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Let x1, . . . xn ∈ R
n be unit vectors, ‖xj‖ = 1, and consider the

following quantity:

S = sup
‖y‖=1

|〈x1, y〉〈x2, y〉 . . . 〈xn, y〉|.

For which configuration of x1, . . . , xn is S minimal? A natural con-
jecture of Benitez, Sarantopoulos and Tonge states that S ≥ n−n/2

always holds, where the right hand side corresponds to x1, . . . xn being
orthonormal. Interestingly, the same conjecture in C

n has already been
solved.

There are several approaches to the problem, analytic [1], geometric
[2], and probabilistic [3], yielding partial results. Currently the most
promising approach is that of [3] which deduces a lower bound on S

from the following:
Theorem If X1, . . . Xn are jointly Gaussian random variables with

zero expectation, then

E(X2

1
. . . X2

n) ≥ EX2

1
. . . EX2

n.

Equality holds if and only if they are independent or at least one of
them is almost surely zero.

A similar result for higher moments would imply the conjecture.
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