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Abstract

We prove exponential decay of correlations for a “reasonable” class of multi-dimen-
sional dispersing billiards. The scatterers are required to be C3 smooth, the horizon is
finite, there are no corner points. In addition, we assume subexponential complexity
of the singularity set.

Keywords: rate of mixing, high dimension, hyperbolic billiards, growth lemmas, singulari-
ties

Introduction

In this paper we address statistical properties of multi-dimensional billiards. We restrict to
dispersing billiards with finite horizon and no corner points. It is a long standing conjecture
that correlations in these systems decay exponentially fast. This is what we are going to
prove, modulo an extra assumption on the combinatorical structure of the singularity set
– the so-called sub-exponential complexity condition, see sections 1 and 2.4.2 for a precise
formulation.

Exponential decay of correlations for billiard maps were first obtained by Young in [Y]
where she established the property for the two dimensional analogues of our dispersing
billiards. At the same time this paper provided a powerful method, the so-called “Young
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tower construction” to study statistical properties for a large class of hyperbolic systems.
Shortly Chernov in [Ch2] extended the result to further two dimensional dispersing billiards
(allowing infinite horizon and corner points). In addition, Chernov’s paper provided a list of
assumptions that guarantee the framework of [Y] to work. Actually, Chernov’s paper is our
main reference: we prove exponential decay of correlations by verifying that the assumptions
of [Ch2] all hold in the studied multi-dimensional dispersing billiard systems.

Witnessing the success in the two dimensional case, the billiard community was quite op-
timistic about extending these results to the multi-dimensional setting in the late nineties.
However, the discovery of [BChSzT1] about the pathological behaviour of singularity mani-
folds in multi-dimensional billiards emerged as a serious obstacle in the proof of exponential
decay of correlations. In addition, these phenomena called even for a reconsideration of earlier
proofs of ergodicity in multi-dimensional (semi-)dispersing billiards. The papers [BChSzT2]
and [B] handle the problem of (local) ergodicity for certain special cases: [BChSzT2] deals
with the case of algebraic scatterers, while [B] treats strictly dispersing billiards with highly
smooth scatterers (smoothness depending on the dimension of the billiard domain), and a
strong condition (finite complexity) on the singularities.

It is important to mention the issue of ergodicity, as the billiards we consider are not
contained in the above mentioned classes. We require only C3 smoothness of the scatterers,
and sub-exponential complexity (instead of the more restrictive finite complexity condition
of [B]). Thus, a priori we do not even know if the studied systems are ergodic. However,
ergodicity of the map (and its higher iterates) is, naturally, among the assumptions of [Ch2].

In the present paper we give a detailed local analysis of multi-dimensional dispersing
billiards. This allows us to check all the assumptions of [Ch2] except for the ergodicity
of the map. However, in [BBT], a separate paper joint with Bachurin, we show that the
same class of billiards are ergodic. The relation of this paper to [BBT] is twofold. On the
one hand, [BBT] uses the results of the detailed local analysis (in particular, the growth
properties) presented here to prove ergodicity. On the other hand, the fact that our systems
are ergodic – as established in [BBT] – completes the set of assumptions, and thus the proof
of exponential decay of correlations à la Chernov and Young ([Ch2] and[Y]).

Before closing the introduction let us comment on the above mentioned “subexponential
complexity” condition. First it is worth noting that conditions of this sort are standard in
the studies of hyperbolic systems with singularities. Actually, to our knowledge, proofs of
exponential decay of correlations for such systems in higher dimensions all require conditions
of this type, no matter if Young towers are applied – see eg. [Y], [Ch1]; or some other powerful
approach is used – see eg. [S], [L] or [BG]. In particular, subexponential complexity holds
in every two dimensional dispersing billiard system with finite horizon and no corner points,
cf. [CY]. Actually, this is a crucial fact in the proofs of [Y] and [Ch2] on the exponential
mixing of the two dimensional case.

As to the multi-dimensional situation, there is no doubt in the billiard community that
such a condition should be generic in the set of all finite horizon billiard systems, in any
reasonable sense of genericity. There is a sketch of proof for such a statement in [B], how-
ever, the issue is definitely subject to further investigation. In particular, we are not able
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to construct any specific multi-dimensional dispersing billiard configuration, for which the
subexponential complexity condition can be verified. On the other hand, it’s possible to
construct a finite horizon example (with disjoint spherical scatterer), for which complexity
grows exponentially. We plan to discuss this issue in a separate paper.

1 Statement of the result and structure of the proof

Let us consider a connected billiard domain in the d-dimensional flat torus Q ⊂ Td, and
a point particle that travels uniformly (follows straight lines with constant speed) within
Q, and bounces off the boundary (the scatterers) via elastic collisions (angle of incidence is
equal to the angle of reflection). We will concentrate on the case of d ≥ 3 and require some
further properties.

Assumption 1.1. The boundary ∂Q is assumed to be a finite collection of compact d − 1
dimensional C3-smooth submanifolds in Td. This implies, in particular, that it is possible
to define the curvature operator, or second fundamental form K in any point of ∂Q. K
should be understood as the second fundamental form for the relevant one codimensional
submanifold(s) with (unit) normal vectors pointing inward Q.

The billiard is stricly dispersing. That is, the boundary components, as viewed from
the exteriour, are stricly convex. In other words, the operator K is positive definite on ∂Q.

Note that, by compactness, smoothness and strict dispersivity, we have that the spectrum
of the symmetric positive definite operator K is bounded away both from 0 and ∞ on ∂Q.
With a slightly sloppy notation this can be expressed as:

K ≥ Kmin, (1.1)

and
K ≤ Kmax, (1.2)

where 0 < Kmin ≤ Kmax < ∞ are constants depending only on the billiard domain.
To formulate our second main assumption, consider q ∈ ∂Q (a configuration point) and

v ∈ Sd−1 with 〈n(q), v〉 ≥ 0 (a velocity), where n(q) is the unit normal vector of ∂Q and the
condition on v means that we are considering an outgoing velocity. The pair x = (q, v) is a
phase point in our dynamical system (on further details see Section 2 below). Given x we
may consider the free flight function: τ(x) measures the distance along the straight line that
starts out of q in the direction of v untill it reaches ∂Q again.

Assumption 1.2. We assume that the horizon is finite; there is a positive constant
τmax < ∞, depending only on the billiard domain, such that for any phase point x = (q, v)

τ(x) ≤ τmax. (1.3)

We assume that there are no corner points; that is, the smooth components of the
boundary are disjoint (i.e. we require smoohtness, not only piecewise smoothness of the
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boundary). This implies, on the basis of compactness, that the free flight function is bounded
from below: there exists a constant τmin > 0, depending only on the billiard domain, such
that for any phase point x = (q, v)

τ(x) ≥ τmin. (1.4)

The only additional assumption we need is more technical, thus we postpone the precise
formulation to Section 2.4.2. Here we only give a preliminary description. It is well-known
(see eg. Section 2.2.3 below) that the billiard map is discontinuous. We may consider the
components of the phase space restricted onto which the map is continuous. The components
for the higher iterates of the map can be defined similarly. The following quantity is of
crucial importance: for any postive integer n, let us denote by Kn the maximum number of
the components of the nth iterate of the billiard map that can meet in a single phase point
(for a precise formulation see Definiton 2.7).

Assumption 1.3. We assume that the complexity of the singularity set grows sub-
exponentially with n. That is, Kn = O(λn) holds for any λ > 1.

Remark 1.4. Actually, it is enough to require Kn = O(λn) for some λ > 1 smaller than the
minimum expansion along unstable vectors, see Section 2.4.2.

To formulate our main results, let us recall what is ment by exponential decay of corre-
lations and the central limit theorem.

Definition 1.5. Consider a Riemannian manifold M as a phase space, with a dynamics T
and a T -invariant probability measure µ. We say that the dynamical system (M, T, µ) has
exponential decay of correlations (EDC), if for every f, g : M → R α-Hölder-continuous pair
of functions there exist constants C < ∞ and a(α) > 0 such that for every n ∈ N

∣

∣

∣

∣

∫

M

f(x)g(T nx)dµ(x) −
∫

M

f(x)dµ(x)

∫

M

g(T nx)dµ(x)

∣

∣

∣

∣

≤ C(f, g)e−an.

Definition 1.6. Consider a Riemannian manifold M as a phase space, with a dynamics
T and a T -invariant probability measure µ. We say that the dynamical system (M, T, µ)
satisfies the Central Limit Theorem (CLT), if for every Hölder-continuous function f : M →
R such that

∫

M
fdµ = 0, there is some σ ≥ 0 such that

1√
n

n−1
∑

i=0

f ◦ T i D−→ N (0, σ).

That is, suitably normalized Birkhoff sums converge in the distribution to the normal law if
the initial point is chosen according to the measure µ.

Theorem 1.7. Consider a multidimensional dispersing billiard map that satisfies assump-
tions 1.1, 1.2 and 1.3. Then the dynamics enjoys exponential decay of correlations and the
central limit theorem holds.
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Remark 1.8. It is an interesting question how the constant C(f, g) of Definition 1.5 depends
on the observables f and g. As we rely on [Ch2] and [Y], which work in a symbolic setting
(Young towers), C(f, g) is not directly determined by the functions f and g themselves, but
their symbolic representations. Nonetheless it is still true that C(f, g) ≤ C(α)||f ||Cα||g||Cα

where ||f ||Cα denotes the α-Hölder norm of f .

The formal proof of this theorem will be given at the end of the paper, in Section 4.6,
when all the necessary ingredients are at hand. However, we describe the structure of the
proof and give an outline of the paper here.

As already mentioned in the introduction, we prove Theorem 1.7 by verifying the as-
sumptions of a Theorem from [Ch2] that guarantees exponential decay of correlations. To
make our exposition more self-contained, we present Chernov’s conditions separately in Ap-
pendix A.

The rest of the paper, which provides the verification of these assumptions, is organized
as follows. In Section 2 we collect the most important prerequisites on multidimensional
dispersing billiards. In particular, we recall that certain conditions from Appendix A: Con-
ditions A.1, A.2, A.4, A.5 and A.6 have already been proven for the studied billiards in
[BChSzT1]. In addition, we formulate and prove some further properties of similar flavour,
to be applied in the later sections, which – to our knowledge – have not been considered
before.

The verification of Condition A.7 is the main novelty of our paper. To achieve this we are
led to use a Riemannian structure different from the traditional “Euclidean” metric on the
billiard phase space. However, the properties discussed in Section 2, in particular, conditions
A.1, A.2, A.4, A.5 and A.6 are originally proved for the “Euclidean” metric. Thus it is to
be verified that these properties remain valid with the use of the new Riemannian structure.
This is the content of Section 3, which is of differential geometric nature.

Condition A.7 on the “growth properties of unstable manifolds” is proved in Section 4.
As already mentioned, Condition A.3, more precisely, the ergodicity of the map (and its

iterates) is the only conditon that we do not prove in the present paper. For the proof of
ergodicity we refer to [BBT]. Some explanation is given in Section 4.5. This completes the
proof of Theorem 1.7.

In addition to Appendix A, we have also included Appendix C which contains some
simple lemmas of geometric measure theory.

2 Preliminaries

In this section we repeat notions and statements from [BChSzT1] and [Ch2]. These will be
referred to in several parts of the discussion. Although some of the referred statements are
only found in the text of [BChSzT1] and are not highlighted as theorems, we do not repeat
the proofs here. Instead, we give the precise references within the paper. Our aim with
listing these statements is to collect all facts about billiards that are used from earlier works
in one place, and keep the paper otherwise self-contained.
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Notation 2.1. Throughout the paper we will use the following conventions:
Positive and finite global constants whose value is unimportant, will be denoted by c or

C. So e.g. f < C means that the function f is bounded from above. The letters c and C
may denote different values in different equations.

On the other hand, C1, C2, . . . will denote global constants whose values are the same
throughout the paper.

We say that two nonzero functions f and g on the phase space are equivalent, if c ≤ f
g
≤

C. In this case we will use the notation f ∼ g.

2.1 Chernov’s conditions

In his paper [Ch2] Chernov has proven a theorem that guarantees exponential decay of cor-
relations, provided that we can check that the dynamical system satisfies certain conditions
about hyperbolicity, regularity of unstable manifolds and the dynamics on them, and about
the growth of unstable manifolds. A dynamical system that can be handled in this way
should consist of

• A phase space M , which is the set of possible states of the system.

• A dynamics T which is an M → M map, or at least a map defined on a large subset
of M .

• A measure µ on M which is T -invariant.

• A Riemannian structure on M , so that M (or M̄) is a Riemannian manifold, possibly
with boundary. The level of smoothness of maps and subsets of this Riemannian
manifold is an important issue.

