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Estimating the Lengths of Memory Words
Gusztáv Morvai, Benjamin Weiss

Abstract—For a stationary stochastic process {Xn} with values
in some set A, a finite word w ∈ AK is called a memory word
if the conditional probability of X0 given the past is constant on
the cylinder set defined by X−1

−K = w. It is a called a minimal
memory word if no proper suffix of w is also a memory word.
For example in a K-step Markov processes all words of length
K are memory words but not necessarily minimal. We consider
the problem of determining the lengths of the longest minimal
memory words and the shortest memory words of an unknown
process {Xn} based on sequentially observing the outputs of a
single sample {ξ1, ξ2, ...ξn}. We will give a universal estimator
which converges almost surely to the length of the longest minimal
memory word and show that no such universal estimator exists
for the length of the shortest memory word. The alphabet A may
be finite or countable.

Index Terms—Markov chains, order estimation, probability,
statistics, stationary processes, stochastic processes

I. INTRODUCTION

For a stationary stochastic process {Xn} with values in
some set A, a finite word w ∈ AK is called a memory word if
for the conditional probability of X0 given the past is constant
on the cylinder set defined by X−1

−K = w. We are using
here the customary notation {Xj

i = Xi, Xi+1, ...Xj}. For
example in a K-step Markov processes all words of length
K are memory words. However, in general K-step Markov
processes may also have short memory words, cf. Bühlmann
and Wyner [2]. Naturally any left extension of a memory
word is also a memory word and it is natural to consider
the minimal memory words, namely those none of whose
proper suffixes are memory words. We consider the problem of
determining the lengths of the longest minimal memory words
and of the shortest memory words of an unknown process
{Xn} based on sequentially observing the outputs of a single
sample {ξ1, ξ2, ...ξn}. That is to say we would like to have
sequences of functions Ln, Sn so that Ln(ξ1, ξ2, ...ξn) will
converge almost surely to the K in case the process is K-
step Markov (but not (K − 1)-step Markov), and to infinity
otherwise, while Sn(ξ1, ξ2, ...ξn) will converge almost surely
to the length of the shortest memory word in the process.

Most previous work of this kind (see for example Csiszár
and Shields [3], Csiszár [4] and Ryabko et. al. [18]) was
restricted to finite state processes. Our estimators will allow
for countable alphabets and this precludes the use of a priori
exponential estimates which can be used in the class of finite
state K-step Markov chains. In the next section we will give
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a universal estimator which converges almost surely to the
length of the longest minimal memory word i.e. the minimal
order of the process. This will be a finite number in case the
process is a finite step Markov chain and infinity othewise.
This is somewhat simpler than the estimators that we gave
in [14]. On the other hand, we will show in the last section,
that no sequence like Sn which converges to the length of the
shortest memory word can exist. In addition we will see how
this gives a brief proof of another negative result of ours from
[15] concerning estimators that are only defined along some
sequence of stopping times.

II. ESTIMATING THE LENGTH OF THE LONGEST MINIMAL
MEMORY WORD OF A PROCESS

Let {Xn}∞n=−∞ be a stationary and ergodic time series taking
values from a discrete (finite or countably infinite) alphabet X .
(Note that all stationary time series {Xn}∞n=0 can be thought to
be a two sided time series, that is, {Xn}∞n=−∞. ) For notational
convenience, let Xn

m = (Xm, . . . , Xn), where m ≤ n. Note
that if m > n then Xn

m is the empty string.
Let p(x0

−k) and p(y|x0
−k) denote the distribution P (X0

−k =
x0
−k) and the conditional distribution P (X1 = y|X0

−k = x0
−k),

respectively.
Definition 2.1: We say that w0

−k+1 is a memory word if
p(w0

−k+1) > 0 and for all i ≥ 1, all y ∈ X , all z−k
−k−i+1 ∈ X i

p(y|w0
−k+1) = p(y|z−k

−k−i+1, w
0
−k+1)

provided p(z−k
−k−i+1, w

0
−k+1, y) > 0. If no proper suffix of w

is a memory word then w is called a minimal memory word.
Define the set Wk of those memory words w0

−k+1 with length
k, that is,

Wk = {w0
−k+1 ∈ X k : w0

−k+1 is a memory word}.

