel in 1944 stressed that under the influence of modern criticism
of its foundations, mathematics has already lost a good deal of its 'absolute
certainty' and that in the future, by the appearance of further axioms of
set theory, it will be increasingly fallible.6

In 1947, developing this idea, he explained that for some such new axiom,

even in case it had no intrinsic necessity at all, a (probable) decision about its
truth is possible also in another way, namely, inductively by studying its 'success',

1 Curry [1963], p. 16. See also his [1951], p. 61. * Quine [1958], p. 4.
• Quine [1965], p. 125. 4 Rosser [1953], p. 207.
• Church [1939]. • Godel [1944], p. 213.
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204 Imre Lakatos

that is, its fruitfulness in consequences demonstrable without the new axiom,
whose proofs by means of the new axiom, however, are considerably simpler
and easier to discover, and make it possible to condense into one proof many
different proofs. The axioms for the system of real numbers, rejected by the
intuitionists, have in this sense been verified to some extent owing to the fact
that analytical number theory frequently allows us to prove number theoretical
theorems which can subsequently be verified by elementary methods. A much
higher degree of verification than that, however, is conceivable. There might
exist axioms so abundant in their verifiable consequences, shedding so much
light upon a whole discipline, and furnishing such powerful methods for solving
given problems (and even solving them, as far as that is possible, in a construct-
ivistic way) that quite irrespective of their intrinsic necessity they would have
to be assumed at least in the same sense as any well established physical theory.1

Also, he is reported to have said a few years later that:

the role of the alleged 'foundations' is rather comparable to the function dis-
charged, in physical theory, by explanatory hypotheses . . . The so-called logical
or set-theoretical 'foundation' for number-theory or of any other well established
mathematical theory, is explanatory, rather than really foundational, exactly as
in physics where the actual function of axioms is to explain the phenomena
described by the theorems of this system rather than to provide a genuine
'foundation' for such theorems.*

Weyl says that non-intuitionistic mathematics can be tested, but not
proved:

No Hilbert will be able to assure us of consistency forever; we must be content
if a simple axiomatic system of mathematics has met the test of our elaborate
mathematical experiments so far . . . A truly realistic mathematics should be
conceived, in line with physics, as a branch of the theoretical construction of the
one real world, and should adopt the same sober and cautious attitude toward
hypothetic extensions of its foundations as is exhibited by physics.3

Von Neumann, in 1947, concluded that

After all, classical mathematics, even though one could never again be absolutely
certain of its reliabilty,. . . stood on at least as sound a foundation as, for example,
the existence of the electron. Hence, if one was willing to accept the sciences,
one might as well accept the classical system of mathematics.*

Bernays argues very similarly: It is of course surprising and puzzling
that the more content and power mathematical methods have, the less is
their self-evidence. But 'this will not be so surprising if we consider that
there are similar conditions in theoretical physics1.5

According to Mostowski mathematics is just one of the natural sciences:

1 Godel [1947], p. 531. The word 'probable' was inserted in the reprinted version, G6del
[1964], p. 265.

• Mehlberg [1962], p. 86. » Weyl [1949]. P- 235-
* Neumann [1947], pp. 189-90 * Bernays [1939L P- 83.
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A Renaissance of Empiricism in the Recent Philosophy of Mathematics? 205

[Godel's] and other negative results confirm the assertion of materialistic
philosophy that mathematics is in the last resort a natural science, that its
notions and methods are rooted in experience and that attempts at establishing
the foundations of mathematics without taking into account its originating in
the natural sciences are bound to fail.1

And Kalmar agrees: ' . . . the consistency of most of our formal systems is
an empirical fact; . . . Why do we not confess that mathematics, like other
sciences, is ultimately based upon, and has to be tested in, practice?'*

These statements describe a genuine revolutionary turn in the philo-
sophy of mathematics. Some describe their individual volte-face in
dramatic terms. Russell, in his autobiography, says: 'The splendid
certainty which I had always hoped to find in mathematics was lost in a
bewildering maze . . .'.3 Von Neumann writes: 'I know myself how
humiliatingly easily my own views regarding the absolute mathematical
truth changed . . . and how they changed three times in succession!'4

Weyl, recognising before Godel that classical mathematics was unrescuably
fallible, refers to this state of affairs as 'hard fact'.6

We could go on quoting; but surely this is enough to show that math-
ematical empiricism and inductivism (not only as regards the origin or
method, but also as regards the justification, of mathematics) is more
alive and widespread than many seem to think. But what is the background
and what is the rationale of this new empiricist-inductivist mood? Can
one give it a sharp, criticisable formulation?

2 QUASI-EMPIRICAL VERSUS EUCLIDEAN THEORIES

Classical epistemology has for two thousand years modelled its ideal of a
theory, whether scientific or mathematical, on its conception of Euclidean
geometry. The ideal theory is a deductive system with an indubitable
truth-injection at the top (a finite conjuction of axioms)—so that truth,
flowing down from the top through the safe truth-preserving channels of
valid inferences, inundates the whole system.

It was a major shock for over-optimistic rationalism that science—in
spite of immense efforts—could not be organised in such Euclidean
theories. Scientific theories turned out to be organised in deductive
systems where the crucial truth-value injection was at the bottom—at a
special set of theorems. But truth does not flow upwards. The important
logical flow in such quasi-empirical theories is not the transmission of truth

1 Mostowski [1955], p. 42.
1 Kalmar [1967], pp. 192-3.
1 Russell [1959], p. 212. For further details about Russell's turn, cf. my [1962].
* Neumann [i947]» p. 190.
6 Weyl [1928], p. 87.
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20 6 Itnre Lakatot

but rather the retransmission of falsity—from special theorems at the
bottom ('basic statements') up towards the set of axioms.1

Perhaps the best way to characterise quasi-empirical, as opposed to
Euclidean theories, is this. Let us call those sentences of a deductive system
in which some truth values are initially injected, 'basic statements', and
the subset of basic statements which receive the particular value true,
'true basic statements'. Then a system is Euclidean if it is the deductive
closure of those of its basic statements which are assumed to be true.
Otherwise it is quasi-empirical.