Instead of just referring to the work [Ch2], we will list the conditions and repeat the
statement in the Appendix. This is done mainly to make our paper easier to read, but also
to point out two minor details where we use modified versions of Chernov’s conditions. Both
modifications allow the proof in [Ch2] to remain unchanged.

2.2 The dynamical system

In accordance with Chernov’s conditions, we will now describe our choice of phase space,
dynamics and measure. However, we postpone our choice of the Riemannian structure
until Section 3, since this is a key point of our proof, and certainly doesn’t belong to the
Preliminaries section.

2.2.1 The Poincaré section phase space and the dynamics

First we describe the flow phase space M. This consists of all possible positions of the
particle, equipped with the possible unit velocities:

M =
{

(q, v) | q ∈ Q, v ∈ Rd, ‖v‖ = 1
}

.
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We could identify phase points with opposite velocities and the same configuration point on
∂Q, but this is not important for our purposes. We will only use the flow phase space at those
occasions, when it is important to view the Poincaré section phase space as a submanifold
of M.

So now we describe the usual Poincaré section phase space M̃ . Our phase space M will be
a subset of this. In M̃ , we only consider collision moments. Since kinetic energy is preserved
in the system, we also fix the speed to be 1. We choose to describe the motion of the particle
at a collision time by recording its velocity just after the collision (we use the ‘outgoing’
Poincaré section).

So a possible state of the particle is described by giving a boundary point q ∈ ∂Q and
a unit velocity v ∈ Sd−1, which is often written roughly as M̃ = ∂Q × Sd−1

+ , where the
+ indicates that only velocity vectors pointing inward Q are allowed. However, this is
misleading, because M̃ really doesn’t have a product structure. So we better write (still
roughly)

M̃ =
{

(q, v) | q ∈ ∂Q, v ∈ Rd, ‖v‖ = 1, 〈v, n(q)〉 ≥ 0
}

.

Notation 2.2. n(q) denotes the (unit) normal vector of ∂Q at q pointing inward Q.

T : M̃ → M̃ gives the state of the particle at the next collision as a function of the
present state. When we apply the theorem of [Ch2], we will apply it to some higher iterate
T n0 of this dynamics. n0 will be given later.

Notation 2.3. If some quantity (e.g. q or n) is related to some phase point x, then we will
often denote the corresponding quantity related to Tx by the same letter and an index 1 (e.g.
q1, n1).

2.2.2 The invariant measure and the Euclidean metric

The natural Riemannian structure on M̃ is described in detail in many works including
[BChSzT1], and we don’t repeat those details here. We only mention that M̃ is viewed
as a semisphere-bundle over ∂Q, and the different velocity semispheres (fibres) at nearby
configuration points are identified using the parallel transport from the natural Riemannian
structure of ∂Q as a submanifold of Td. This results in the definition of a C2 atlas on M̃
and a local product structure. Since we need to handle differential aspects of the dynamics,
it is crucial to understand how M is embedded in M.

Now the natural Riemannian structure is locally a product of the natural Riemannian
structures on ∂Q and Sd−1. We will call this natural structure the “Euclidean structure”.
This is a little misleading, since this is really Euclidean only if d = 2, while it is not
flat in higher dimensions. However, it still resembles a Euclidean structure in the sense
that the induced norm (which is called the “Euclidean norm” in [BChSzT1]) has the form
‖(dq, dv)‖2

e = dq2 + dv2, where dq ∈ T 1 is a tangent vector of the configuration space ∂Q

1T and J will be introduced in Section 2.3.
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and dv ∈ J is a tangent vector of the velocity hemisphere Sd−1
+ . With this Riemannian

structure, M̃ becomes a C1 Riemannian manifold with boundary, and the boundary is

∂M̃ =
{

(q, v) | q ∈ ∂Q, v ∈ Rd, ‖v‖ = 1, 〈v, n(q)〉 = 0
}

,

the set of tangential collisions.

Notation 2.4. For x = (q, v) ∈ M̃ , ϕ(x) will denote the angle of the velocity and the normal
vector of the scatterer: ϕ(x) = ∢(n(q), v), 〈n(q), v〉 = cos ϕ(x). In two dimensions one often
treats ϕ as a signed quantity, but for us, 0 ≤ ϕ ≤ π

2
.

With this notation,

∂M̃ =
{

(q, v) ∈ M̃ | ϕ(x) =
π

2

}

.

The natural T -invariant measure µ on M̃ is defined in terms of the natural Riemannian
structure: let µ be absolutely continuous with respect to the induced measure (which we
will call the Lebesgue measure), and let the density be const cos ϕ(x) where const is a
normalizing constant so that µ is a probability. This can vaguely be written as

dµ = const cos ϕ dq dv, (2.1)

since the Lebesgue measure is locally a product of the natural (surface volume) measures on
∂Q and Sd−1.

Remark 2.5. Note that our choice to use “outgoing” velocities in the Poincaré map phase
space (which is the usual choice) is just a matter of notation. We could as well identify
every incoming velocity vector with the corresponding outgoing one, and view the outgoing
velocity as a representative of the equivalence class. Accordingly, there is no asymmetry in
the definition of the Euclidean metric: the Euclidean metric of the inverse dynamics is the
same. As a consequence, replacing velocities with their opposites (up to identification of
incoming/outgoing) leaves the measure invariant. This fact will be reflected by the formulas
(2.6), (2.7), (2.16) and (2.17).

2.2.3 Singularities and the phase space we use

T is not continuous in the points of S = T−1S0 = T−1∂M̃ , which we call the primary
singularity set. So, to satisfy Condition A.1 we have to exclude S from the domain of T .
Moreover, the derivative of T blows up near S, which causes Condition A.5 to fail, unless
we declare certain points of M̃ (which are close) to be separated by “artificial boundaries”.
This is done in the way usual in billiard theory. We partition the original phase space into
infinitely many homogeneity layers:

Ik =

{

x ∈ M̃ | 1

k2
<

π

2
− ϕ(x) <

1

(k − 1)2

}

for k = k0 + 1, k0 + 2, . . . and

Ik0
=

{

x ∈ M̃ | 1

k2
0

<
π

2
− ϕ(x)

}

(2.2)
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Here the integer constant k0 is arbitrary, and will be chosen later. The boundary of this
partitioned phase space is

Γ0 =

∞
⋃

k=k0

Γ0
k

where

Γ0
k =

{

x ∈ M̃ | π

2
− ϕ(x) =

1

k2

}

, k = k0, k0 + 1, . . . .

Correspondingly, the countably many manifolds in the set

Γ = T−1Γ0 (2.3)

are the so called secondary singularities.
Now we can define the phase space we will use:

M = M̃ \ (S0 ∪ Γ0) = Ik0
∪

∞
⋃

k=k0+1

Ik,

where the components Ik are meant to have disjoint closures – as if they were moved apart
from each other. This makes M non-compact, but many compactness arguments remain
valid if we temporarily forget about artificial boundaries – that is, we look at M̃ . On the
other hand, regularity properties may be easier, specifically distortion bounds depend on
secondary singularities.

2.3 Hyperbolicity, cones and fronts

In billiard theory, several basic constructions and concepts are based on the notion of a local
orthogonal manifold, which - for simplicity - we will call front. A front W is defined in the
flow phase space M rather than in the Poincaré section. Take a smooth 1-codimensional
submanifold E of the flow configuration space Q, and add the unit normal vector v(r) of this
submanifold at every point r as a velocity, continuously. Consequently, at every point the
velocity points to the same side of the submanifold E. Then

W = {(r, v(r))|r ∈ E} ⊂ M,

where v : E → Sd−1 is continuous (smooth) and v ⊥ E at every point of E. The derivative
of this function v, called B plays a crucial role: dv = Bdr for tangent vectors (dr, dv) of
the front. B acts on the tangent plane TrE of E, and takes its values in the tangent plane
J = Tv(r)S

d−1 of the velocity sphere. These are both naturally embedded in the configuration
space Q, and can be identified through this embedding. So we just write B : J → J . B is
nothing else than the curvature operator – or second fundamental form – of the submanifold
E of Q, which we will abbreviate as s.f.f. Clearly, this is different from the curvature of W
as a submanifold of M. Obviously, B is symmetric.

9



Notice that fronts remain fronts during time evolution - at least locally, and apart from
some singularity lines.

When we talk about a front, we sometimes think of it as the part of the (flow) phase
space just described (for example, when we talk about time evolution under the flow), but
sometimes just as the submanifold E (for example, when we talk about the tangent space or
the curvature of the front). This should cause no confusion.

In the rest of this section we list technical details about the evolution of fronts and the
construction of invariant cone fields required by the Hyperbolicity condition (Condition A.2).
Later we will only use these details in two places:

• in Section 2.5.2 to understand the nature of anisotropic expansion of unstable vectors

• in sections 3.2 and 3.3 where we introduce a new Riemannian structure and show that
T is uniformly hyperbolic with respect to this Riemannian structure in the sense of
Condition A.2.

2.3.1 Evolution of fronts

During free propagation (that is, from one collision to the other) a tangent vector (dr+, dv+)
of the post-collision front evolves into the tangent vector (dr−1 , dv−

1 ) of the pre-collisional
front at the next collision given by the formulas

dr−1 = dr+ + τdv+, (2.4)

dv−
1 = dv+ (2.5)

where τ is the length of the free run between the two collisions.
For this formula – and the next one – to make sense, we need to identify the tangent

planes of the front at different moments of time. Let T = Tr∂Q be the tangent plane of the
scatterer at a collision point r. Just like J , T is viewed together with its natural embedding
into Q. The identification of different J ’s is done in the usual way (cf. [SCh], [KSSz]):

• by translation parallel to v from one collision to the other,

• by reflection with respect to T (or, equivalently, by projection parallel to n) from
pre-collision to post-collision moments.

At a moment of collision a tangent vector of a front changes non-continuously (the front
is “scattered”): a tangent vector (dr−, dv−) of the pre-collision front evolves into the tangent
vector (dr+, dv+) of the post-collision front given by

dr := dr+ = dr−, (2.6)

dv+ = dv− + 2〈n, v〉V ∗KV dr (2.7)

where

10



• V : J → T is the projection parallel to v: V dv = dv − 〈dv,n〉
〈v,n〉 v ∈ T for dv ∈ J ,

• V ∗ : T → J (the adjoint of V ) is the projection parallel to n: V ∗dq = dq− 〈dq,v〉
〈n,v〉 n ∈ J

for dq ∈ T ,

• K : T → T is the s.f.f. of the scatterer at the collision point,

• 〈n, v〉 = cos ϕ, where ϕ ∈ [0, π
2
] is the collision angle.

From these we can get the evolution of the second fundamental form:

B+ = B− + 2 cos ϕV ∗KV (2.8)

(equation (2.3) from [BChSzT1]), where

• B− : J → J is the s.f.f. just before collision, which also describes tangent vectors
(dr−, dv−) of the pre-collision front through

dv− = B−dr−. (2.9)

• B+ : J → J is the s.f.f. just after collision, which also describes tangent vectors
(dr+, dv+) of the pre-collision front through

dv+ = B+dr+. (2.10)

2.3.2 Unstable and stable cone field

In Condition A.2, uniform hyperbolicity is formulated in terms of invariant cone fields. The
construction of these cone fields is done in a standard way (see e.g. [BChSzT1], Section
4.3): cones consist of tangent vectors of appropriate fronts. More precisely: since fronts are
subsets of the flow phase space, cones consist not of tangent vectors of fronts, but rather the
traces of these vectors on T M .

The fronts defining the unstable cone field satisfy

c < B+ , (2.11)

c < B− < C. (2.12)

Similarly, the fronts defining the stable cone field satisfy

c < −B− , (2.13)

c < −B+ < C. (2.14)

A vector (dq, dw) in the unstable cone satisfies

‖(dq, dw)‖e ∼ ‖dq‖ ∼ ‖dw‖. (2.15)

Stable cones satisfy similar inequalities for the backward dynamics.
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2.3.3 Transition from Poincaré to orthogonal section

Let us consider a front directly after collision. It leaves a trace of velocities on the scatterer
which can be viewed either as a (unit) vector field over ∂Q or as a (d − 1)-dimensional
submanifold in the Poincaré phase space. Direct calculations show that for a vector (dr, dv)
tangent to the post-collisional front, the corresponding vector in the Poincaré phase space is
dx = (dq, dw) where:

dq = V dr; (2.16)

dw = dv − 〈v, n〉V ∗Kdq (2.17)

(equation (4.4) from [BChSzT1]). Notice that this formula depends on the differentiable
manifold structure of M̃ based on identification of nearby velocity hemispheres through the
parallel transport of the scatterer.