A discrete alphabet stationary time series is said to be a
Markov chain if for some finite K ≥ 0, P (X0

−K ∈ WK) = 1
and the smallest such K is called the order of the Markov
chain. For Markov chains the order is the length of the longest
minimal memory word.

In general we can define a function K which will give us
the length of the minimal memory word of a sequence of past
observations.

Definition 2.2: For a stationary time series {Xn} the (ran-
dom) length K(X0

−∞) of the memory of the sample path
X0
−∞ is the smallest possible 0 ≤ K < ∞ such that for

all i ≥ 1, all y ∈ X , all z−K
−K−i+1 ∈ X i

p(y|X0
−K+1) = p(y|z−K

−K−i+1, X
0
−K+1)

provided p(z−K
−K−i+1, X

0
−K+1, y) > 0, and K(X0

−∞) = ∞ if
there is no such K.
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Our goal in this section is to estimate the essential supre-
mum of this function. This is a simple numerical function
which depends on the process and not on any particular
realization of the process. In contrast, in [15], we addressed the
problem of estimating the minimal length of a memory word
which occurs as the suffix of the first n observations of the
process. This varies of course with n and with the realization.
For k ≥ 0 let Sk denote the support of the distribution of
X0
−k:

Sk = {x0
−k ∈ X k+1 : p(x0

−k) > 0}.

Define

∆k = sup
1≤i

sup
(z0
−k−i+1,x)∈Sk+i

∣∣p(x|z0
−k+1)− p(x|z0

−k−i+1)
∣∣ .

If for some k, ∆k = 0 then the process is a Markov chain and
the least such k is the order of the chain. We need to define
a statistic to estimate ∆k. To this end let

p̂n(x|z0
−k+1) =(

#{k − 1 ≤ t ≤ n− 1 : Xt+1
t−k+1 = (z0

−k+1, x)} − 1
)+(

#{k − 1 ≤ t ≤ n− 1 : Xt
t−k+1 = z0

−k+1} − 1
)+ .

where 0/0 is defined as 0. We subtract one for technical
reasons which does not effect its properties we need here.
These empirical distributions, as well as the sets we are
about to introduce are functions of Xn

0 , but we suppress this
dependence to keep the notation manageable.
For a fixed 0 < γ < 1 let Sn

k denote the set of strings with
length k +1 which appear more than n1−γ times in Xn

0 . That
is,

Sn
k = {x0

−k ∈ X k+1 : #{k ≤ t ≤ n : Xt
t−k = x0

−k} > n1−γ}.

These are the strings which occur sufficiently often so that we
can rely on their empirical distribution.
Finally, define the empirical version of ∆k as follows:

∆̂n
k = max

1≤i≤n
max

(z0
−k−i+1,x)∈Sn

k+i

∣∣p̂n(x|z0
−k+1)− p̂n(x|z0

−k−i+1)
∣∣

Let us agree by convention that if the smallest of the sets over
which we are maximizing is empty then ∆̂n

k = 0.
Observe, that by ergodicity, for any fixed k,

lim inf
n→∞

∆̂n
k ≥ ∆k almost surely. (1)

We define an estimate χn for the order from samples Xn
0 as

follows. Let 0 < β < 1−γ
2 be arbitrary. Set χ0 = 0, and

for n ≥ 1 let χn be the smallest 0 ≤ kn < n such that
∆̂n

kn
≤ n−β if there is such a k and n otherwise.

Theorem 2.1: For any ergodic, stationary process {Xn} the
sequence of estimators χn converges almost surely to the
essential supremum of the memory function K.