An important feature of both Euclidean and quasi-empirical systems
is the set of particular (usually unwritten) conventions regulating truth
value injections in the basic statements.

A Euclidean theory may be claimed to be true; a quasi-empirical
theory—at best—to be well-corroborated, but always conjectural. Also,
in a Euclidean theory the true basic statements at the 'top' of the deductive
system (usually called 'axioms') prove, as it were, the rest of the system; in
a quasi-empirical theory the (true) basic statements are explained by the
rest of the system.

Whether a deductive system is Euclidean or quasi-empirical is decided
by the pattern of truth value flow in the system. The system is Euclidean if
the characteristic flow is the transmission of truth from the set of axioms
'downwards' to the rest of the system—logic here is an organon of proof; it
is quasi-empirical if the characteristic flow is retransmission of falsity
from the false basic statements 'upwards' towards the 'hypothesis'—logic
here is an organon of criticism? But this demarcation between patterns of
truth value flow is independent of the particular conventions that regulate
the original truth value injection into the basic statements. For instance
a theory which is quasi-empirical in my sense may be either empirical or
non-empirical in the usual sense: it is empirical only if its basic theorems
are spatio-temporally singular basic statements whose truth values are
decided by the time-honoured but unwritten code of the experimental
scientist.3 (We may speak, even more generally, of Euclidean versus
quasi-empirical theories independently of what flows in the logical
channels: certain or fallible truth and falsehood, probability and improb-
ability, moral desirability or undesirability, etc. It is the how of the flow
that is decisive.)

The methodology of a science is heavily dependent on whether it aims
at a Euclidean or at a quasi-empirical ideal. The basic rule in a science
which adopts the former aim is to search for self-evident axioms—
1 For an exposition of the story see my [1962]. The concept and term 'basic statement'

is due to Karl R. Popper; see his [1934], ch. v.
1 Cf. Popper [1963], p. 64. • For a discussion cf. my [1971].
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A Renaissance of Empiricism in the Recent Philosophy of Mathematics? 207

Euclidean methodology is puritanical, antispeculative. The basic rule of
the latter is to search for bold, imaginative hypotheses with high explan-
atory and 'heuristic' power,1 indeed, it advocates a proliferation of alter-
native hypotheses to be weeded out by severe criticism—quasi-empirical
methodology is uninhibitedly speculative.2

The development of Euclidean theory consists of three stages: first the
naive prescientific stage of trial and error which constitutes the prehistory
of the subject; this is followed by the foundational period which reorganises
the discipline, trims the obscure borders, establishes the deductive
structure of the safe kernel; all that is then left is the solution of problems
inside the system, mainly constructing proofs or disproofs of interesting
conjectures. (The discovery of a decision method for theoremhood may
abolish this stage altogether and put an end to the development.)

The development of a quasi-empirical theory is very different. It starts
with problems followed by daring solutions, then by severe tests, refutations.
The vehicle of progress is bold speculations, criticism, controversy between
rival theories, problem-shifts. Attention is always focused on the obscure
borders. The slogans are growth and permanent revolution, not founda-
tions and accumulation of eternal truths.

The main pattern of Euclidean criticism is suspicion: Do the proofs
really prove? Are the methods used too strong and therefore fallible? The
main pattern of quasi-empirical criticism is proliferation of theories and
refutation.

3 MATHEMATICS IS QUASI-EMPIRICAL

By the turn of this century mathematics, 'the paradigm of certainty and
truth', seemed to be the last real stronghold of orthodox Euclideans. But
there were certainly some flaws in the Euclidean organisation even of
mathematics, and these flaws caused considerable unrest. Thus the central
problem of all foundational schools was: 'to establish once and for all the
certitude of mathematical methods'.3 However, foundational studies
unexpectedly led to the conclusion that a Euclidean reorganisation of
mathematics as a whole may be impossible; that at least the richest
mathematical theories were, like scientific theories, quasi-empirical.
Euclideanism suffered a defeat in its very stronghold.

The two major attempts at a perfect Euclidean reorganisation of classical

1 For the latter concept cf. Lakatos [1970].
* The elaboration of empirical methodology—which of course is the paradigm of quasi-

empirical methodology—is due to Karl Popper.
• Hilbert [1925], p. 35.
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208 Imre Lakatos

mathematics—logicism and formalism1—are well known, but a brief
account of them from this point of view may be helpful.

(a) The Frege-Russell approach aimed to deduce all mathematical truths
—with the help of ingenious definitions—from indubitably true logical
axioms. It turned out that some of the logical (or rather set theoretical)
axioms were not only not indubitably true but not even consistent. It turned
out that the sophisticated second (and further) generations of logical (or set-
theoretical) axioms—devised to avoid the known paradoxes—even if true,
were not indubitably true (and not even indubitably consistent), and that
the crucial evidence for them was that classical mathematics might be
explained—but certainly not proved—by them.

Most mathematicians working on comprehensive 'grandes logiques' are
well aware of this. We have already referred to Russell, Fraenkel, Quine
and Rosser. Their 'empiricist' turn is in fact a quasi-empiricist one: they
realised (independently even of Godel's results) that the Principia Math-
ematica and the strong set-theories, like Quine's New Foundations and
Mathematical Logic, are all quasi-empirical.