2.3.4 Transversality of fronts and their traces on M

Consider two fronts with s.f.f.-s B−
1 and B−

2 (just before collision) that satisfy

B−
2 − B−

1 > c1, −C1 < B−
1 < C1.

This is a sufficient condition for the transversality of the (tangent spaces of the) fronts as
(d − 1)-dimensional subsets of M. Then we know from [BChSzT1], Lemma 4.3, that their
traces in the Poincaré phase space are also transversal: their angle is at least some c > 0
depending only on c1 and C1 (and the geometry of the billiard table).

2.3.5 Expansion along unstable manifolds

The rather technical formulas of this subsection will only be used in Section 2.5.2 to prove
Lemma 2.10 and its corollary. The reader is encoureged to skip these details for the first
reading.

Let W be a “u-manifold”, that is, a d− 1 = dimM
2

dimensional submanifold of M , which
has all of its tangent vectors in the unstable cone (at all of its points). Denote by Je

W (x) the
Jacobian of T restricted to W at x. Then we know

Je
W (x) ∼ det( V1 ) ∼ (cos(ϕ1))

−1, (2.18)

which is equation (4.15) from [BChSzT1].
Let us now consider a further restriction of DT onto a subspace R ⊂ TxW of the tangent

plane of this u-manifold. For this we know that

det( DT |R) ∼ det(V1 |R′) (2.19)

where R′ = (V −1
1 ◦ π1 ◦ DT )(R), and π is the natural projection of TxM̃ to T = Tx∂Q:

π((dq, dw)) = dq. This is equation (4.16) from [BChSzT1].
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2.4 Known regularity properties

2.4.1 Geometric regularity properties in the Euclidean structure

The first two regularity properties listed here are obvious, the others are proven in [BChSzT1].
The phase space is always equipped with the Euclidean structure.

1. T is piecevise Hölder continuous – i.e. it is Hölder continuous on the finitely many
components of M̃ \S, but of course also on the countably many components of M̃ \(S∪
Γ). Actually, the Hölder exponent is 1

2
, but for simplicity we will use that ρ(Tx, Ty) ≤

3
√

ρ(x, y) whenever ρ(x, y) is small enough, and x and y are in the same component of
continuity.

2. The expansion of T is bounded when not acting near singularities. In particular, there
exists a δ > 0 such that ‖DTx‖ ≤ 1

δ
whenever ρ(x,S) > δ.

3. Uniform transversality: the angle between vectors of the stable and unstable cones Cs
x

and Cu
x is uniformly bounded away from zero.

4. Uniform alignment: the angle of any unstable manifold with any (one-step) singularity
manifold in S or Γ is uniformly bounded away from zero.

5. Chernov’s regularity conditions:

(a) Uniform hyperbolicity: We know that Condition A.2 is satisfied by some iterate
T n of the dynamics. We will not make use of this fact, instead, we will prove
the stronger statement of one-step uniform hyperbolicity for another Riemannian
structure.

(b) Uniform curvature bounds: Condition A.4 is satisfied.

(c) Uniform distortion bounds: Condition A.5 is satisfied.

(d) Uniform absolute continuity: Condition A.6 is satisfied.

Remark 2.6. To avoid confusion we mention that Condition A.6 is not explicitely stated
in this form in [BChSzT1]. However, the relevant statement, Theorem 5.9 of [BChSzT1]
is known to imply the absolute continuity property of Condition A.6, based on a classical
argument by Anosov and Sinai from [AS]. Furthermore, we may allow for a little more
flexibility: the manifolds W1 and W2 that appear in Condition A.6 may be arbitrary u-
manifolds (manifolds with tangent planes in the unstable cone). Actually, it is this slightly
generalized form of the absolute continuity property that we apply in [BBT]. See also [CM]
on further details about different formulations of absolute continuity.
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2.4.2 Structure and complexity of the singularity set

In this section we discuss singularities of higher iterates of the dynamics T . We introduce
the notation

Sn = T−nS0 n = 1, 2, . . . ,−1,−2, . . .

for the “n-step singularity set”. So S0 = ∂M is the “0-step singularity set”, and the singu-
larity set of T is S = S1. The set of points where T n is singular is

S(n) :=

n
⋃

i=1

Sn for n ≥ 1

S(n) :=

−1
⋃

i=n

Sn for n ≤ −1.

The n-step secondary singularity set Γn and the secondary singularity set of T n, Γ(n)

can be defined analogously. However, in this section we discuss the structure of the primary
singularity set S(n) of T n. That is, the secondary singularities in (2.3) are not considered.

An important feature of the singularity set of billiards is the so-called “continuation
property”. This means that the primary singularities are one-codimensional submanifolds
that can only terminate on each other, or on the boundary of M . More precisely, S is a finite
union of one-codimensional compact submanifolds of M with boundary, and every boundary
point is either an inner point of some other component, or it is on ∂M . See Figure 1.

Figure 1: a piece of the phase space cut by singularities

The consequence of this continuation property is that singularities do cut the phase space:
if a small open subset U of M is intersected by a singularity manifold, then it is indeed cut
into two components. These are not necessarily connected components: U itself may be
non-connected already, but even a connected set may well be cut into many pieces by a
single 1-codimensional plane. So by “component” we mean those points of U which can be
connected by a continuous curve in M which is disjoint from the entire (primary) singularity
set S.
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Definition 2.7. For every n, the set M̃ \ S(n) consists of finitely many (open) connected
components, let us denote these by M̃ (n),i, where i is from some finite index set. Now for

any set U ⊂ M̃ , we denote by Kn,U the number of M̃ (n),i-s that are intersected by U . The
quantity Kn,U will be referred as the complexity of S(n) on U .

For x ∈ M̃ let us denote by Kn,x the number of M̃ (n),i that contain x, which will be
referred as the complexity of S(n) at x. Finally, we define the complexity of S(n) as

Kn := sup
x∈M̃

Kn,x.

Remark 2.8. It follows from compactness of M̃ that for every n there exists an ε such that
if the diameter of U is less than ε, then Kn,U ≤ Kn.

A very common assumption in the theory of singular hyperbolic dynamical systems is
that the complexity Kn is a subexponential function of n, or at most of O(λn) where λ is
strictly less than the smallest expansion on the unstable cone. We also have to assume this
property, see Assumption 1.3.

2.5 Further regularity properties

In this section we discuss two further regularity properties, which are not new, and are in
a sense known to Billiards experts, however, we could not locate a precise formulation and
proof in the literature.

2.5.1 Smoothness of one-step singularities

Much of the difficulty in the discussion of multi-dimensional dispersing billiards is related to
a phenomenon discovered in [BChSzT1]: if we consider higher iterates of the dynamics, the
singularity set will be non-smooth, i.e. its curvature blows up near certain “pathological”
points. In the present work, however, it is important for us that such a pathology does not
appear for the (non-iterated, or 1-step) dynamics itself. With the notations of Section 2.2.3:
T−nS0 may behave irregularly for n ≥ 2, but S = T−1S0 is smooth. This is also true for
the secondary singularity set Γ, and even for every submanifold in M̃ which is (similarly to
a secondary singularity) the pre-image of an arbitrary {ϕ = const} set. Moreover, there is a
universal upper bound for the curvature of all of these manifolds. This fact is stated in the
following proposition.

Proposition 2.9. There is a global constant KS such that for any ϕ0 ∈ [0, π
2
], the curvature

of the submanifold T−1({x ∈ M̃ | ϕ(x) = ϕ0}) at any of its points is at most KS.

The proof of this proposition is postponed until Section 3.4.1, since the precise notion of
“curvature” used in the statement is discussed in Section 3.4 only.
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2.5.2 Anisotropy near tangent collisions

A key feature of multi-dimensional dispersing billiard dynamics is the anisotropy of expansion
in unstable directions. This means that near singularities the expansion is not only very
strong, but also very direction-dependent. Indeed, certain unstable vectors are expanded
enormously (of the order 1/ cosϕ1), while others are only expanded moderately (of the order
1). There is in a sense only one strongly expanding direction, which is approximately the
direction of perturbations within the plane of the trajectory (at the next collision). Here
we need to make these statements precise, and draw the consequence that the strongly
expanding direction is ‘just orthogonal’ to the secondary singularities – that is, the distance
of nearby {ϕ1 = const} manifolds is increased by T by a factor of 1/ cosϕ1. At this point
we are still using the Euclidean norm on the phase space, but the staements will also hold
with the new Riemannian structure to be introduced in Section 3.

Lemma 2.10. For any x ∈ M near a singularity, there is a tangent vector dx ∈ TxM such
that

|dϕ1| ∼ ‖DTdx‖e ∼
1

cos ϕ(Tx)
‖dx‖e.

Proof. We work in the tangent space of M at Tx, so for convenience we choose Tx as time
zero and denote quantities at Tx without indices. We will say that a vector of T or J is in
the “strongly scattering direction”, if it is in the plane spanned by n and v (orthogonal to
T ∩J ). Such vectors have the property that they are greatly expanded by V or V ∗ (exactly
by the factor 1/ cosϕ).

We will use that for a tangent vector (dr, dv) of a front just after collision, which has the
vector (dq, dw) as its trace on T M , we have dq = V dr (which is (2.16)) and

dw = B−dr + V ∗K cos ϕV dr,

which comes e.g. from the combination of (2.8) and (2.17).
Choose dx so that DTdx = (dq, dw) has dq pointing in the strongly scattering direction.

Then ‖dq‖ = ‖V dr‖ = 1
cos ϕ

‖dr‖, so the vector cosϕV dr has length ‖dr‖ and is in the strongly
scattering direction. Since K is positive definite and c < K < C, the vector K cos ϕV dr
also has a component in the strongly scattering direction which is at least c‖dr‖ long, and
the other component is not longer than C‖dr‖ either. So V ∗K cos ϕV dr is at least c

cos ϕ
‖dr‖

long and points mainly in the strongly scattering direction. Since B−dr is of order ‖dr‖ only
(by (2.12)), the whole of dw points mainly in the strongly scattering direction, meaning that
‖dw‖ ≈ |dϕ|. Now (2.15) gives ‖DTdx‖e ∼ |dϕ|.

On the other hand, dx was chosen exactly so that (2.19) gives

‖DTdx‖e

‖dx‖e
∼ 1

cos ϕ
,

so dx is really the vector we are looking for.
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Corollary 2.11. Let γ1 and γ2 be two nearby {ϕ = const} manifolds: γ1 = {x ∈ M | ϕ(x) =
ϕ1}, γ2 = {x ∈ M | ϕ(x) = ϕ1 + dϕ}. Then

dist(γ1, γ2) ∼
1

cos ϕ1
dist(T−1γ1, T

−1γ2).

Proof. (2.18) implies the upper bound: no vector can be expanded more than ∼ 1
cos ϕ1

. The
lower bound comes from Lemma 2.10:

dist(γ1, γ2) = |dϕ| ∼ 1

cos ϕ1

‖dx‖e ≥
1

cos ϕ1

dist(T−1γ1, T
−1γ2).

3 Riemannian structure and regularity

Our aim now is to introduce a Riemannian structure on the billiard phase space, which will
be different from the natural Riemannian structure of the manifold, and will exhibit, as a
main feature, one-step expansion of unstable vectors. Similar metric-type quantities have
been used before, see e.g. the quadratic form Q used in [LW], or the pseudo-metric called
“p-metric” in [KSSz, SCh, BChSzT1]. These are known to increase on the unstable cone,
but are not well-behaved on general tangent vectors. The new feature of the metric we are
about to introduce is that it comes from a true Riemannian structure, equivalent in a strong
sense to the “original” Euclidean metric (see Appendix B). We will use this equivalence
strongly.

3.1 Motivation

The reason for this is the following. As mentioned in Section 2, the use of the Euclidean
structure has the big advantage that the regularity properties A.4, A.5 and A.6 have already
been proven in [BChSzT1]. On the other hand, uniform hyperbolicity (A.2) is only true for
a higher iterate of the dynamics, e.g. the length of an unstable vector may decrease with
one application of the (derivative of the) dynamics, which leads to difficulties when trying to
prove the growth properties A.7. The key feature of the Riemannian structure we are about
to introduce is that the induced metric exhibits one step expansion on unstable vectors.

It is important to see that we can not just use a higher iterate of the dynamics to achieve
one-step expansion. The reason is the substantial difference between the singularity set of
the 1-step dynamics and the higher iterates. When proving the growth condition A.7, we
will need to estimate the measure of some δ-neighbourhood of the singularity set (within
the unstable menifold). As discussed in Section 2.5.1, the 1-step singularities are uniformly
smooth, so such an estimate can be based on a locally flat picture – both unstable manifolds
and singularities can be pictured as affine subspaces in a Euclidean space. However, already
for T 2, the curvature of the singularity manifolds blows up, so such an estimate does not
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work – no matter how small a scale one chooses to work on. For higher iterates of the map,
the singularity structure is extremely complicated, and we were unable to find any useful
estimate on the measure of the δ-neighbourhood. The way out of this problem is the new
metric, which makes the detailed understanding of higher-order singularities avoidable.