PROOF:
If the process is a Markov chain, it is immediate that for all

k greater than or equal the order, ∆k = 0. For k less than the
order ∆k > 0. If the process is not a Markov chain with any

finite order then ∆k > 0 for all k. Thus by (1) if the process
is not Markov then χn → ∞ and if it is Markov then χn is
greater than or equal to the order eventually almost surely. We
have to show that if the process is a Markov chain of order
K then χn is eventually almost surely at most K.
Let us suppose that the process is indeed a Markov chain with
order K. Recall the simple fact that the letters ui that follow
the successive occurrences of a word w with length K are
independent and identically distributed random variables (cf.
Lemma 1 in Morvai and Weiss [15]). Since the alphabet may
be infinite we can’t take into consideration all possible words
in our estimation of the undesirable event (χn > K). Instead
we restrict attention to the words that actually occur and so
we fix a location (l − K, l] in the index set and then fix a
word w0

−K+1 that occurs there together with a particular state
x that follows it. The random times l +λ+

· and l−λ−· are the
other occurrences of this memory word in the process. Here
is the formal definition. Set λ+

l,K,0 = 0, λ−l,K,0 = 0 and define

λ+
l,K,i = λ+

l,K,i−1+

min{t > 0 : X
l+λ+

l,K,i−1+t

l+λ+
l,K,i−1−K+1+t

= X
l+λ+

l,K,i−1

l+λ+
l,K,i−1−K+1

}

and

λ−l,K,i = λ−l,K,i−1+

min{t > 0 : X
l−λ−

l,K,i−1−t

l−λ−
l,K,i−1−K+1−t

= X
l−λ−

l,K,i−1

l−λ−
l,K,i−1−K+1

}

Assume w0
−K+1 is any word and x is a letter. Then by Lemma

1 in Morvai and Weiss [15] for i, j ≥ 1,

Xl−λ−
l,K,i

+1, . . . , Xl−λ−
l,K,1+1, Xl+λ+

l,K,1+1, . . . , Xl+λ+
l,K,j

+1

are conditionally independent and identically distributed ran-
dom variables given X l

l−K+1 = w0
−K+1, Xl+1 = x, where

the identical distribution is p(·|w0
−K+1).

Letting n ≥ K we proceed to estimate the probability of
the undesirable event (χn > K).

Observe that by our definition of χn we have

P (χn > K) ≤ P (∆̂n
K > n−β) ≤

n∑
i=1

P ( max
(z−0
−K−i+1,x)∈Sn

K+i∣∣p̂n(x|z0
−K+1)− p̂n(x|z0

−K−i+1)
∣∣ > n−β)

where the second inequality follows from our assumption
on the order of the chain.
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The last term satisfies:
n∑

i=1

P ( max
(z−0
−K−i+1,x)∈Sn

K+i∣∣p̂n(x|z0
−K+1)− p̂n(x|z0

−K−i+1)
∣∣ > n−β)

≤
n∑

i=1

P ( max
(z0
−K−i+1,x)∈Sn

K+i∣∣p̂n(x|z0
−K+1)− p(x|z0

−K+1)
∣∣ > 0.5n−β)

+
n∑

i=1

P ( max
(z0
−K−i+1,x)∈Sn

K+i∣∣p(x|z0
−K−i+1, z

0
−K+1)− p̂n(x|z0

−K−i+1)
∣∣

> 0.5n−β) (2)

We continue with the estimation of the last two sum-
mands. For a given K − 1 ≤ l ≤ n − 1 assume that
X l+1

l−K+1 = w0
−K+1x. By Lemma 4.1 (Hoeffding’s inequality)

in the Appendix for sums of bounded independent random
variables implies

P


∣∣∣∣∣∣∣
∑i

h=1 1{X
l−λ

−
l,K,h

+1
=x} +

∑j
h=1 1{X

l+λ
+
l,K,h

+1
=x}

i + j

−p(x|w0
l−K+1)

∣∣
≥ 0.5n−β | X l+1

l−K+1 = w0
−K+1x

)
≤ 2e−0.5n−2β(i+j).