Workers in this field are conscious of the method they follow: daring
conjectures, proliferation of hypotheses, severe tests, refutations. Church's
account of an interesting theory based on a restricted form of the law of
excluded middle (later shown to be inconsistent by Kleene and Rosser1)
outlines the quasi-empirical method:
Whether the system of logic which results from our postulates is adequate
for the development of mathematics, and whether it is wholly free from con-
tradiction, are questions which we cannot now answer except by conjecture.
Our proposal is to seek at least an empirical answer to these questions by carrying
out in some detail a derivation of the consequences of our postulates, and it is
hoped either that the system will turn out to satisfy the conditions of adequacy
and freedom from contradiction or that it can be made to do so by modifications
or additions.3

Quine characterised the crucial part of his Mathematical Logic as a
'daring structure . . . added at the constructor's peril'.4 Soon it was shown

1 Intuitionism is omitted: it never aimed at a reorganisation but at a truncation of classical
mathematics. ('Editors' Note: Not all the theorems of intuitionist mathematics are theo-
rems of classical mathematics. In this sense, Lakatos is wrong to describe intuitionism
as simply a 'truncation' of classical mathematics. Nevertheless, an important point re-
mains. While Russell's logicism and Hilbert's formalism each regarded its task as the
justification of the whole of classical mathematics, Brouwer's intuitionism was willing to
jettison large parts of classical mathematics which do not meet its standards of justifi-
cation.)

* KJeene and Rosser [1935]. ' Church [1932], p. 348.
* Quine [1941a], p. 122. Some critics of Quine may say that it is only he who has made a

'daring' structure out of the natural simplicity of mathematics. But surely the Cantorian
paradise is a 'bold theoretical construction, and as such the very opposite of analytical
self-evidence' (Weyl [1947], p. 64). Also cf. the Weyl quotation in section 3.
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A Renaissance of Empiricism in the Recent Philosophy of Mathematics? 209

by Rosser to be inconsistent and Quine then himself described his earlier
characterisation as one that had 'a prophetic ring'.1

One can never refute Euclideanism: even if forced to postulate highly
sophisticated axioms, one can always stick to one's hopes of deriving them
from some deeper layer of self-evident foundations.2 There have been
considerable and partly successful efforts to simplify Russell's Principia
and similar logicistic systems. But while the results were mathematically
interesting and important they could not retrieve the lost philosophical
position. The grandes logiques cannot be proved true—nor even consistent;
they can only be proved false—or even inconsistent.

(b) While the Frege-Russell approach aimed to turn mathematics into
a unified classical Euclidean theory the Hilbert approach offered a radically
new modification of the Euclidean programme, exciting both from the
mathematical and the philosophical points of view.

Hilbertians claimed that classical analysis contains an absolutely true
Euclidean kernel. But along side this there are 'ideal elements' and 'ideal
statements' which, though indispensable for the deductive-heuristic
machinery, are not absolutely true (in fact they are neither true nor false).
But if the whole theory, containing both the concrete-inhaltlich and the
ideal statements can be proved consistent in a Euclidean metamathe-
matics,3 the entire classical analysis would be saved.* That is, analysis
is a quasi-empirical theory* but the Euclidean consistency proof will
see to it that it should have no falsifiers. The sophistication of Cantorian
speculation is to be safeguarded not by deeper-seated Euclidean axioms in
1 Quine [19416], p. 163. By the way, the most interesting feature of Rosser's paper is the

search for ways of testing the consistency of ML. Rosser shows that 'if one can prove
•201 from the remaining axioms, then the remaining axioms are inconsistent' (Rosser
[i94i], P- 97)-

• Also, one can choose to cut down a quasi-empirical theory to its Euclidean kernel (that
is the essential aspect of the intuitionist programme).

' Originally the metatheory was not to be axiomatised but was to consist of simple^
protofinitary thought-experiments. In Bologna (1928) von Neumann even criticised
Tarski for axiomatising it. (The generalisation of the concept of 'Euclidean theory' to
informal, unaxiomatised theories does not constitute any difficulty.)

• Editors' Note: Lakatos is, perhaps, wrong to think that Hilbert's philosophy, at least as
here presented, can be subsumed easily under Euclideanism. Metamathematics is an
informal unaxiomatised theory and such theories do not have the required deductive
structure to be candidates for Euclidean status. Informal theories can obviously be axiom-
atised, but one of Hilbert's central claims was that there was no need for this in the case
of metamathematics (cj. footnote 2 above). Each principle assumed in a metamathe-
matical proof was to be so obviously true as not to be in need of justification (or, rather,
to be immediately justified by the so-called 'global intuition').

4 To quote Weyl again:
. . . whatever the ultimate value of Hilbert's program, his bold enterprise can claim
one merit: it has disclosed to us the highly complicated and ticklish logical structure
of mathematics, its maze of back-connections, which result in circles of which it
cannot be gathered at a first glance whether they might not lead to blatant contradic-
tions, (op. cit., p. 61)
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210 Imre Lakatos

the theory itself—Russell has already failed in this venture—but by an
austere Euclidean metatheory.

Eventually, Hilbertians denned the set of statements whose truth
values could be regarded as directly given (the set of finitistically true
statements) so clearly that their programme could be refuted.1 The
refutation was provided by Godel's theorem which implied the impossibil-
ity of a finitary consistency proof for formalised arithmetic. The reaction
of formalists is well summed up by Curry:

This circumstance has led to a difference of opinion among modern formalists,
or rather, it strengthened a difference of opinion which already existed. Some
think that the consistency of mathematics cannot be established on a priori
grounds alone and that mathematics must be justified in some other way. Others
maintain that there are forms of reasoning which are a priori and constructive
in a wider sense and that in terms of these the Hilbert program can be carried
out.a

That is, either metamathematics was to be recognised as a quasi-empirical
theory or the concept of finitary or a priori had to be stretched. Hilbert
chose the latter option. According to him the class of a priori methods was
now to include, for example, transfinite induction up to e0, used in
Gentzen's proof of the consistency of arithmetic.