3.2 Chernov-Dolgopyat metric in two dimensions

The main idea comes from [CD], where the authors use a metric which measures infinitesimal
distances on the front, rather than in the Poincaré section. Since expansion of an unstable
front is monotonous, this kind of length of unstable vectors clearly grows from collision to col-
lision. For the sake of easier understanding, we first discuss the 2-dimensional construction,
and give the multi-dimensional generalization thereafter.

In two dimensions, measuring distances “on the front” simply means using (dr, dv) instead
of (dq, dw) = (dq, dϕ) (with the notations of Section 2). See footnote. 2 It is important to
note however, that (dr, dv) is the tangent vector of the front after collision, which results in
an asymmetry in the behaviour of stable and unstable vectors.

So the metric, which we will call the Chernov-Dolgopyat metric or C-D metric, is defined
as

‖(dq, dϕ)‖C−D := ‖(dr, dv)‖e = ‖(dq cos ϕ, dϕ + Kdq)‖e =
√

(dq cos ϕ)2 + (dϕ + Kdq)2.

Equivalently, the metric tensor has the form

gC−D((dq1, dϕ1), (dq2, dϕ2)) =
(

dq1 dϕ1

)

(

cos2 ϕ + K2 K
K 1

)(

dq2

dϕ2

)

.

To be absolutely precise: the matrix

(

cos2 ϕ + K2 K
K 1

)

is the matrix of the metric tensor

in the basis {e, f} where e ∈ T , f ∈ J , ‖e‖e = ‖f‖e = 1. (This basis is orthonormal in the
Euclidean metric.)

We will not rigorously prove hyperbolicity with respect to this metric here, since it will
be done in Section 3.3 for the multi-dimensional case, and that is what we need. Instead,
we discuss the relation of the C-D metric to the Euclidean.

It is easy to see using (2.15) and (2.11) that for vectors of the unstable cone, the C-D
metric is equivalent to the Euclidean: ‖dx‖C−D ∼ ‖dx‖e for u-vectors. Also, ‖dx‖C−D ≤
C‖dx‖e holds for every vector dx, since K is bounded. However, ‖dx‖C−D can be much
smaller than ‖dx‖e for some vectors (in the stable cone) near the boundary of M̃ . Indeed,
the determinant of the matrix of the metric tensor is cos2 ϕ, which vanishes on ∂M̃ . This
non-equivalence has the inconvenient consequence that gC−D is not a Riemannian structure
on M̃ . More precisely, it is a Riemannian structure only on the inner part, and it cannot be
extended to the boundary in a continuous non-vanishing manner. This is inconvenient for
several reasons, e.g. no compactness arguments will work.

2Notice that we are not ignoring the velocity component, so this metric is not the so-called p-metric of
billiards literature, which only measures configurational distances on the front.
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3.3 Generalization to high dimension

The multi-dimensional generalization is quite straightforward. Consider a tangent vector
(dq, dw) of the Poincaré section. The configurational part is dq ∈ T , while the velocity part,
dw ∈ J is in another space. So we have to be more careful than in 2D where these were
numbers that one can add. The counterpart of (dq, dw) on the front is (dr, dv) where dr ∈ J
and dv ∈ J . The transition is via the operator V : J → T . The formulas of the transition
are listed in Section 2.3.3 as (2.16) and (2.17), and they are

dr = V −1dq (3.1)

dv = dw + 〈v, n〉V ∗Kdq.

The C-D metric is defined almost like in two dimensions. However, for some reason – to be
explained in Remark 3.3 below – we need to insert a small scaling factor εC−D > 0 which
ensures that the velocity component is taken into account with a sufficiently small weight:

Definition 3.1.

‖(dq, dw)‖C−D := ‖(dr, εC−Ddv)‖e = ‖(V −1dq, εC−D(dw + 〈v, n〉V ∗Kdq))‖e. (3.2)

Or, equivalently, the C-D metric tensor has the matrix (written in block form)

gC−D =

(

V −1∗V −1 + ε2
C−D〈v, n〉2KV V ∗K ε2

C−D〈v, n〉KV
ε2

C−D〈v, n〉V ∗K ε2
C−D

)

in the basis {e1, . . . , ed−1, f1, . . . , fd−1} where {e1, . . . , ed−1} is a basis of T , {f1, . . . , fd−1} is
a basis of J , both are orthonormal with respect to the Euclidean metric, K is the matrix of
the operator K : T → T with respect to the basis {e1, . . . , ed−1}, and V is the matrix of the
operator V : J → T with respect to the bases {e1, . . . , ed−1} and {f1, . . . , fd−1}.

The factor εC−D is needed due to another typical multi-dimensional phenomenon.
In the following lemma we show that the billiard dynamics shows one-step uniform hy-

perbolicity with respect to the C-D metric, if εC−D is small enough. This is a very important
advantage in comparison with the Euclidean metric, where we only have uniform hyperbol-
icity for some higher iterate of the dynamics.

Lemma 3.2. If norms of tangent vectors are measured using the C-D metric and εC−D is
small enough, then T exhibits uniform hyperbolicity in the sense of Condition A.2.

Proof. The existence and properties of the invariant cone fields have already been established
in [BChSzT1], and are listed in Section 2.3.2. So we only need to show that there exists some
global constant ΛC−D > 1 such that the ‖.‖C−D-norm for any tangent vector (dr+, dv+) of
any post-collision front that corresponds to some u-vector is expanded at least by a factor
ΛC−D during a free flight and a collision – that is, until the front becomes a post-collision
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front again. So let (dr−1 , dv−
1 ) and (dr+

1 , dv+
1 ) denote the time-evolved tangent vector just

before and after the next collision, respectively.
The formulas of free propagation, (2.4) and (2.5) say that (dr−1 , dv−

1 ) = (dr++τdv+, dv+),
so

‖(dr−1 , εC−Ddv−
1 )‖2

e = |dr+|2 + 2τ〈dr+, dv+〉 + τ 2|dv+|2 + ε2
C−D|dv+|2. (3.3)

Since dv+ = B+dr+ and B+ > c by (2.11), we have |dv+| ≥ c|dr+| and 〈dr+, dv+〉 ≥ 0, so
(3.3) implies

‖(dr−
1

,εC−Ddv−
1

)‖2
e

‖(dr+,εC−Ddv+)‖2
e
≥ 1 + τ 2 |dv+|2

|dr+|2+ε2
C−D |dv+|2 = (3.4)

= 1 + τ 2 1
|dr+|2

|dv+|2
+ε2

C−D

≥ 1 + τ 2
min

1
1

c2
+1

whenever εC−D ≤ 1. In words: the expansion of the tangent vector during free flight is
considerable, since the velocity component is non-negligible, and the flight is not very short.

Similarly (2.6), the first of the collision formulas, together with B− < C from (2.12)
imply that

‖(dr+
1 , εC−Ddv+

1 )‖2
e

‖(dr−1 , εC−Ddv−
1 )‖2

e

≥ ‖dr−1 ‖2

‖dr−1 ‖2 + ε2
C−DC2‖dr−1 ‖2

=
1

1 + ε2
C−DC2

. (3.5)

This and (3.4) give the statement when εC−D is small enough.
The argument for the uniform contraction of stable vectors would be completely analo-

gous. Indeed, the minimum expansion along an unstable front from one pre-collision moment
to the other can be obtained by multiplying the exact same expressions on the right hand
sides of (3.4) and (3.5), now in opposite order. But that is exactly the inverse of stable
contraction from one post-collision moment to the other.

Remark 3.3. We note that in general
‖(dr+

1
,dv+

1
)‖2

e

‖(dr−
1

,dv−
1

)‖2
e
≥ 1 is not true for an unstable front:

The tangent vector of the front may be contracted at collision. This does not happen if
either the operator B− or K is close to a scalar. However, in general it may happen that
〈B−dr, V ∗KV dr〉 < 0 despite the fact that both B− and V ∗KV are positive definite. In such

a case, (2.6) and (2.7) may give
‖(dr+

1
,dv+

1
)‖2

e

‖(dr−
1

,dv−
1

)‖2
e

< 1. This is another typical multi-dimensional

phenomenon.

The following two lemmas are about the relation of the C-D metric to the Euclidean. The
statements are greatly different for unstable and stable vectors, which reflects the asymmetry
in the definition of the metric.

Lemma 3.4. The C-D and the Euclidean metric are equivalent for vectors of the unstable
cone field. That is, there exists a global constant C < ∞ such that for any vector dx of any
unstable cone Cu

x ,
1

C
‖dx‖e ≤ ‖dx‖C−D ≤ C‖dx‖e.
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Proof. First let us note that, after having chosen εC−D according to Lemma 3.2, we may
keep it fixed so that it becomes a global constant. Let dx = (dq, dw) be a vector of the
unstable cone, and let (dr, dv) be its equivalent on the front. The transition is given by
(2.16) and (2.17). Vectors of the unstable cone satisfy B+ > c (from (2.11)), which means
that ‖(dq, dw)‖C−D = ‖(dr, εC−Ddv)‖e ∼ ‖dv‖. But (2.15) says ‖(dq, dw)‖e ∼ ‖dw‖. Finally,
a combination of (2.7), (2.16) and (2.17) give ‖dv‖ ∼ ‖dw‖.
Lemma 3.5. There exists a global constant C < ∞ such that for any vector dx of any stable
cone Cs

x,
‖DTdx‖e ≤ C‖dx‖C−D.

Proof. Let us use the notation dx = (dq, dw) and DTdx = (dq1, dw1).
First, let the tangent vector of the front corresponding to DTdx be (dr1, dv1). From (2.17)

we have that |dw1| ≤ |dv1| + | cosϕ1V
∗
1 K1dq1|. Since ‖V −1

1 ‖ = 1, (2.16), (2.10) and (2.14)
give |dv1| ≤ C|dq1|. Besides, since ‖ cos ϕ1V

∗‖ = 1, (1.2) gives | cos ϕ1V
∗
1 K1dq1| ≤ Kmax|dq1|.

These together imply that
‖DTdx‖e ≤ C|dq1|. (3.6)

Second, let the tangent vector of the front corresponding to dx be (dr, dv). The definition
of the C-D metric implies that

‖dx‖C−D ≥ |dr|. (3.7)

Due to (3.6) and (3.7), it is enough to show that

|dq1| ≤ C|dr|, (3.8)

and this is what we will do.
In order to prove (3.8) we envoke some notation from [BChSzT1]. Given an invertible

linear operator O (that may depend on the phase point we are considering), the relation
c ≺ O ≺ C means that there exist global constants C1, C2 > 0 such that ‖O‖ ≤ C1 and
‖O−1‖ ≤ C2, uniformly on the phase space. Furthermore, we envoke the key technical
Lemma 4.3 from [BChSzT1]: given two symmetric, positive definite operators K ′ : T → T
and B′ : J → J with c ≺ K ′ ≺ C and c ≺ B′ ≺ C, we also have

c ≺ B′V −1 + 〈n, v〉V ∗K ′ ≺ C. (3.9)

Now let us rewrite (2.4), (2.5), (2.9) and (3.1) as

dr = dr1 − τdv−
1 = dr1 − τB−

1 dr1 = (I − τB−
1 )V −1

1 dq1

where I is the identity operator. We use (2.8) to express B−
1 in terms of B+

1 and obtain:

dr =
(

(I − τB+
1 )V −1

1 + 2τ〈n1, v1〉V ∗
1 K1

)

dq1.

Now we may invoke (3.9) with B′ = I − τB+
1 and K ′ = 2τK1 to prove (3.8). To see that

these operators are indeed bounded from above and below we refer to (2.14) on the one
hand, and to our assumptions (1.1), (1.2), (1.3) and (1.4) on the other hand.
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Although the use of the C-D metric ensures uniform hyperbolicity, it has the disadvantage
that it is not a true Riemannian structure. This can be seen exactly as in 2 dimensions: the
determinant of the metric tensor (with respect to the Euclidean) is cos2 ϕ, which vanishes on
the boundary of M̃ , where the metric is degenerate. This has many unpleasant consequences.
First of all, Chernov’s Condition A.1 about the dynamical system formally demands a true
Riemannian manifold, with M̄ compact. However, the problems with the non-Riemannian
nature of the C − D metric are deeper, and not just formal. Some details will be explained
in Appendix B, Remark B.10. For these reasons, we will use a regularized version of the
C-D metric structure, which will be truely Riemannian, and will not exhibit the unpleasant
features of the original C-D metric.