Multiplying both sides by P (X l+1
l−K+1 = w0

−K+1x) and
summing over all possible words w0

−K+1 and x we get that

P
(
X l+1

l−K+1 ∈ S
n
K+1,∣∣∣∣∣∣∣

∑i
h=1 1{X

l−λ
−
l,K,h

+1
=Xl+1} +

∑j
h=1 1{X

l+λ
+
l,K,h

+1
=Xl+1}

i + j

− p(Xl+1|X l
l−K+1)

∣∣ > 0.5n−β
)

≤ 2e−0.5n−2β(i+j).

Summing over all K − 1 ≤ l ≤ n− 1 and over all pairs (i, j)
such that i ≥ 0, j ≥ 0, i + j ≥ bn1−γc we get that

P
(

For some K − 1 ≤ l ≤ n− 1 : X l+1
l−K+1 ∈ S

n
K+1,∣∣p̂n(Xl+1|X l

l−K+1)− p(Xl+1|X l
l−K+1)

∣∣ > 0.5n−β
)

≤ n2
∞∑

h=bn1−γc

h2e−0.5n−2βh.

Applying this final inequality to each of the terms in (2) we
get that

P (χn > K) ≤ 4n3
∞∑

h=bn1−γc

he0.5n−2βh

The right hand side is summable given 0 < β < 1−γ
2 and then

by the Borel-Cantelli lemma a.s. the undesirable event occurs
only finitely many times and thus the proof of Theorem 2.1
is complete.

Remark. Bailey [1] showed that one can not discriminate
between processes where the supremum of the lengths of the

minimal memory words is finite or infinite. In other words,
there is no sequence of functions which will converge to Yes
in case the observed process is Markov with some finite but
unknown order and to No otherwise. The result we have just
established does not contradict this since our estimators give
numbers rather than just two values. There is a more detailed
discussion of this phenomenon in [12].

III. LIMITATIONS ON ESTIMATING THE LENGTH OF THE
SHORTEST MEMORY WORD OF A SECOND ORDER

MARKOV CHAIN

The next theorem shows that even when we restrict attention
to second order Markov chains there is no universal estimator
for the length of the shortest memory word.

Theorem 3.1: Let X = {0, 1, 2, . . .}. For any estimator
{hn(X0, . . . , Xn)} such that for all stationary and ergodic
second order Markov chains taking values from X with
minimum length of memory words being equal to one

lim sup
n→∞

P (hn(X0, . . . , Xn) = 1) = 1

there exists a stationary and ergodic second order Markov
chain taking values from X with minimum length of memory
words being equal to two such that

lim sup
n→∞

P (hn(X0, . . . , Xn) = 1) = 1.

PROOF: As is customary in proofs of this type of theorem we
construct the problematic Markov chain by a sequence of steps
in which at intermediate stages we will have a second order
Markov chain with some memory words of length one. The
point is that these memory word occur very infrequently so
that a very small modification of the process suffices to destroy
one of these while preserving the others. This modification is
small enough so as not to change some finite distributions by
too much so that all of these features will be present in the
limiting process. To keep the technical details to a minimum
we start with one Markov chain and all of our modification
are functions of the initial chain. Here are the details.

First we define a Markov-chain (cf. Ryabko [17]) which
serves as the technical tool for construction of our counterex-
ample. Let the state space S be the non-negative integers.
From state 0 the process certainly passes to state 1 and then
to state 2, at the following epoch. From each state s ≥ 2, the
Markov chain passes either to state 0 or to state s + 1 with
equal probabilities 0.5. This construction yields a stationary
and ergodic Markov chain {Mi} with stationary distribution

P (M = 0) = P (M = 1) =
1
4

and
P (M = i) =

1
2i

for i ≥ 2.