But not everybody was happy about this extension. Kalmar, who applied
Gentzen's proof to the Hilbert-Bernays system, never believed that his
proof was Euclidean. According to Kleene: 'To what extent the Gentzen
proof can be accepted as securing classical number theory . . . is . . . a
matter for individual judgment, depending on how ready one is to accept
induction up to e0 as a finitary method.'3 Or, to quote Tarski:

. . . there seems to be a tendency among mathematical logicians to overemphasize
the importance of consistency problems, and the philosophical value of the
results so far in this direction seems somewhat dubious. Gentzen's proof of the
consistency of arithmetic is undoubtedly a very interesting metamathematical
result which may prove very stimulating and fruitful. I cannot say, however,
that the consistency of arithmetic is now much more evident to me (at any rate,
perhaps to use the terminology of the differential calculus, more evident than by
epsilon) than it was before the proof was given. To clarify a little my reactions:
let G be a formalism just adequate for formalizing Gentzen's proof, and let A
be the formalism of arithmetic. It is interesting that the consistency of A can be
proved in G; it would perhaps be equally interesting if it should turn out that
the consistency of G can be proved in A*

However, even those who find transfinite induction up to e0 infallible
would not be happy to go on stretching the concept of infallibility so as to

1 Herbrand [1930], p. 248. It took three decades to arrive at this definition.
1 Curry [1963], p. 11.
1 Kleene [1952], p. 479. 4 Tarski [1934]. P- '9-
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A Renaissance of Empiricism in the Recent Philosophy of Mathematics? 211

accommodate consistency proofs of stronger theories. In this sense 'the
real test of proof-theory will be the proof of the consistency of analysis',1

and this has still to be seen.
Godel's and Tarski's incompleteness results however reduce the

chances of the final success of Hilbert's programme still further. For if
extant arithmetic cannot be proved by the original Hilbertian standards,
the gradual, consistent (and indeed, aj-consistent) augmentation of theories
containing arithmetic by further axioms can only be reached by still more
fallible methods. That is, the future development of arithmetic will
increase its fallibility. Godel himself has pointed this out in his paper on
Russell's mathematical logic:

[Russell] compares the axioms of logic and mathematics with the laws of nature
and logical evidence with sense perception, so that the axioms need not neces-
sarily be evident in themselves, but rather their justification lies (exactly as in
physics) in the fact that they make it possible for these 'sense perceptions' to be
deduced; which of course would not exclude that they also have a kind of
intrinsic plausibility similar to that in physics. I think that (provided 'evidence'
is understood in a sufficiently strict sense) this view has been largely justified
by subsequent developments, and it is to be expected that it will be still more
so in the future. It has turned out that (under the assumption that modern
mathematics is consistent) the solution of certain arithmetical problems requires
the use of assumptions essentially transcending arithmetic, i.e., the domain of
the kind of elementary indisputable evidence that may be most fittingly compared
with sense perception. Furthermore it seems likely that for deciding certain
questions of abstract set theory and even for certain related questions of the
theory of real numbers new axioms based on some hitherto unknown idea will
be necessary. Perhaps also the apparently unsurmountable difficulties which some
other mathematical problems have been presenting for many years are due to
the fact that the necessary axioms have not yet been found. Of course, under
these circumstances mathematics may lose a good deal of its 'absolute certainty';
but, under the influence of the modern criticism of the foundations, this has
already happened to a large extent. There is some resemblance between this
conception of Russell and Hilbert's 'supplementing the data of mathematical in-
tuition' by such axioms as, e.g., the law of excluded middle which are
not given by intuition according to Hilbert's view; the borderline how-
ever between data and assumptions would seem to lie in different places
according to whether we follow Hilbert or Russell.2

Quine says that in the field of grande logique construction 'at the latest,
the truism idea received its deathblow from Godel's incompleteness
theorem. Godel's incompleteness theorem can be made to show that we
can never approach completeness of elementhood axioms without approach-
ing contradiction . . .'3

1 Bernays and Hilbert [1939], p. vii.
1 Godel [1944], p. 213. ' Quine [1941a], p. 127.
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There are many possible ways of augmenting systems including arith-
metic. One is through adding strong, arithmetically testable, axioms of
infinity to grande logiques.1 Another is through constructing strong ordinal
logics.2 A third one is to allow non-constructive rules of inference.8 A
fourth one is the model-theoretic approach.4 But all of them are fallible,
not less fallible—and not less quasi-empirical—than the ordinary classical
mathematics which was so much in want of foundations. This recognition
—that not only the grandes logiques, but also mathematics is quasi-empiri-
cal—is reflected in the 'empiricist' statements by Gb'del, von Neumann,
Kalmar, Weyl and others.