Definition 3.6. The Riemannian structure we use on the Poincaré phase space M̃ is the
“Regularized Chernov-Dolgopyat” metric tensor field defined by

g := gC−D + εgge.

Here ge is the Euclidean metric tensor field (the natural Riemannian structure on M̃), and
εg > 0 is an arbitrary constant.

The choice of εg will be based on the following Proposition:

Proposition 3.7. The “Regularized Chernov-Dolgopyat” metric tensor field g is a C1 Rie-
mannian structure on M̃ . If εg is small enough, then T is uniformly hyperbolic with respect
to g. That is, Condition A.2 holds.

Proof. The fact that gC−D is a C1 field of symmetric tensors of type (0, 2) is clear from the
definition: it is built up of K, 〈n, v〉V , 〈n, v〉V ∗, V −1 and V −1∗, which are all bounded and
continuously differentiable up to the boundary of M̃ . gC−D is also positive semi-definite,
which is clear from (3.2). Since ge is a C1 Riemannian structure, g = gC−D + εgge is also a
C1 field of symmetric tensors of type (0, 2), which is positive definite (everywhere) if εg > 0.
One can check by direct calculation that the determinant of g (with respect to the Euclidean)
is uniformly bounded away from 0. This altogether means that g is truely a Riemannian
structure.

To prove uniform hyperbolicity (i.e. that Condition A.2 holds), we still use the invariant
cone field already introduced in [BChSzT1] and described in Section 2.3.2, used in Lemma 3.2
as well. So we only need to see that vectors of the unstable cone are expanded, and vectors
of the stable cone are contracted at least by a factor Λ > 1.

For unstable vectors this is easy, since the C-D and the Euclidean metric are equivalent
on unstable vectors (by Lemma 3.4), so the term εgge in g is negligable if εg is small enough.
So expansion is inherited from the C-D metric (Lemma 3.2). Indeed,

‖dx‖e ≤ C‖dx‖C−D

for every vector dx of the unstable cone, thus

‖dx‖ ≤
√

1 + ε2
gC

2‖dx‖C−D,
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so

‖DTdx‖ ≥ ‖DTdx‖C−D ≥ ΛC−D‖dx‖C−D ≥ ΛC−D
1

√

1 + εgC
‖dx‖,

which proves the statement for unstable vectors if εg is so small that

ΛC−D
√

1 + ε2
gC

2
> 1.

The case of stable vectors dx is also easy, once we have the difficult Lemma 3.5 about the
dynamical comparison of the metrics on stable vectors. Using that lemma (and Lemma 3.2
about the hyperbolicity of the C-D metric), we can simply write

‖DTdx‖2 = ‖DTdx‖2
C−D + ε2

g‖DTdx‖2
e ≤

‖dx‖2
C−D

Λ2
C−D

+ ε2
gC

2‖dx‖2
C−D = (3.10)

=

(

1

Λ2
C−D

+ ε2
gC

2

)

‖dx‖2
C−D (3.11)

which proves the statement for stable vectors if εg is so small that

1

Λ2
C−D

+ ε2
gC

2 < 1.

3.4 Curvature bounds and Riemannian structure

“Bounded curvature” is a commonly used regularity property in Dynamical Systems theory.
In the literature there are many statements which claim that the curvature of certain sub-
manifolds of the phase space or the configuration space is bounded. There is a variety of
notions of curvature used in these statements. The essence of curvature bounds is always
the fact that “if two points are near, then their tangent spaces are also near”, so one needs
to compare vectors of different tangent spaces. This can be done without any special care
if the containing manifold is Euclidean, but in general one would need to identify nearby
tangent spaces through the parallel transport of the manifold.

Since we are going to use a Riemannian structure on M̃ which is not Euclidean, and even
different from the natural Riemannian structure, we will now formulate precisely what we
mean by curvature bounds. We use notation which is standard in differential geometry, see
e.g. [KN].

The proper notion for the curvature of an unstable manifold is the curvature as of a
submanifold, so it’s not a quantity of inner geometry. It should describe how fast the sub-
manifold “bends away” from the geodesics tangent to it, e.g. a cylinder (surface) as a subset
of R3 with a small radius should be considered heavily curved, although its inner geome-
try is Euclidean. Only this way can bounded curvature mean that the submanifold can be
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viewed (at the cost of an arbitrarily small error) as a plane, if the scale is small enough. The
quantity which measures curvature in this sense is the second fundamental form. We will
use this phrase many times, and abbreviate it as s.f.f. We have already used this quantity
in describing fronts as subsets of Q. Since in Q fronts are one-codimensional, the notion of
second fundamental form was easier there, but the generalization to higher codimensions is
also known in differential geometry.

Let M be a Riemannian manifold with Riemannian metric tensor field g, and let ∇ be
the connection defined by g.

Definition 3.8. The second fundamental form of a C2 submanifold W at the point x is
II : Tx × Tx → Nx, where Tx is the tangent space and Nx is the normal space of W at x,
defined by

II(v, w) = ∇⊥
v w.

Here ⊥ means “component orthogonal to W”. For this definition to make sense, at least w
has to be a vector field, but the value of II(v,w) will only depend on the value of w at x, as
long as w is a tangent vector field of W (at least in every point of W near x). II is bilinear.

Remark 3.9. To clarify why this quantity is indeed the proper notion of curvature of W as
a submanifold, i.e. the amount of non-flatness of W in M , here is a small picture about its
meaning with coordinates. We will not use this picture later, all our proofs will be based on
the definition.

Let us choose {e1, . . . , ek} to be an orthonormal basis of Tx and {n1, . . . , nl} to be an
orthonormal basis of Nx, and choose, as a coordinate chart, normal coordinates built from the
basis {e1, . . . , ek, n1, . . . , nl}. Denote the coordinates as (x1, . . . , xk, y1, . . . , yl). Then in this
coordinate chart the submanifold W (near the origin) will be the graph of a function f : Rk →
Rl. In the Taylor polynomials of f the constant and the linear term are zero by the choice of
the coordinate system, and the quadratic term is exactly the quadratic transformation from
Rk to Rl defined by the components of II in the bases {e1, . . . , ek}, {n1, . . . , nl}.

That is, the second degree Taylor polynomial of f at 0 is

ya = T a
2 (x1, . . . , xk) = IIa

bcx
bxc

where

II(eb, ec) = II(
∂

∂xb
,

∂

∂xc
) = IIa

bc

∂

∂ya
= IIa

bcna.

Now we can make Condition A.4 about curvature bounds precise:

Condition 3.10. There should exist a constant KW < ∞ such that at any point x of any
unstable manifold W , the second fundamental form of W at x (as a bilinear operator) is
bounded by KW . That is, for any v, w ∈ TxW , ‖II(v, w)‖ ≤ KW‖v‖‖w‖.

The reader may check that – although differently formulated – this is exactly what
was proven for the Euclidean metric of M̃ in Theorem 5.5 of [BChSzT1], and – although
differently said – this is exactly what is used in [Ch2] as the “bounded curvature” assumption.
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3.4.1 Proof of Proposition 2.9 about bounded curvature of one-step singularities

The proof of Proposition 2.9 will be based on the following lemma. Let V and W be
two smooth 1-codimensional submanifolds of a Riemannian manifold M, and let them be
transversal. Then V ∩ W is also a 1-codimensional submanifold of V .

Lemma 3.11. For every C < ∞ and α > 0 there exists a C ′ < ∞ such that if at a point
x ∈ V ∩W the s.f.f. of V and the s.f.f. of W are both bounded by C and the angle of V and
W is at least α, then the s.f.f. of V ∩ W as a submanifold of V is bounded by C ′ (at x).

Proof. Let us denote the covariant derivation within V by ∇V . Let v and w both be tangent
vectors (vector fields) of V ∩W . The quantity we wish to estimate is the component of ∇V

v w
orthogonal to V ∩ W . But ∇V

v w is just the component of ∇vw parallel to V , that is,

∇V
v w = ∇vw − IIV (v, w),

where IIV is the s.f.f. of V . Due to our assumption, the length of IIV (v, w) is at most
C|v||w|, and of course its component orthogonal to V ∩ W cannot be longer either. So it
is enough to find an estimate for the other term, i.e. the component of ∇vw orthogonal to
V ∩ W . Now denote the (unit) normal vectors of V and W by e and f . Our assumptions
imply that the components of ∇vw in the direction of e and f are both bounded by C|v||w|.
The statement is that the component of ∇vw within the plane of e and f is also bounded by
some C ′|v||w|. But this is clear since the angle of e and f is at least α, so any vector within
their plane which is long, must have a long component is at least one of their directions.

To prove Proposition 2.9 we apply the lemma with M the flow phase space of the billiard,
and V = M , the Poincaré section phase space. W is chosen to be the 1-step singularity
manifold of the flow dynamics. It is easy to see that the s.f.f. of V = M within M is
bounded, since M is a compact smooth submanifold of M. We now only need to see that
the s.f.f. of W is bounded in the points of M , and that M and W are uniformly transversal.
Both of these can be seen easily, since the minimum free flight τmin was supposed to be
nonzero - i.e. there are no corner points.

3.5 Regularity properties with respect to the new Riemannian
structure

In Appendix B we consider the problem of having two different Riemannian structures on
the same differentiable manifold. We show that if the regularity properties of sections 2.4.1
and 2.5 are checked with the usual Riemannian sturcture, then they automatically follow for
the new one. The result is the following proposition:

Proposition 3.12. All the regularity properties stated in sections 2.4.1 and 2.5 are sat-
isfied also if the regularized Chernov-Dolgopyat metric tensor field g is used to define the
Riemannian structure on M instead of the Euclidean structure ge. Specifically,
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• piecewise Hölder continuity of the dynamics

• bounded expansion away from the singularities

• uniform transversality of stable and unstable cone fields

• uniform alignment

• uniform curvature bounds for stable and unstable manifolds

• uniform distortion bounds

• uniform absolute continuity

• Proposition 2.9 about the smoothness of one-step singularities, and

• Corollary 2.11 about the anisotropy near tangent collisions

remain valid when the phase space is equipped with the regularized Chernov-Dolgopyat Rie-
mannian structure instead of the Euclidean.

The proof can be found in Appendix B.

4 Growth properties

In this section we prove that the studied multidimensional dispersing billiard systems satisfy
Chernov’s growth properties. More precisely, we show that there is some fixed integer n0

such that the n0th iterate of the billiard map T satisfies Condition A.7.
We recall that in a “d-dimensional” billiard the Poincaré phase space is 2(d−1)-dimensio-

nal. Since we will be working with unstable manifolds, we introduce the notation m = d− 1
for their dimension.

Throughout the section we will use the notation A[δ] to denote the (closed) δ-neighbour-
hood of a subset A of the phase space, or of an unstable manifold.

In accordance with the exposition of Appendix A, it is worth introducing the following
notations.

Let T̂ be a n0th iterate of the original billiard map, i.e. T̂ = T n0, where n0 ∈ N is to be
specified later. Thus the singularity set for T̂ is Γ̂ = Γ(n0), and T̂ expands unstable vectors
(and contracts stable vectors) at least by a factor Λ̂ = Λn0.

For δ0 > 0, we call W a δ0-LUM if it is a local unstable manifold (LUM, see Appendix A)
and diam W ≤ δ0. For an open subset V ⊂ W and x ∈ V denote by V (x) the connected
component of V containing the point x.

Let n ≥ 0. We call an open subset V ⊂ W a (δ0, n)-subset if V ∩ Γ̂(n) = ∅ (i.e., the map
T̂ n is smoothly defined on V ) and diam T̂ nV (x) ≤ δ0 for every x ∈ V . Note that T̂ nV is
then a union of δ0-LUM-s.
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Proposition 4.1. There is a fixed δ0 > 0, furthermore, there exist constants α ∈ (0, 1) and
β, D, κ, σ > 0 with the following property. For any 0 ≤ δ < 1 and any δ0-LUM W there
is an open (δ0, 0)-subset V 0

δ and an open (δ0, 1)-subset V 1
δ ⊂ W \ Γ̂[δ] (one of these may be

empty) such that the two sets are disjoint, mW (W \ (V 0
δ ∪ V 1

δ )) = 0 and ∀ε > 0
First Growth Property:

mW ({ x ∈ V 1
δ | ρ(T̂ x, ∂T̂ V 1

δ (x)) < ε }) ≤
≤ αΛ̂ · mW ({ x ∈ W | ρ(x, ∂W ) < ε/Λ̂ }) + εβδ−1

0 mW (W ); (4.1)

Second Growth Property:

mW ({ x ∈ V 0
δ | ρ(x, ∂V 0

δ (x)) < ε }) ≤ Dδ−κ mW ({ x ∈ W | ρ(x, ∂W ) < ε }); (4.2)

and Third Growth Property:

mW (V 0
δ ) ≤ D mW ({ x ∈ W | ρ(x, ∂W ) < δσ }). (4.3)

Remark 4.2. Note that Propostion 4.1 is slightly stronger than Condition A.7. Most impor-
tantly, here we allow for arbitrary 0 ≤ δ < 1, while the Condition requires only δ sufficiently
small. Allowing for δ = 0 in the first growth property (note in such a case the second and
the third growth properties are trivial) provides useful estimates, see also Remarks 4.4, 4.7
and Corollary 4.13.