Now let f (0)(0) = f (0)(1) = 0 and for all s ≥ 2 let
f (0)(s) = s. The process {X(0)

i = f (0)(Mi)} is a stationary
ergodic countable alphabet second order Markov-chain with
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minimum length of the memory words being equal to one.
Set N0 = 1. Let n0 > N0 be so large such that

P
(
hn0(X

(0)
0 , . . . , X(0)

n0
) = 1|X(0)

0 = X
(0)
1 = 0

)
> 1− 1

2
.

Now, observe that
• for N0 < s : f (0)(s) = s and s is a memory word,
• {f (0)(s) : s ≤ N0}

⋂
{f (0)(s) : N0 < s} = ∅

• for 0 ≤ s ≤ N0 : f (0)(s) is not a memory word.

Now we define the function f (1). For all 0 ≤ s ≤ n0 and
for all 2n0 −N0 + 1 ≤ s define

f (1)(s) = f (0)(s)

and for all n0 < s ≤ n0 + (n0 − N0) let f (0)(s) = n0 −
(s − n0) + 1. The resulting process {X(1)

i = f (1)(Mi)} is a
stationary ergodic countable alphabet second order Markov-
chain with minimum length of the memory words being equal
to one and

P
(
hn0(X

(1)
0 , . . . , X(1)

n0
) = 1|X(1)

0 = X
(1)
1 = 0

)
> 1− 1

2
.

Put N1 = 2n0 −N0 and let n1 > N1 + 1 be so large that

P
(
hn1−1(X

(1)
0 , . . . , X

(1)
n1−1) = 1|X(1)

i = X
(1)
i+1 = 0

for some −1 ≤ i ≤ 0) > 1−
(

1
2

)2

.

Indeed, there exists such an n1 since by assumption,

lim sup
n→∞

P
(
hn(X(1)

0 , . . . , X(1)
n ) = 1

)
= 1.

Now, observe that
• for N1 < s : f (1)(s) = s and s is a memory word,
• {f (1)(s) : s ≤ N1}

⋂
{f (1)(s) : N1 < s} = ∅

• for 0 ≤ s ≤ N1 : f (1)(s) is not a memory word.

Now we define the function f (j) inductively. Assume we
have already defined positive integers Nk, nk > Nk + k and
functions f (k) for 0 ≤ k ≤ j−1 with the following properties:

• each process X
(k)
n = f (k)(Mn) is a stationary and

ergodic countable alphabet second order Markov chain
with minimum length of the memory words being equal
to one,

• for 0 ≤ s ≤ nk, f (j−1)(s) = f (k)(s),
• P

(
hnk−k(X(j−1)

0 , . . . , X
(j−1)
nk−k ) = 1|X(j−1)

i = X
(j−1)
i+1 = 0

for some −k ≤ i ≤ 0) > 1−
(

1
2

)k+1

• for Nj−1 < s : f (j−1)(s) = s and s is a memory word,
• {f (k)(s) : s ≤ Nk}

⋂
{f (k)(s) : Nk < s} = ∅,

• for 0 ≤ s ≤ Nj−1 f (j−1)(s) is not a memory word.

Now we define the function f (j). For all 0 ≤ s ≤ nj and
for all 2nj−1 −Nj−1 + 1 ≤ s define

f (j)(s) = f (j−1)(s)

and for all nj−1 < s ≤ nj−1 + (nj−1 −Nj−1) let f (j)(s) =
nj−1 − (s− nj−1) + 1.

The resulting process {X(j)
i = f (j)(Mi)} is a stationary

ergodic countable alphabet second order Markov-chain with
minimum length of the memory words being equal to one and
for all 0 ≤ k < j

P
(
hnk−k(X(j)

0 , . . . , X
(j)
nk−k) = 1|X(j)

i = X
(j)
i+1 = 0

for some −k ≤ i ≤ 0) > 1−
(

1
2

)k+1

.

