Some questions are single choice, so a single correct answer needed to be chosen. (One of these questions actually had two correct answers.) Others are multiple chioce, so more than one answer may be correct (but at least one is correct), and all correct answers needed to be chosen.

1. A beetle is flying in the coordinate system. Its position vector, as a function of time, is given by $r(t)=(t, t \cos t, t \sin t)$. What is the velocity vector of the beetle at time $t=\pi$?
Select one:
O $(1,0, \pi)$
O $(1,1, \pi)$

- $(1,-1,-\pi)$

O $(1, \pi, 0)$
O $(1,-\pi,-1)$
2. The following limit approximates a definite integral:
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=n}^{2 n-1} \frac{1}{\left(\frac{k}{n}+1\right)^{2}}$
What is the value of the limit?
Select one:
○ 0
○ $1 / 2$
○ $1 / 3$

- $\ln \left(\frac{3}{2}\right)$
- $1 / 6$

3. I have one bar of chocolate in my bag that I bought today. I also have $1 / 3$ bars of chocolate from yesterday. I also have $1 / 9$ bars of chocolate from two days ago. I also have $1 / 27$ bars from three days ago, etc.. . How much chocolate do I have in my bag altogether?

Select one:

- 41/27 bars
- $4 / 3$ bars
- $3 / 2$ bars
- 5/2 bars
- 2 bars

4. Which of the formulas below gives the best approximation of $\ln (1+x)$ for a very small non-zero value of x ?
Select one:
$\bigcirc x-x^{2}$
$\bigcirc x$
$x-x^{2}+x^{3}$

- $x-\frac{x^{2}}{2}$
- $x-x^{2}+\frac{x^{3}}{3}$

5. Let $x(t)$ be a solution of the ordinary differential equation $\frac{\mathrm{d}}{\mathrm{d} t} x(t)=(x(t))^{2}-4 x(t)+3$.
Which of the following statements are true?
Select one or more:
\square If $x(0) \in(0,1)$ then $\lim _{t \rightarrow \infty} x(t)=+\infty$
\square If $x(0) \in(2,+\infty)$ then $\lim _{t \rightarrow \infty} x(t)=+\infty$
\square If $x(0) \in(2,5)$ then $\lim _{t \rightarrow \infty} x(t)=x^{*}$ for some $x^{*} \in \mathbb{R}$
\square If $x(0) \in(-\infty, 3)$ then $\lim _{t \rightarrow \infty} x(t)=x^{*}$ for some $x^{*} \in \mathbb{R}$
\square If $x(0) \in(1,3)$ then $\lim _{t \rightarrow \infty} x(t)=x^{*}$ for some $x^{*} \in \mathbb{R}$
6. How should I choose the positive parameters $a, b \in \mathbb{R}, a, b>0$ in order to make the improper integral $I=\int_{0}^{\infty}\left(x^{-a}+1\right)(x+1)^{-b} \mathrm{~d} x$ converge? In other words, which of the following statements is true?
Select one:

- $I<\infty$ if and only if $a<1$ and $1<b$.

○ $I<\infty$ if and only if $a+b<1$.
$\bigcirc \quad I<\infty$ if and only if $a \leq 1$ and $2<b$.
$\bigcirc \quad I<\infty$ if and only if $1 \leq a$ and $b=2$.

○ $I<\infty$ if and only if $a<\frac{1}{2}$ and $b=\frac{1}{2}$.
7. How should I choose the value of the parameter a if I want the vector space spanned by the vectors $(1,-1,1),(0,1,1)$ and $(-2, a, 2)$ to be two dimensional?

Select one:
○ 2

- 6

○ 4
○ -2
8. Let $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right), B=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Which of the following formulas make sense?

Select one or more:
$\square A B$
$\square A B^{-1}$
$\square B A^{-1}$
$\square B A B^{T}$
9. Consider the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. If, for some $\lambda \in \mathbb{R}$ there is a non-zero vector $v \in \mathbb{R}^{3}$ such that $A v=\lambda v$, then what can λ be?

Select one or more:-1
$\square 0$1
$\square 3$
10. Let us consider the matrix $A=\left(\begin{array}{cc}\frac{1}{2} & a \\ a & \frac{1}{2}\end{array}\right)$. Which of the following statements are true?

Select one or more:
\square If $a \in(-3 / 2,3 / 2)$ then $\lim _{n \rightarrow \infty} A^{n}=0$.
\square If $a \in(-1 / 2,1 / 2)$ then $\lim _{n \rightarrow \infty} A^{n}=0$.
\square If $a \in(-3 / 2,1 / 2)$ then $\lim _{n \rightarrow \infty} A^{n}=0$.
\square If $a \in(-1 / 2,3 / 2)$ then $\lim _{n \rightarrow \infty} A^{n}=0$.
\square If $a \in(-1 / 2,0)$ then $\lim _{n \rightarrow \infty} A^{n}=0$.
11. We have three envelopes, each of them containing two cards. The first envelope contains two white cards, the second envelope contains two black cards, while the third envelope contains a white and a black card. We pick an envelope at random. Then, we draw a card at random from that envelope, and we see that it is black. What is the probability that the other card (in the same envelope) is also black?
Select one:
○ $\frac{1}{4}$

- $\frac{1}{3}$
- $\frac{1}{2}$
- $\frac{2}{3}$
- $\frac{3}{4}$

12. Let the random variable X be absolutely continuous, with density $f(x)=\left\{\begin{array}{ll}\frac{3}{7} x^{2}, & \text { if } 1<x<2 \\ 0, & \text { if not }\end{array}\right.$. What is the expectation of $X ?$

Select one:

- $\frac{5}{4}$
- $\frac{3}{2}$
- $\frac{45}{28}$
- $\frac{5}{3}$
- $\frac{15}{4}$

13. I keep rolling a fair die until I first manage to roll 6. Let the random variable X be the number of attempts I need. Which probability distribution would you use to model X ?
Select one:

- The geometric distribution.

O The binomial distribution.The Poisson distribution.The Gaussian distribution.The exponential distribution.
14. Let X and Y be independent, exponentially distributed random variables, with $\mathbb{P}(X>1)=\frac{1}{2}$ and $\mathbb{P}(Y>1)=\frac{1}{4}$. Let $M=\min \{X, Y\}$. What is $\mathbb{P}(M>2)$?
Select one:

- $\frac{1}{8}$
- $\frac{1}{16}$
- $\frac{1}{32}$
- $\frac{1}{64}$
- $\frac{1}{128}$

15. Denote by $\Phi(x)$ the cumulative distribution function of the standard normal distribution. I roll a fair six-sided die 36000 times. What is the probability that the number 6 comes up at least 6100 times?
Select one:
\bigcirc Approximately $\Phi(\sqrt{5000})$

- Approximately $\Phi\left(\frac{1}{\sqrt{2}}\right)$
- Approximately $\Phi(-\sqrt{2})$
- Approximately $\Phi(\sqrt{2})$
- Approximately $1-\Phi(\sqrt{2})$