4.1 Outline

The first growth property is much more difficult than the other two. Reason for this is that
in the second and the third growth properties we have a large amount of freedom, due to
the fact that an arbitrary power of δ may appear (δκ and δσ, respectively). This allows for
the use of quite crude measure estimates in their proof, see the exposition in sections 4.2.2
and 4.3.2.

The case of the first growth property is completely different. Here there is no δ, the
inequality is sharp and thus there is very limited freedom in the measure estimates.

The two terms appearing on the right hand side of (4.1) are responsible for two different
effects. The first term estimates the measure of points that get close to the singularities. The
second term corresponds to the fact that some components may grow large when applying T̂
and may fail to have diameter less than δ0. Thus one needs to partition these components.
The second term estimates the measure of points that get close to these artificial boundaries.
Handling the effect of this further chopping is rather standard, (see [Ch1] and Section 4.4
below). Thus what is to be understood is how LUMs are expanded and, simultaneously,
partitioned by singularities when iterates of T are applied. This will be the content of our
Lemmas 4.3 and 4.5, which will be referred to as 1-step and n-step Lemmas, respectively.

Throughout the rest of the section we will consider the original billiard map T . Recall
the concept of δ0-LUM and (δ0, n)-subset from above. We also introduce another notation:
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Given a (δ0, n)-subset V , define a function rV,n on V by

rV,n(x) = ρT nV (x)(T
nx, ∂T nV (x)) (4.4)

Note that rV,n(x) is the radius of the largest open ball in T nV (x) centered at T nx. In
particular, rW,0(x) = ρW (x, ∂W ).

Note that at the formulation of Condition A.7 an analogous quantity for T̂ , the function
r̂ has been used. However, throughout untill the end of Section 4.3.2, we may forget T̂ and
r̂ and consider the quantities for the original billiard map T .

First we describe how the above mentioned growth-fractioning process acts when the
first iterate of T is applied. Given a δ1-LUM W (the constant δ1 will be chosen later in
Section 4.1.1) and some δ ≥ 0, we construct a subset Gδ(W ) ⊂ W , the (δ-)gap of W , that
contains points that are δ-close to the first step singularity Γ in an appropriate sense. The
complement of Gδ(W ) will be denoted by Fδ(W ) and will be referred to as the remaining
part of W . The subscripts δ and/or the dependence on W will be sometimes omitted for
brevity if no confusion arises. Then we show that this construction does not create too much
new boundary: the sizes and shapes of the components of F and G can be controlled as
expressed in our 1-step Lemma. To formulate it, recall that KW,1 is the first step complexity
from Definition 2.7, Λ is the factor of uniform expansion from Proposition 3.7, and introduce
λ = Λ1/100.

Lemma 4.3 (1-step lemma). There are some global constants D1, κ1, σ1 > 0 with the
following property. Consider a δ1-LUM W with the corresponding gap G = Gδ(W ) and
remaining part F = Fδ(W ) constructed for some 0 ≤ δ < 1. Then for every ε > 0:

(G0) Fδ ⊂ W \ (Γ[δ]),

(G1) mW (rFδ,1 < ε) ≤ λ2K1,W · mW (rW,0 < ε/Λ),

(G2) mW (rGδ,0 < ε) ≤ D1δ
−κ1 mW (rW,0 < ε),

(G3) mW (Gδ) ≤ D1 mW (rW,0 < δσ1).

Remark 4.4. If δ = 0, we have Gδ = W ∩Γ, which is of zero Lebesgue measure. Thus (G2)
and (G3) are trivial in this case, however, (G1) is important.

Now if we knew K1,W < Λ1/2 say, Lemma 4.3 would essentially imply the three Growth

Properties of Proposition 4.1 for T̂ = T . However, there is no reason for such a relation.
We would like to emphasize that the necessity of using a higher iterate of T is a special

feature of multidimensional dispersing billiards. In the two dimensional case recent important
observations, see [CD], made it possible to prove the growth properties for T itself, regardless
of complexity. However, as the geometry is more complicated, it is not possible to adapt
directly the exposition of [CD] to higher dimensions. If d ≥ 3, complexity issues seem
unavoidable, thus to gain enough expansion, it is essential to switch to some higher iterate
of T . It seems, however, very difficult to consider higher iterates directly, as the higher order
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singularity manifolds do not possess uniform curvature bounds (see [BChSzT1] and [B]).
Thus we perform an inductive argument: given a sufficiently small LUM W and δ ≥ 0, we
construct the n-gap Gn

δ (W ) and its complement, the n-remaining set F n
δ (W ) in an inductive

manner. Then, with an inductive application of Lemma 4.3, we obtain our n-step Lemma:

Lemma 4.5 (n-step lemma). Let δn = δ3n

1 . For any fixed integer n ∈ N, there exist
global constants σn, κn > 0 and Dn > 0 with the following property. Consider an arbitrary
δn-LUM W with the corresponding n-gap Gn

δ = Gn
δ (W ) and n-remaining part F n

δ = F n
δ (W )

constructed for some 0 ≤ δ < 1. Then for every ε > 0 we have:

(Gn0) F n
δ ⊂ W \ (Γ(n))[δ],

(Gn1) mW (rF n
δ ,n < ε) ≤ λ4n Kn,W · mW (rW,0 < ε/Λn),

(Gn2) mW (rGn
δ ,0 < ε) ≤ Dnδ−κn mW (rW,0 < ε),

(Gn3) mW (Gn
δ ) ≤ Dn mW (rW,0 < δσn).

Remark 4.6. It is worth noting that Dn = D1 + Dn−1K1λ
3, σn = σ1/3n−1 and κn =

κn−1/3 + d − 1 (thus, in paticular κn ≤ κ1 + 3(d − 1)/2 for all n ∈ N).

Remark 4.7. If δ = 0, we have Gn
δ = W ∩ Γ(n), which is of zero Lebesgue measure.

Thus (Gn2) and (Gn3) are trivial in this case, however, (Gn1) is important. (See also
Remark 4.4.)

We will apply this n-step lemma for a fixed n = n0, to be chosen below in Section 4.1.1.
Considering T̂ = T n0, our Assumption 1.3 ensures that, for n0 chosen appropriately, state-
ment (Gn1) implies the first Growth Property of Proposition 4.1. (Gn2) and (Gn3) will
imply the second and third Growth Properties, respectively, with the choice of δ0 = δn0

,
D = Dn0

, κ = κn0
and σ = σn0

.

4.1.1 Further remarks and how the constants are chosen

Before turning to the constructions and the proofs in detail, we close this subsection with
some further remarks on the exposition in general.

In the proof of Lemma 4.3 it is crucial that we can apply a locally flat picture. This
is possible as LUM-s and the first step sigularity manifolds (i.e., the components of S and
Γ) possess uniform curvature bounds. Thus, on sufficiently short distance scales, we may
regard the intersections of LUMs and first step singularity manifolds as the intersection of
d− 1 dimensional flat disks with 2d− 3 dimensional hyperplanes in R2d−2. Moreover, by the
alignment property, this intersection is transversal.

Recall that λ = Λ1/100 (where Λ > 1 is the factor of uniform expansion). We choose δ1

in Lemma 4.3 in such a way that, for δ
1/3
1 -LUMs, measure estimates based on the locally

flat picture are accurate up to λ-precision. The reason for 1/3 is that, given a δ1-LUM W ,

Hölder continuity ensures that all the connected components of TW are δ
1/3
1 -LUMs, and
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thus can be regarded as locally flat pieces in the above sense. Two further requirements on
the smallness of δ1 is that distortions on this scale should not exceed λ, cf. Proposition 3.12,
and that KV,k ≤ Kk for k ≤ n0 and for any δ

1/3
1 -LUM V , see Remark 2.8.

Now in Lemma 4.5 δn = δ3n

1 . By virtue of Hölder continuity this implies that, for a δn-
LUM W , the components of T kW for all k ≤ n are δ1-LUMs, and thus satisfy the hypotheses
of Lemma 4.3.

Now when constructing Gδ we essentially cut out the δ-neighborhood of Γ from W (what
exactly is happening is explained in Section 4.2 below). In the inductive construction of Gn

δ

we apply this to some component of T kW (k ≤ n), and pull back to W . More precisely,
we apply the one step construction and, correspondingly, Lemma 4.3 to these components
with δ 7→ δ′, where δ′ is some suitable positive power of δ. Then Hölder continuity ensures
that we cut out some neighborhood of T−kΓ from W . The neighborhood of the singularity
from which F n

δ refrains will be smaller as we proceed with the induction. Thus what we can
ensure in the end is that we are a certain positive distance away from the singularity – this
is the δ that appears in the statement of Lemma 4.5. In particular, the measure estimates of
Lemma 4.5 can be ensured in terms of this δ, despite of the fact that the distance to certain
singularity components, cut out at earlier steps of the induction, will be much bigger than
δ.

Finally, as there are many global constants appearing in different arguments, some of
which depend on some others, here we summarize how these constants are chosen to make
the expostion more transparent.

1. We have seen that some εg can be chosen in Definition 3.6, which ensures that the good
metric inherits uniform expansion/contraction of unstable/stable vectors from the C-D
metric, with some factor Λ > 1. The new metric satisfies transversality, alignment and
the curvatures of LUMs and first step singularity manifolds are uniformly bounded,
see Proposition 3.12 – by the choice of εg the constants appearing in these statments
are fixed for the rest of the argument.

2. The next constant to fix is n0, the integer power of the one-step dynamics we use as
the map T̂ = T n0. The expansion factor for T̂ is Λ̂ = Λn0. By Assumption 1.3 we may
ensure that “expansion prevails fractioning”, that is, Kn0

≤
√

Λ
n0

, which guarantees
Kn0

λ4n0 = αΛn0 = αΛ̂ for some α < 1. (cf. (Gn1) from Lemma 4.5 and the First
Growth Property from Proposition 4.1).

3. The next constant we choose is k0, the integer we start the labelling of homogeneity
strips (and, correspondingly, secondary singularities) with (cf. Formulas (2.2)). We
want k0 to be so big that

• k2
0 is big enough,

• ∑k≥k0
k−2 ≈ 1

k0
is small enough

in comparison to some other global constants.
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Once k0 is fixed, the distortion bounds and the absolute continuity in Proposition 3.12
get a precise formulation.

4. Finally, we fix the constant δ1 which specifies the δ1-LUM-s for which Lemma 4.3 is to
be proven. We choose δ1 small enough such that:

• For any fixed k = 1, ...n0, given any δ3k

1 -LUM W , the set W \S(k) has at most Kk

components. This is possible by complexity and continuation.

• δ
1/3
1 -LUMs are locally flat up to λ precision and distortions of T are at most λ on

them (see the discussion in Section 4.1.1 above).

4.2 The one-step construction and its properties

4.2.1 Construction of the gap Gδ

Since we will now need to introduce a sequence of global constants depending on each other,
please recall Notation 2.1 concerning the convention on C-s.

It is time to describe how the gap Gδ(W ) (and correspondingly, the remaining part

Fδ(W )) are constructed. Pulling back the components of TW we get W \ S = ∪KW,1

i=1 Wi.

We will construct Gδ(W ) as ∪KW,1

i=1 Gδ(Wi). For fixed i the set Gδ(Wi) will cover all
points of Wi that are in the δ-neighborhood of (either primary, or secondary) singularities
intersecting Wi.

To treat the effect of secondary singularities consider TWi, which lies, by definition, on
a fixed scatterer. However, it may be partitioned by the homogeneity layers into countably
many components to be denoted by TWi,k = TWi ∩ Ik (k ≥ k0). Here TWi,k0

lies in the
“middle of the phase space” while the further components lie in the vicinity of the bound-
ary, cf. (2.2). Note, furthermore, that TWi can be foliated by ϕ =const. hypersurfaces,
corresponding to phase points where ϕ, the angle of incidence (cf. Notation 2.4) is fixed.
These foliae will be denoted as γϕ. In particular, the hypersurfaces that separate the neigh-
boring TWi,k-s from each other are elements of this foliation. In other words, TWi,k (k > k0)
consists of foliae γϕ with π

2
− 1

k2 < ϕ < π
2
− 1

(k+1)2
.