(It should however be pointed out that some people believe that some
of the principles used in these different methods are a priori and they were
arrived at by 'reflection'. For instance, Godel's empiricism is qualified by
the hope that set theoretical principles may be found which are a priori
true. He claims that Mahlo's 'axioms show clearly, not only that the
axiomatic system of set theory as used today is incomplete, but also that
it can be supplemented without arbitrariness by new axioms which only
unfold the content of the concept of set explained above'.6 (Godel,
however, does not seem to be very sure of the a priori characterisability of
the concept of set, as is evident from his already quoted quasi-empiricist
remarks and also from his hesitation in his [1938], where he says that the
axiom of constructibility 'seems to give a natural completion of the axioms
of set theory, in so far as it determines the vague notion of an arbitrary
infinite set in a definite way'.6) Weyl actually made fun of Godel's over-
optimistic stretching of the possibilities of a priori knowledge:

Godel, with his basic trust in transcendental logic, likes to think that our logical
optics is only slightly out of focus and hopes that after some minor correction of
it we shall see sharp, and then everybody will agree that we see right. But he who
does not share this trust will be disturbed by the high degree of arbitrariness
involved in a system like Z, or even in Hilbert's system. How much more
convincing and closer to facts are the heuristic arguments and the subsequent
systematic constructions in Einstein's general relativity theory, or the Heisenberg
1 Such strong axioms were formulated by Mahlo, Tarski and Levy. As to the arithmetical

testability of these axioms:
It can be proved that these axioms also have consequences far outside the domain of
very great transfinite numbers, which is their immediate subject matter: each of
them, under the assumption of its consistency, can be shown to increase the number of
decidable propositions even in the field of Diophantine equations. (Godel [1947].
P- 52°)

1 This line of research was initiated by Turing ([1939]) and developed by Feferman
([1968]).

'C / . e.g. Rosser [1937]; Tarski [1939]; Kleene [1943].
4 C/. Kemeny [1958], p. 164.
1 Godel [1964], P- 264 (C/. Godel [1947], p. 520). • Godel [1938], p. 557.
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-Schrodinger quantum mechanics. A truly realistic mathematics should be
conceived, in line with physics, as a branch of the theoretical construction of
the one real world, and should adopt the same sober and cautious attitude
towards hypothetic extensions of its foundations as is exhibited by physics.1

Kreisel, however, extols this sort of aprioristic reflection by which, he
claims, one gains set theoretical axioms, and 'right' definitions, and calls
anti-apriorism an 'antiphilosophic attitude' and the idea of progress by
trial and error empirically false.2 What is more, in his reply to Bar-Hillel,
he wants to extend this method to science, thereby re-discovering Aristotelian
essentialism. He adds: 'If I were really convinced that reflection is extra-
ordinary or illusory I should certainly not choose philosophy as a pro-
fession; or, having chosen it, I'd get out fast'.3 In his comment on
Mostowski's paper he tries to play down Gbdel's hesitation as out of
date.4 But just as Godel immediately refers to inductive evidence, Kreisel
refers (in the Reply) to the 'limitations' of the heuristic of reflection. (So,
after all, 'reflection', 'explication' is fallible.)

4 THE POTENTIAL FALSIFIERS OF MATHEMATICS

If mathematics and science are both quasi-empirical, the crucial difference
between them, if any, must be in the nature of their 'basic statements', or
'potential falsifiers'. The 'nature' of a quasi-empirical theory is decided
by the nature of the truth-value injections into its potential falsifiers.6

Now nobody will claim that mathematics is empirical in the sense that its
potential falsifiers are singular spatio-temporal statements. But then what
is the nature of mathematics? Or, what is the nature of the potential
falsifiers of mathematical theories?6 The very question would have been
an insult in the years of intellectual honeymoon of Russell or Hubert.
After all, the Principia or the Grundlagen der Mathematik were meant to
put an end—once and for all—to counterexamples and refutations in
mathematics. Even now the question still raises some eyebrows.

But comprehensive axiomatic set theories and systems of metamathe-
matics, can be, and indeed have been, refuted. Let us first take comprehen-
sive axiomatic set theories. Of course, they have potential logical falsifiers:
statements of the form/) & -\p. But are there other falsifiers? The potential
falsifiers of science, roughly speaking, express the 'hard facts'. But is
there anything analogous to 'hard facts' in mathematics? If we accept the
view that a formal axiomatic theory implicitly defines its subject-matter,
then there would be no mathematical falsifiers except the logical ones.
1 Weyl, op. cit., p. 235. • Kreisel [1967a], p. 140. ' Kreisel [19676], p. 178.
4 Kreisel [1967c], pp. 97-8. * See above, p. 206.
' It is hoped that this Popperian formulation of the age-old question will shed new light

on some questions in the philosophy of mathematics.
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But if we insist that a formal theory should be the formalisation of some
informal theory, then a formal theory may be said to be 'refuted' if one of
its theorems is negated by the corresponding theorem of the informal
theory. One could call such an informal theorem a heuristic falsifier of the
formal theory.1

Not all formal mathematical theories are in equal danger of heuristic
refutation in a given period. For instance, elementary group theory is
scarcely in any danger: in this case the original informal theories have
been so radically replaced by the axiomatic theory that heuristic refutations
seem to be inconceivable.

Set theory is a subtler question. Some argue that after the total des-
truction of naive set theory by logical falsifiers one cannot speak any more
of set-theoretical facts: one cannot speak of an intended interpretation of
set theory any more. But even some of those who dismiss set-theoretical
intuition may still agree that axiomatic set theories perform the task of
being the dominant, unifying theory of mathematics in which all available
mathematical facts {i.e. some specified subset of informal theorems) have
to be explained. But then one can criticise a set theory in two ways: its
axioms may be tested for consistency and its definitions may be tested for
the 'correctness' of their translation of branches of mathematics like
arithmetic. For instance, we may some day face a situation where some
machine churns out a formal proof in a formal set theory of a formula
whose intended meaning is that there exists a non-Goldbachian even
number. At the same time a number theorist might prove informally that
all even numbers are Goldbachian. If his proof can be formalised within
our system of set-theory, then our theory will be inconsistent. But if it
cannot be thus formalised, the formal set theory will not have been shown
to be inconsistent, but only to be a false theory of arithmetic (while still
being possibly a true theory of some mathematical structure that is not
isomorphic with arithmetic). Then we may call the informally proved
Goldbach theorem a heuristic falsifier, or more specifically, an arithmetical
falsifier of our formal set theory.2 The formal theory is false in respect of
1 It would be interesting to investigate how far the demarcation between logical and

