The real polarization problem

and its connection to products of jointly Gaussian random variables

Máté Matolcsi

Let $x_{1}, \ldots x_{n} \in \mathbb{R}^{n}$ be unit vectors, $\left\|x_{j}\right\|=1$, and consider the following quantity:

$$
S=\sup _{\|y\|=1}\left|\left\langle x_{1}, y\right\rangle\left\langle x_{2}, y\right\rangle \ldots\left\langle x_{n}, y\right\rangle\right| .
$$

For which configuration of x_{1}, \ldots, x_{n} is S minimal? A natural conjecture of Benitez, Sarantopoulos and Tonge states that $S \geq n^{-n / 2}$ always holds, where the right hand side corresponds to $x_{1}, \ldots x_{n}$ being orthonormal. Interestingly, the same conjecture in \mathbb{C}^{n} has already been solved.

There are several approaches to the problem, analytic [1], geometric [2], and probabilistic [3], yielding partial results. Currently the most promising approach is that of [3] which deduces a lower bound on S from the following:

Theorem If $X_{1}, \ldots X_{n}$ are jointly Gaussian random variables with zero expectation, then

$$
E\left(X_{1}^{2} \ldots X_{n}^{2}\right) \geq E X_{1}^{2} \ldots E X_{n}^{2}
$$

Equality holds if and only if they are independent or at least one of them is almost surely zero.

A similar result for higher moments would imply the conjecture.

References

[1] Pappas, A.; Revesz, Sz. Gy., Linear polarization constants of Hilbert spaces, J. Math. Anal. Appl. 300 (2004), no. 1, 129-146.
[2] Matolcsi, M., A geometric estimate on the norm of product of functionals, Linear Algebra Appl. 405 (2005), 304-310.
[3] Frenkel, P. E., Pfaffians, hafnians and products of real linear functionals, Math. Res. Lett., to appear.

Máté Matolcsi,
Alfred Renyi Institute of Mathematics, Budapest, Hungary, and Budapest University of Technology, Budapest, Hungary, matemato@gmail.com, www.math.bme.hu/~ matolcsi