Now we define:
Gδ(Wi) =

(

Wi ∩ S [δ]
)

⋃

∪kGδ(Wi,k), (4.5)

where the construction of Gδ(Wi,k) is described below. Let us, however, first note that the
effect of the primary singularities is already taken care of in the first set appearing in the
above expression.

In Gδ(Wi,k) we will consider the effect of secondary singularities as it appears in Wi,k.
Fix a global constant C1, the value of which will be chosen below (it is determined by the
alignment property and the constants of Corollary 2.11). Consider TWi,k which, by the
above description, can be visualized as a narrow strip consisiting of γϕ-s which satisfy the
required bounds. Now TGδ(Wi,k) will consist of the two exterior substrips of TWi,k, i.e. the
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Figure 2: construction of the gap Gδ

sets made up of the foliae γϕ with π
2
− 1

k2 < ϕ ≤ π
2
− 1

k2 + C1δk
2 on the one hand, and with

π
2
− 1

(k+1)2
− C1δk

2 ≤ ϕ < π
2
− 1

(k+1)2
on the other hand. See Figure 2.

Now when pulling back this set to W by T , Gδ(Wi,k) will consist of two regions around
two neighboring elements of the (secondary) singularity set Γ. Corollary 2.11 ensures that
width of these regions is ∼ δ. Exploiting this fact along with the alignment property we may
choose C1 above in such a way that Gδ covers W ∩ (Γ[δ]).

Remark 4.8. It is worth noting that, for k big enough (more precisely, for k > Cδ−
1

5 ),
the two exterior strips overlap. In such a case we cut out the full Wi,k: Gδ will consist
of at most KW,1 thicker strips, corresponding to overlaps coming from big k, and narrower
strips, coming from smaller k where there is no overlap. In particular, by straightforward
calculations:

(i) the number of boundary components of Gδ does not exceed Cδ−
1

5 .

(ii) the width, and consequently, the measure of the thicker strips does not exceed Cδ
3

5 .

This construction may seem too complicated at first sight. However, it has several ad-
vantages that will help us to prove Lemma 4.3 with relatively simple arguments. Most
importantly, (most of) the boundary components of Gδ (and thus of Fδ), defined this way,
are pre-images of certain foliae γϕ as well. This ensures that Corollary 2.11 applies to them,
which is very useful when proving (G1), i.e. when estimating the measure of points that will
lie in the ε neighborhood of these boundary components.

Note that for a simpler choice of Gδ – setting simply Gδ = Γ(δ) ∩ W , say – it would be
much more difficult to check (G1) in lack of direct applicability of Corollary 2.11.

Remark 4.9. It is useful to note that the construction of the gap does only depend on the
singularity set. In particular, given δ1-LUMs W and W̃ ⊂ W we have Gδ(W̃ ) = Gδ(W )∩W̃
for any δ.
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4.2.2 Proof of Lemma 4.3

Statement (G0) follows by the construction of Gδ and its properties described above.
To prove statements (G1)-(G3), first we state two simple geometrical sublemmas. For

both of them consider any nonempty bounded measurable set W ⊂ Rm, and a 1-codimen-
sional plane E ⊂ Rm. E cuts Rm into two half-spaces, which we will call ‘left’ and ‘right’.
Accordingly, W is cut into a ‘left’ and ‘right’ part, Wl and Wr (one of these may be empty).
Our sublemmas will compare sets of points in W near different parts of the boundary. We
will apply them with m = d − 1, i.e. on u-manifolds. For the proof see Appendix C.

Sublemma 4.10. For any ε ≥ 0

Leb({x ∈ Wl | ρ(x, ∂Wl) < ε}) ≤ Leb({x ∈ W | ρ(x, ∂W ) < ε}) (4.6)

and the same holds for Wr. See Figure 3.
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Figure 3: the statement of Sublemma 4.10

Sublemma 4.11. For any ε ≥ 0 and 0 ≤ ξ ≤ 1,

Leb ({x ∈ W | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) ≤ ξLeb({x ∈ W | ρ(x, ∂W ) ≤ ε}).
(4.7)

See Figure 4.
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Figure 4: The statement of Sublemma 4.11

Let us prove (G2) first. What appears in addition to {rW,0 < ε} on the left hand side
is, by Remark 4.8, the ε neighborhood of finitely many hyperplanes within W . Moreover,
the number of these hyperplanes does not exceed Cδ−

1

5 . On the other hand, applying
Sublemma 4.11 (with ξ = 1), we have an upper bound mW (rW,0 < ε) on the contribution of
any such hyperplane. This proves (G2) with κ1 = 1

5
.
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To prove (G3) we first give an upper bound on its left hand side, i.e., on the measure of
Gδ. We again envoke Remark 4.8. Gδ consists, on the one hand, of finitely many “thick”
strips (of measure estimated by Remark 4.8/(ii)), the number of which is uniformly bounded

above. Thus their contribution to mW (Gδ) is not more than Cδ
3

5 . On the other hand,

we have at most Cδ−
1

5 many components of width (and thus measure) δ. Their overall

contribution to mW (Gδ) does not exceed Cδ
3

5 . Altogether we have the upper bound Cδ
3

5 on
the left hand side of (G3).

We complete the proof of (G3) with σ1 = 3
5(d−1)

. The case when the whole of W is
contained in the set

Wc := {rW,0 < δσ1}
is trivial. If, on the other hand, W \ Wc 6= ∅, then it is easy to see that Wc does necessarily
contain two disjoint hemispheres of radius δσ1 . Thus, for the measure that appears on the
right hand side of (G3):

mW (Wc) ≥ Γd−1(δ
σ1)d−1 = Cδ

3

5

where Γd−1 is the volume of the (d − 1)-dimensional unit ball. This means that (G3) holds
in this case as well if D1 is chosen appropriately.

To prove (G1) recall the notation for Wi from Section 4.2.1 for i = 1, ..., KW,1. Introduce
furthermore

Fi := Wi \ S [δ],

F
ε/Λ
i := { x ∈ Fi | ρW (x, ∂Fi) < ε/Λ }, (4.8)

F ε
i,+ := { x ∈ Fi | ρTW (Tx, T∂Fi) < ε }.

Our first observation is that

F ε
i,+ ⊂ F

ε/Λ
i (4.9)

which follows from the fact that T expands distances on u-manifolds uniformly by a
factor Λ. This is a trivial observation, nonetheless, it is important to emphasize how hard
we worked for it (this is the reason why we had to introduce a new metric) and what an
important role it plays. It is (4.9) that enables us to reduce the proof of the growth lemmas
to estimates on the one step dynamics (i.e. to Lemma 4.3).

Before proceeding we note that if we had only primary singularities, Fδ∩Wi would coincide
with Fi, and the set of points in W for which rFδ,1 < ε – that is, the set which appears on
the left hand side of (G1) – would coincide with ∪iF

ε
i,+. The second key observation is that

“the contribution of secondary singularities is negligible”, that is, for any i:

mW (x ∈ Fi | rFδ,1(x) < ε ) ≤ λmW (F
ε/Λ
i ). (4.10)

To prove (4.10) consider the connected components of T (Fi ∩ Fδ). These connected
components have boundaries of two different types. On the one hand there is T∂Fi, arising
form primary singularities. On the other hand, recalling the details of the construction
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from Section 4.2.1, we see that the secondary singularities give rise to further boundary
components, namely countably many foliae γϕk

for ϕk ≈ π
2
− 1

k2 with k ≥ k0
3. We may

denote these foliae as TEi,k, where Ei,k ⊂ Fi is a hyperplane by our convention of local
flatness. It is worth noting that it is crucial that we may apply a locally flat approximation
as only first step singularity manifolds appear, cf. Section 4.1.1.

Corresponding to the above characterization of boundary components:

{ x ∈ Fi | rFδ,1(x) < ε } ⊂ F ε
i,+ ∪

(

∪∞
k=k0

{ x ∈ Fi | ρTW (Tx, TEi,k) < ε }
)

. (4.11)

Let us concentrate on the contribution of secondary singularities. Now we may reveal
why it was so important to construct Gδ as explained in Section 4.2.1: we have that TEi,k

are themselves constant ϕ foliae. Thus, by consecutive applications of Corollary 2.11 and
the alignment property:

{ x ∈ Fi | ρTW (Tx, TEi,k) < ε } ⊂ { x ∈ Fi | ρW (x, Ei,k) <
Cε

k2
}.

Applying Sublemma 4.11 (with ε → ε/Λ and ξ → CΛ
k2 ) plugged into (4.11), along with (4.9)

implies

mW (x ∈ Fi | rFδ,1(x) < ε ) ≤
(

1 +
∞
∑

k=k0

CΛ

k2

)

mW (F
ε/Λ
i ).

We may choose k0 so big that (4.10) holds.
To complete the proof, note that by the continuation property and the convention on

local flatness Fi can be considered as the result of the following process: start with W , cut
it along a hyperplane, keep one of the two pieces, cut it again along a hyperplane and repeat
the above for finitely many (at most K1,W ) times. (See Section 2.4.2, especially Figure 1.)
Thus, by consecutive applications of Lemma 4.10 we see that

mW (F
ε/Λ
i ) ≤ mW (rW,0 < ε/Λ). (4.12)

Plugging this into (4.10) and summing over i completes the proof of (G1).
To terminate, we admit that we have cheated a little bit by using a locally flat picture,

which is true only up to λ-precision. Thus, further λ factors appear on the right hand sides
of the obtained estimates. As for statements (G2) and (G3), this can be swallowed in a
suitably chosen D1, while we have a prefactor λ2K1,W in (G1), which corresponds exactly to
the claim.

3Having a closer look at the exposition of Section 4.2.1, we see that (i) only finitely many such foliae
contribute, nonetheless, their number is unbounded, more precisely, is bounded only in terms of δ, cf.
Remark 4.8; (ii) for each k there are two such foliae, corresponding to the two exterior strips within the kth
homogeneity layer. These details, however, do not modify the exposition, thus we disregard them, to avoid
overcomplified notation.
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Remark 4.12. In the Corollary to follow, and throughout the rest of the section, we will use
the following notation. Whenever ∂TW appears, it is understood in terms of the modified
phase space of Section 2.2.3, i.e., TW is cut by secondary singularities.

Corollary 4.13. The statement (G1) from Lemma 4.3 has a special significance. In particu-
lar, it can be formulated for δ = 0 (cf. Remark 4.4). As it contains no additional information
on gap construction, this is the version that indeed estimates how much new boundary is cre-
ated by the singularity manifolds when T is applied. We formulate it for future record. Given
a δ1-LUM W , for any ε > 0 we have:

mW ({x ∈ W |ρ(Tx, ∂TW ) < ε}) ≤ λ2K1,W · mW (rW,0 < ε/Λ). (4.13)

4.3 The n-step construction and its properties

4.3.1 Construction of the n-gap Gn
δ

We construct Gn
δ (W ) by induction. We will use the construction of Section 4.2 repeatedly.

In particular, the first step of the induction is exactly the first step construction described
there.

Recall that at the nth step of the induction we need to treat δn-LUMs with δn = δ3n

1 .
Now assume inductively that, given an arbitrary δn−1-LUM, we already know how to

construct the relevant n − 1-gap for 0 ≤ δ < 1.
To proceed consider a δn-LUM W . Below we describe how for a given 0 ≤ δ < 1 the

n-gap Gn
δ (and correspondingly, the n-remaining part F n

δ ) in W is to be constructed. As W
is a δn-LUM, it is, in particular, a δ1-LUM, thus the whole exposition of Section 4.2 applies
to it. This means we may consider its 1-gap Gδ(W ), its primary components Wi and its
secondary components Wi,k.

Furthermore, the TWi,k-s are δn−1-LUMs by the Hölder continuity of the dynamics (note

δn−1 = δ
1/3
n ). By our inductive assumption the (n−1)-gaps for any TWi,k can be constructed

for 0 ≤ δ < 1. In particular, let us construct the (n−1)-gap for any such TWi,k with δ → δ1/3.
We will denote these (n − 1)-gaps lying in some fixed TWi,k by

Gi,k := Gn−1
δ1/3 (TWi,k) ⊂ TWi,k. (4.14)

To construct the n-gap Gn
δ for W , we need to identify all points that get close to some

singularity manifold within the first n iterates. Points that are close to some singularity
right now are contained in the 1-gap Gδ(W ). We need to add those points x for which T ix
is close to some singularity manifold for some i = 1, ..., n. These are exactly the preimages
of points that start out from some TWi,k and get close to some singularity within the first
n − 1 iterates, in other words, the preimages of Gi,k. This is the reason for constructing the
n-gap as:

Gn
δ (W ) = Gδ(W ) ∪ Gδ

F (W ),

Gδ
F (W ) = ∪i,kT

−1(Gi,k) \ Gδ(W ), (4.15)

where the superscript F stands for future.
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Remark 4.14. As a consequence of our observation in Remark 4.9, we have that the con-
struction of the n-gap depends only on the (n-step) singularity set as well. In particular,
given δn-LUMs W and W̃ ⊂ W we have Gn

δ (W̃ ) = Gn
δ (W ) ∩ W̃ for any δ (and any n).