heuristic falsifiers corresponds to Curry's demarcation between mathematical truth and
'quasi-truth' (or 'acceptability")." Cf. his [1951], especially ch. xi. Curry calls his philo-
sophy 'formalist' as opposed to 'inhaltich' or 'contensive' philosophies, like Platonism
or intuitionism (Curry [1965], p. 80). However, besides his philosophy of formal
structure, he has a philosophy of acceptability—but surely one cannot explain the
growth of formal mathematics without acceptability considerations, so Curry offers an
'inhalilich' philosophy after all.

1 The expression ' <o-consistency', is as Quine pointed out (Quine [1953] p. 117.), mis-
leading. A demonstration of the ' cw-inconsistency' of a system of arithmetic would in fact
be a heuristic falsification of it. Ironically, the historical origin of the misnomer was that
the phenomenon was used by Gddel and Tarski precisely to divorce truth (' co-consistency')
from consistency.
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the informal explanandum that it had set out to explain; we have to replace
it by a better one. First we may try piecemeal improvements. It may have
been only the definition of 'natural number' that went wrong and then
the definition could be 'adjusted' to each heuristic falsifier. The axiomatic
system itself (with its formation and transformation rules) would become
useless as an explanation of arithmetic only if it was altogether 'numerically
insegregative',1 i.e. if it turned out that no finite sequence of adjustments
of the definition eliminates all heuristic falsifiers.

Now the problem arises: what class of informal theorems should be
accepted as arithmetical falsifiers of a formal theory containing arithmetic?

Hilbert would have accepted only finite numerical equations (without
quantifiers) as falsifiers of formal arithmetic. But he could easily show that
all true finite numerical equations are provable in his system. From this
it followed that his system was complete with regard to true basic state-
ments, therefore, if a theorem in it could be proved false by an arithmetical
falsifier, the system was also inconsistent, for the formal version of the
falsifier was already a theorem of the system. Hilbert's reduction of falsifiers
to logical falsifiers (and thereby the reduction of truth to consistency) was
achieved by a very narrow ('finitary') definition of arithmetical basic
statements.

Godel's informal proof of the truth of the Godelian undecidable
sentence posed the following problem: is the Principia or Hilbert's
formalised arithmetic—on the assumption that each is consistent—true
or false if we adjoin to it the negation of the Godel sentence? According to
Hilbert the question should have been meaningless, for Hilbert was an
instrumentalist with regard to arithmetic outside the finitary kernel and
would not have seen any difference between systems of arithmetic with
the Godel sentence or with its negation as long as they both equally
implied the true basic statements (to which, by the way, his implicit
meaning-and-truth-definition was restricted). Godel proposed2 to extend
the range of (meaningful and true) basic statements from finitary numerical
equations also to statements with quantifiers and the range of proofs to
establish the truth of basic statements from 'finitary' proofs to a wider
class of intuitionistic methods. It was this methodological proposal that
divorced truth from consistency and introduced a new pattern of con-
jectures and refutations based on arithmetical falsifiability: it allowed for
daring speculative theories with very strong, rich axioms while criticising
them from the outside by informal theories with weak, parsimonious
axioms. Intuitionism is here used not for providing foundations but for

1 See Quine, loc. cit., p. 118.
1 See his intervention in 1930 in Konigsberg; recorded in Godel [1931].
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providing falsifiers, not for discouraging but for encouraging and criticising
speculation!

It is surprising how far constructive and even finite falsifiers can go in
testing comprehensive set theories. Strong axioms of infinity for instance
are testable in the field of Diophantine equations.1

But comprehensive axiomatic set theories do not have only arithmetical
falsifiers. They may be refuted by theorems—or axioms—of naive set
theory. For instance Specker 'refuted' Quine's New Foundations by proving
in it that the ordinals are not well-ordered by ' =%' and that the axiom of
choice must be given up.2 Now is this 'refutation' of the New Foundations,
even a heuristic refutation? Should the well-ordering theorem of shattered
naive set theory overrule Quine's system? Even if, with Godel and Kreisel,
we consider naive set theory as re-established by Zermelo's correction,3 we
could admit the well-ordering theorem and the axiom of choice as a
heuristic falsifier only if we again extend the class of (intuitionistic)
heuristic falsifiers to (almost?) any theorem in corrected naive set theory.
(We may call the former the class of strong heuristic falsifiers and the latter
the class of weak heuristic falsifiers.) But this would surely be irrational:
at best we have to consider them as two rival theories {strictly speaking
no heuristic falsifier can be more than a rival hypothesis). After all nothing
prevents us from forgetting about naive sets and focusing our attention
on the new unintended model of New Foundations !4

Indeed, we can go even further. For instance, if it turned out that all
strong set-theoretical systems are arithmetically false, we may modify our
arithmetic—the new, non-standard arithmetic may possibly serve the
empirical sciences just as well. Rosser and Wang, who—three years before
Specker's result—showed that in no model of New Foundations does ' < '
well-order both finite cardinals and infinite ordinals as long as we stick
to the intended interpretation of ' ^ ' , discuss this possibility:

One may well question whether a formal logic which is known to have no
standard model is a suitable framework for mathematical reasoning. The proof
of the pudding is in the eating. For topics in the usual range of classical mathe-
matical analysis, the reasoning procedures of Quine's New Foundations are as
close to the accepted classical reasoning procedures as for any system known to
us. However, in certain regions, notably when dealing with extremely large
ordinals, the reasoning procedures of Quine's New Foundations reflect the
absence of a standard model, and appear strange to the classically minded
mathematician. However, since the theory of ordinals is suspect when applied

1 See above, p. 212, fn. 1
1 Specker [1953]; also cf. Quine [1963], p. 294 ff.
1 Cf. Godel [1947], p. 518 and Kreisel [1967].
* For philosophers of science after Popper it should anyway be a commonplace that

expiations and explanandum may be rival hypotheses.
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to very large ordinals, it is hardly a serious defect in a logic if it makes this fact
apparent.