Put Nj = 2nj−1−Nj−1 and let nj > Nj +j be so large such
that

P
(
hnj−j(X

(j)
0 , . . . , X

(j)
nj−j) = 1|X(j)

i = X
(j)
i+1 = 0

for some −j ≤ i ≤ 0) > 1−
(

1
2

)j+1

.

For the function f (j) just defined,
• the process f (j)(Mn) is a stationary and ergodic count-

able alphabet second order Markov chain with minimum
length of the memory words being equal to one,

• for 0 ≤ k < j and 0 ≤ s ≤ nk: f (j−1)(s) = f (k)(s),
• for 0 ≤ k < j:

P
(
hnk−k(X(j)

0 , . . . , X
(j)
nk−k) = 1|X(j)

i = X
(j)
i+1 = 0

for some −k ≤ i ≤ 0) > 1−
(

1
2

)k+1

• for Nj < s : f (j)(s) = s and s is a memory word,
• {f (j)(s) : s ≤ Nj}

⋂
{f (j)(s) : Nj < s} = ∅,

• for 0 ≤ s ≤ Nj f (j)(s) is not a memory word.

Eventually, we defined a function f(s) = limk→∞ fk(s) and a
process Xn = f(Mn) which is a stationary ergodic countable
alphabet second order Markov-chain with minimum length of
the memory words being equal to TWO and for all 0 ≤ k

P (hnk−k(X0, . . . , Xnk−k) = 1|Xi = Xi+1 = 0

for some −k ≤ i ≤ 0) > 1−
(

1
2

)k+1

.

Thus

P (hnk−k(X0, . . . , Xnk−k) = 1) >

(
1−

(
1
2

)k+1
)

P (Xi = Xi+1 = 0 for some −k ≤ i ≤ 0) .

Since

lim
k→∞

P (Xi = Xi+1 = 0 for some −k ≤ i ≤ 0) = 1

we get that

lim sup
n→∞

P (hn(X0, . . . , Xn) = 1) = 1.

The proof of Theorem 3.1 is complete.

The following theorem has been proved in Morvai and
Weiss [15] (Theorem 6). Here we give a simpler proof of
it based on Theorem 3.1.
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Theorem 3.2: Let X = {0, 1, 2, . . .}. There are no strictly
increasing sequence of stopping times {λn} and estimators
{h(X0, . . . , Xλn)} taking the values one and two, such that
for all second order Markov chains taking values from X :

lim
n→∞

λn

n
= 1

and

lim
n→∞

|h(X0, . . . , Xλn
)−K(Xλn

0 )| = 0 with probability one.

PROOF:
We argue by contradiction. Assume that Theorem 3.2 does

not hold. Then define

l̂n(X0, . . . , Xn) = min
0.5n<λk<n

h(X0, . . . , Xλk
).

Now, by assumption l̂n(X0, . . . , Xn) would be a pointwise
consistent estimate for the length of the shortest memory word
which contradicts Theorem 3.1. The proof of Theorem 3.2 is
complete.

Remark. For a positive result using stopping times cf.
Theorem 4 of [15]. It shows that for any positive ε there is a
sequence of stopping times λn which with probability one will
have density at least 1−ε and along which we can successfully
estimate K(Xλn

0 ). For more on the use of stopping times in
universal estimation see the recent survey [16] and [7], [8],
[9], [13], [10], [11].

IV. APPENDIX

The next lemma is due to Hoeffding, cf. [6].
Lemma 4.1: (Hoeffding’s inequality, Hoeffding 1963) Let

X1, X2, . . . , Xn be independent real valued random variables,
and a1, b1, . . . , an, bn be real numbers such that ai ≤ Xi ≤ bi

with probability one for all 1 ≤ i ≤ n. Then, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ > ε

)
≤ 2e−(2nε2/ 1

n

∑n

i=1
|bi−ai|2).
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