We suspect that the idea that a logic must have a standard model if it is to be
acceptable as a framework for mathematical reasoning is merely a vestige of the
old idea that there is such a thing as absolute mathematical truth. Certainly the
requirements on a standard model are that it reflect certain classically conceived
notions of the structure of equality, integers, ordinals, sets, etc. Perhaps these
classically conceived notions are incompatible with the procedures of a strong
mathematical system, in which case a formal logic for the strong mathematical
system could not have a standard model.1

This of course amounts to the claim that the only real falsifiers are
logical ones. But other mathematicians, Godel for example, would surely
reject the New Foundations on Specker's refutation: for him the axiom of
choice and the well-ordering of ordinals are self-evident truths.2

No doubt the problem of basic statements in mathematics will attract
increasing attention with the further development of comprehensive set
theories. Recent work indicates that some very abstract axioms may soon
be found testable in most unexpected branches of classical mathematics:
e.g. Tarski's axiom of inaccessible ordinals in algebraic topology.8 The
continuum hypothesis also will provide a testing ground: the accumulation
of further intuitive evidence against the continuum hypothesis may lead to
the rejection of strong set theories which imply it.2 Godel [1964] enumerates
quite a few implausible consequences of the continuum hypothesis: a
crucial task of his new Euclidean programme is to provide a self-evident
set theory from which its negation is derivable.4

If one regards comprehensive set theories—and mathematical theories
in general—as quasi-empirical theories, a host of new and interesting
problems arise. Until now the main demarcation has been between the

1 Rosser and Wang [1950], p. 115.
1 In his original paper [1947], Godel says that the axiom of choice is exactly as evident

as the other axiom* 'in the present state of our knowledge' (p. 516). In the 1964 reprint
(Godel [1964]) this has been replaced by 'from almost every possible point of view'
(p. 259 n. 2). He proposed, after some hesitation, a further extension of the range of
set-theoretical basic statements that in fact amounted to a new Euclidean programme—
but immediately proposed a quasi-empirical alternative in the case of failure. (See
especially the supplement to his [1964].)

' Cf. Myhill [i960], p. 464.
* Kreisel criticises Godel (Kreisel [19670]) for not discussing his turn from proposing

the constructibility axiom as a completion of set theory in 1938 to surreptitiously
withdrawing it in 1947. One would think the reason for the turn is obvious: in the meantime
he must have studied the work done on the consequences of the continuum hypothesis
(mainly by Lusin and Sierpinski) and must have come to the conclusion that a set theory
in which the hypothesis is deducible (like the one he suggested in 1938) is false. It may
be interesting to note that according to Lusin a simple proposition in the theory of
analytic sets which Sierpinski showed to be incompatible with the continuum hypothesis
is 'indubitably true'—indeed he puts forward an impressive argument (Lusin [1935] and
Sierpinski [1935]).
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proved and the unproved (and the provable and unprovable); radical
justificationists ('Positivists') equated this demarcation with the demarca-
tion between meaningful and meaningless. But now there will be a new
demarcation problem: the problem of demarcation between testable and
untestable {metaphysical) mathematical theories with regard to a given set of
basic statements. Certainly one of the surprises of set theory was the fact
that theories about sets of very high cardinality are testable in respect to a
relatively modest kernel of basic statements (and thus have arithmetical
content).1 Such a criterion will be interesting and informative—but it
would be unfortunate if some people should want to use it again as a
meaning criterion as happened in the philosophy of science.

Another problem is that testability in mathematics rests on the slippery
concept of heuristic falsifier. A heuristic falsifier after all is a falsifier only
in a Pickwickian sense: it does not falsify the hypothesis, it only suggests
a falsification—and suggestions can be ignored. It is only a rival hypothesis.
But this does not separate mathematics as sharply from physics as one may
think. Popperian basic statements too are only hypotheses after all. The
crucial role of heuristic refutations is to shift problems to more important
ones, to stimulate the development of theoretical frameworks with more
content. One can show of most classical refutations in the history of science
and mathematics that they are heuristic falsifications. The battle between
rival mathematical theories is most frequently decided also by their
relative explanatory power.2

Let us finally turn to the question: what is the 'nature' of mathematics,
that is, on what basis are truth values injected into its potential falsifiers?
This question can be in part reduced to the question: What is the nature of
informal theories, that is, what is the nature of the potential falsifiers of
informal theories? Are we going to arrive, tracing back problem-shifts
through informal mathematical theories to empirical theories, so that
mathematics will turn out in the end to be indirectly empirical, thus justifying
Weyl's, von Neumann's and—in a certain sense—Mostowski's and
Kalmar's position? Or is construction the only source of truth to be injected
into a mathematical basic statement? Or platonistic intuition} Or convention?
The answer will scarcely be a monolithic one. Careful historico-critical
case-studies will probably lead to a sophisticated and composite solution.
But whatever the solution may be, the naive school concepts of static
rationality like apriori-aposteriori, analytic-synthetic will only hinder its
emergence. These notions were devised by classical epistemology to
1 The term 'content' is here used in a Popperian sense: the 'arithmetical content' is the

set of arithmetical falsifiers.
• Cj. Lakatos [1977]. 'Editors' Note: This study in rival research programmes in the

theory of the continuum will be published in a volume of collected essays.
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classify Euclidean certain knowledge—for the problem-shifts in the
growth of quasi-empirical knowledge they offer no guidance.*

5 PERIODS OF STAGNATION IN THE GROWTH OF QUASI-EMPIRICAL

THEORIES

This history of quasi-empirical theories is a history of daring speculations
and dramatic refutations. But new theories and spectacular refutations
(whether logical or heuristic) do not happen every day in the life of quasi-
empirical theories, whether scientific or mathematical. There are occasional
long stagnating periods when a single theory dominates the scene without
having rivals or acknowledged refutations. Such periods make many
forget about the criticisability of the basic assumptions. Theories, which
looked counterintuitive or even perverted when first proposed, assume
authority. Strange methodological delusions spread: some imagine that
the axioms themselves start glittering in the light of Euclidean certainty,
others imagine that the deductive channels of elementary logic have the
power to retransmit truth (or probability) 'inductively' from the basic
statements to the extant axioms.

The classical example of an abnormal period in the life of a quasi-
empirical theory is the long domination of Newton's mechanics and
theory of gravitation. The theory's paradoxical and implausible character
put Newton himself into despair: but after a century of corroboration
Kant thought it was self-evident. Whewell made the more sophisticated
claim that it had been solidified by 'progressive intuition',1 while Mill
thought it was inductively proved.

Thus we may name these two delusions 'the Kant-Whewell delusion',
and the 'inductivist delusion'. The first reverts to a form of Euclideanism;
• Editor1' note: Since this paper was written a good deal of further work has been done on
testing proposed set theoretical axioms, like the continuum hypothesis and strong
axioms of infinity. (A good survey is to be found in Fraenkel, Bar Hillel and Levy [1973].
See also Shoenfield [1071] for the axiom of measurable cardinals.) Levy and Solovay's
work ([1967]) indicates that large cardinal axioms will not decide the continuum problem.
As another line of attack, alternatives to the continuum hypothesis have been for-
mulated and tested. An example is 'Martin's axiom', which is a consequence of the
continuum hypothesis, but consistent with its negation (see Martin and Solovay [1970]
and Solovay and Tennenbaum [1971]). Of the six consequences of the Continuum
Hypothesis which Godel regarded as highly implausible, three follow also from Martin's
Axiom. But Martin and Solovay take a different attitude to that taken by Godel. They
have, they say, 'virtually no intuitions' about the truth or falsity of these three conse-
quences.

Lakatos does not, by the way, distinguish between two different types of mathematical
consequences of axioms of this kind. Many of these consequences, for example about
constructible real numbers, despite being about 'ordinary' mathematical objects are of
interest only to set theoreticians. Few such consequences will be of a kind which are
testable against informally proved mathematical theorems.

1 E.g. Whewell [i860], especially ch. xxix.
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the second establishes a new—inductivist—ideal of deductive theory
where the channels of deduction can also carry truth (or some quasi-truth
like probability) upwards, from the basic statements to the axioms.

The main danger of both delusions lies in their methodological effect:
both trade the challenge and adventure of working in the atmosphere of
permanent criticism of quasi-empirical theories for the torpor and sloth
of a Euclidean or inductivist theory, where axioms are more or less
established, where criticism and rival theories are discouraged.1

The gravest danger then in modern philosophy of mathematics is that
those who recognise the fallibility and therefore science-likeness of mathe-
matics, turn for analogies to a wrong image of science. The twin delus-
ions of 'progressive intuition' and of induction can be discovered anew in
the works of contemporary philosophers of mathematics.2 These philoso-
phers pay careful attention to the degrees of fallibility, to methods which
are a priori to some degree, and even to degrees of rational belief. But
scarcely anybody has studied the possibilities of refutations in mathe-
matics.8 In particular, nobody has studied the problem of how much
of the Popperian conceptual framework of the logic of discovery in
the empirical sciences is applicable to the logic of discovery in the quasi-
empirical sciences in general and in mathematics in particular. How can
one take fallibilism seriously without taking the possibility of refutations
seriously? One should not pay lip-service to fallibilism: 'To a philosopher
there can be nothing which is absolutely self-evident' and then go on to
state: 'But in practice there are, of course, many things which can be
called self-evident . . . each method of research presupposes certain
results as self-evident.'4 Such soft fallibilism divorces fallibilism from
criticism and shows how deeply ingrained the Euclidean tradition is in
mathematical philosophy. It will take more than the paradoxes and
Godel's results to prompt philosphers to take the empirical aspects of
mathematics seriously, and to elaborate a philosophy of critical fallibilism,
which takes inspiration not from the so-called foundations but from the
growth of mathematical knowledge.
1 Cf. Kuhn, especially his [1963].
• The main protagonists of Whewellian progressive intuition in mathematics are Bernays,

Godel, and Kreisel (see above, pp. 212—13). G6del also provides an inductivist criterion of
truth, should progressive (or as Carnap would call it 'guided') intuition fail: an axiomatic
set theory is true if it is richly verified in informal mathematics or physics. 'The simplest
case of an application of the criterion under discussion arises when some set-theoretical
axiom has number-theoretical consequences verifiable by computation up to any given
integer' (Supplement to Godel [1964], p. 272).

1 Kalmar—with his criticism of Church's thesis—is a notable exception (see Kalmar
[1959])-

* Bernays [1965], p. 127
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