4.3.2 Proof of Lemma 4.5

We will prove Lemma 4.5 for constants κn, σn and Dn satisfying the following recursive
relations:

σn = σn−1/3, κn = κn−1/3 + (d − 1), Dn = D1 + Dn−1K1λ
3. (4.16)

This is the reason for the relations mentioned in Remark 4.6.
All the statements (Gn0)-(Gn3) from Lemma 4.5 are proved by induction on n, nonethe-

less, these inductions are independent. Before performing the four inductions, let us mention
that the general strategy for all of them is essentially the same. This strategy relies on the
decomposition (4.15). In rough terms, to prove (Gn1)-(Gn3) we have to establish upper
bounds on the measure of certain sets related to Gn

δ (W ). The contribution of Gδ(W ) is
simply estimated by Lemma 4.3 (i.e., Formulas (G0)-(G3)). To treat Gδ

F (W ) we assume
inductively that we already have the relevant bound on Gi,k, the (n − 1)-gap of the δn−1-
LUM TWi,k, for any i and k. “Pulling back” the relevant estimates to W relies on two
key observations. On the one hand, the TWi,k are homogeneous u-manifolds, thus we have
bounds on the distortions of T , which help us express estimates in terms of measures in W .
On the other hand, by means of Corollary 4.13, we can reformulate our estimates in terms
of distances on W .

To prove (Gn0) we make the following observations. Any point in W that lies in the
δ neighborhood of Γ belongs to Gδ(W ) by (G0). On the other hand, by the inductive
assumption, if x′ ∈ TWi,k (for some i, k fixed) lies in the δ1/3 neighborhood of Γ(n−1), then
x′ ∈ Gi,k. Thus, by Hölder continuity of T , if x(= T−1x′) ∈ W lies in the δ neighborhood of
T−1Γ(n−1), it should belong to Gδ

F . The fact that Γ(n) = Γ∪ T−1Γ(n−1) completes the proof
of (Gn0).

To prove (Gn3) we need to provide an upper bound on the measure of Gn
δ (W ). On the

one hand, by (G3):
mW (Gδ) ≤ D1mW (rW,0 < δσ1). (4.17)

To estimate the measure of Gδ
F , we use our inductive assumption on Gi,k for any i, k fixed.

Recall that Gi,k is the n − 1 gap for δ1/3 in TWi,k. Since by (4.16) we have (δ1/3)σn−1 = δσn ,
this means that the inductive assumption – i.e., (Gn3) formulated for n → n−1 and δ → δ1/3

in TWi,k – reads as
mTWi,k

(Gi,k) ≤ Dn−1mTWi,k
(rTWi,k,0 < δσn). (4.18)

Now we are going to use that TWi,k is, on the one hand, a δ1-LUM, and, on the other
hand, it is homogeneous. Thus we have that T distorts measures on it at most by a factor
λ (recall how the constants are chosen from Section 4.1.1). Thus (4.17) implies:

mWi,k
(T−1Gi,k) ≤ Dn−1λmWi,k

(rWi,k,1 < δσn).
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We may sum first over k and then over i to obtain

mW (Gδ
F ) ≤ Dn−1λ mW ({x ∈ W |ρ(Tx, ∂TW ) < δσn}). (4.19)

where the right hand side is understood according to Remark 4.12.
Now we apply Corollary 4.13 with ε → δσn :

mW ({x ∈ W |ρ(Tx, ∂TW ) < δσn}) ≤ K1,Wλ2 mW (rW,0 < δσn/Λ) ≤ K1λ
2 mW (rW,0 < δσn).

(4.20)
Note that Dn = D1 + Dn−1λ

3K1 (4.16). Furthermore, as D1 ≤ Dn and σn ≤ σ1, the
decomposition (4.15) along with the three inequalities (4.17), (4.19) and (4.20) altogether
imply (Gn3).

As a preparation for the inductive proof of (Gn2) we state the following geometric sub-
lemma. For the proof see Appendix C.

Sublemma 4.15. Let W ∈ Rm be any nonempty bounded measurable set, ε ≥ 0 and k > 1.
Then

Leb({x ∈ W | ρ(x, ∂W ) ≤ kε}) ≤ kmLeb({x ∈ W | ρ(x, ∂W ) ≤ ε}).
See Figure 5.
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Figure 5: the statement of Sublemma 4.15

Now we can prove (Gn2). By (4.15):

{x ∈ W |rGn
δ ,0(x) < ε} ⊂ {x ∈ Gδ|rGn

δ ,0(x) < ε} ∪ {x ∈ Gδ
F |rGn

δ ,0(x) < ε}.
For the first component we apply (G2):

mW (rGδ,0 < ε) ≤ D1δ
−κ1mW (rW,0 < ε), (4.21)

while the second component, as a subset of Gδ
F , is at least δ away from the first-step

singularity set Γ. This implies that T expands distances at most by a factor 1/δ on this set
(due to 2. in Section 2.4.1 and Proposition 3.12).

As a consequence, recalling also (4.15):

{x ∈ Gδ
F |rGn

δ ,0(x) < ε} ⊂ T−1{x ∈ TWi,k|rGi,k,0(x) < ε/δ}. (4.22)

We estimate the contribution for fixed i and k. In particular, we assume inductively that
Gi,k, as the (n − 1)-gap for δ → δ1/3 within TWi,k satisfies (Gn2) in the relevant form:

mTWi,k
(rGi,k,0 < ε/δ) ≤ Dn−1δ

−κn−1/3mTWi,k
(rTWi,k,0 < ε/δ).
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We apply distortion bounds on T restricted to Wi,k the same way as in the proof of (Gn3):

mWi,k
(rT−1Gi,k,1 < ε/δ) ≤ Dn−1λδ−κn−1/3mWi,k

(rWi,k,1 < ε/δ),

and sum over k and i (recall Remark 4.12):

mW ({x ∈ Gδ
F |rGn

δ ,0(x) < ε}) ≤ Dn−1λδ−κn−1/3mW ({ x ∈ W | ρ(Tx, ∂TW ) < ε/δ}). (4.23)

Applying Corollary 4.13 to the right hand side of (4.23) – the same way as in (4.20) –
implies:

mW ({x ∈ Gδ
F |rGn

δ ,0(x) < ε}) ≤ Dn−1K1λ
3δ−κn−1/3mW (rW,0 < ε/δ).

Finally let us invoke Sublemma 4.15 with k = 1/δ to bound the right hand side from
above:

mW (rW,0 < ε/δ) ≤ δ−(d−1)mW (rW,0 < ε),

which completes the inductive proof of (Gn2) as δ−κn = δ−κn−1/3δ−(d−1) by (4.16).
To prove (Gn1) we need to introduce some more notation. By definition, Fδ = W \ Gδ

and F n
δ = W \ Gn

δ . Furthermore let

W̃i,k := Wi,k ∩ Fδ (⊂ Wi,k ⊂ W ),

Fi,k := TW̃i,k \ Gi,k (⊂ TWi,k ⊂ TW ). (4.24)

Note that
Fδ = ∪i,kW̃i,k and F n

δ = ∪i,kT
−1Fi,k

where the unions are disjoint. This implies

{x ∈ Fδ|rFδ,1(x) < ε} = ∪i,k{x ∈ W̃i,k|rW̃i,k,1(x) < ε}, (4.25)

and
{x ∈ F n

δ |rF n
δ ,n(x) < ε} = ∪i,k{x ∈ T−1Fi,k|rT−1Fi,k,n(x) < ε}. (4.26)

On the other hand – recalling also Remarks 4.9 and 4.14 – by (4.24) Fi,k is the (n − 1)
remaining part in TW̃i,k. Thus we may assume inductively that (Gn1) holds for n − 1:

mTW̃i,k
(rFi,k,n−1 < ε) ≤ Kn−1,T W̃i,k

λ4(n−1)mTW̃i,k
(rTW̃i,k,0 < ε/Λn−1).

As the TW̃i,k are homogeneous δ1-LUM-s, the distortions of T are suitably bounded and we
have

mW̃i,k
(rT−1Fi,k,n < ε) ≤ Kn−1,T W̃i,k

λ4(n−1)λmW̃i,k
(rW̃i,k,1 < ε/Λn−1). (4.27)

Note that K.,. describes the effect of primary singularities, thus it can be defined for any
(not necessarily homogeneous) unstable manifold, in particular, we may consider the quantity
Kn−1,TWi

. We also have
Kn−1,T W̃i,k

≤ Kn−1,TWi
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by means of which, keeping i fixed, we sum (4.27) over k:

mWi
({x ∈ Wi|rF n

δ ,n(x) < ε}) ≤ Kn−1,TWi
λ4(n−1)λmWi

({x ∈ Wi|rFδ,1(x) < ε/Λn−1}). (4.28)

Here we have also used the characterizations (4.25) and (4.26).
To bound the right hand side from the above, first we apply (G1) to Wi for i fixed (with

ε → ε/Λn−1):
mWi

(rFδ,1 < ε/Λn−1) ≤ K1,Wi
λ2mWi

(rWi,0 < ε/Λn).

To proceed recall that, as long as only primary singularities are concerned, the Wi are the
smooth components of W . Thus K1,Wi

= 1 and

mWi
(rFδ,1 < ε/Λn−1) ≤ λ2mWi

(rWi,0 < ε/Λn). (4.29)

By means of the continuation property, we apply, as we did in the proof of (4.12) in
Section 4.2, Sublemma 4.10:

mWi
(rWi,0 < ε/Λn) ≤ λmW (rW,0 < ε/Λn).

Here the additional λ factor appears as the error term of the locally flat estimate. This last
formula gives, along with (4.29) and (4.28) and summation on i:

mW (rF n
δ ,n < ε) ≤





K1,W
∑

i=1

Kn−1,TWi



λ4nmW (rW,0 < ε/Λn).

Finally, as a consequence of the continuation property we have





K1,W
∑

i=1

Kn−1,TWi



 = Kn,W

which completes the inductive proof of (Gn1).

4.4 Proof of Proposition 4.1

To complete the proof of the Growth Properties for T̂ = T n0, choose n0 according to the
exposition of Section 4.1.1. In particular, by Assumption 1.3, Kn0

λ4n0 = αΛ̂ for some α < 1
(here Λ̂ = Λn0 is the factor of expansion for T̂ ).

The constants for which we prove Propostion 4.1 are the above mentioned α along with
δ0 = δn0

, σ = σn0
, D = Dn0

and κ = κn0
chosen according to Lemma 4.5 (see also Re-

mark 4.6).
Let us consider an arbitrary δ0(= δn0

)-LUM W , and an arbitrary 0 ≤ δ < 1. To prove
the Proposition, first we should tell what the sets V 0

δ and V 1
δ are. As W is a δn0

-LUM, we
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may apply the n(=n0) step construction of Section 4.3.1 to it and construct Gn0

δ (W ) and
F n0

δ (W ). Now define:
V 0

δ = Gn0

δ (W ), W 1
δ = F n0

δ (W ).

Note that as Gn0

δ and F n0

δ make a partition of W , we have

mW (W \ (V 0
δ ∪ W 1

δ )) = 0, (4.30)

and by (Gn0)
W 1

δ ⊂ W \ Γ̂[δ]. (4.31)

However, we cannot use W 1
δ as V 1

δ . The reason is that, in terms of T̂ , W 1
δ is not a (δ0, 1)-

subset. In paticular, we should have that the components of T̂ V 1
δ have diameter less than

δ0. The construction of Section 4.3.1, on the other hand, ensures only that the components
of T̂W 1

δ have diameter less than δ
1/3
1 , which is much greater than δ0.

To obtain smaller components, we construct below V 1
δ by removing sets of zero mW -

measure from W 1
δ . This, of course, does not spoil the validity of (4.30) and (4.31).

To proceed we may reformulate statements (Gn1)-(Gn3) from Lemma 4.5 in terms of
T̂ = T n0. Keeping also in mind how rW,n is defined, (Gn1) reads as

mW ({ x ∈ W 1
δ | ρ(T̂ x, ∂T̂W 1

δ (x)) < ε }) ≤ αΛ̂ · mW ({ x ∈ W | ρ(x, ∂W ) < ε/Λ̂ }) (4.32)

(Gn2) as

mW ({ x ∈ V 0
δ | ρ(x, ∂V 0

δ (x)) < ε }) ≤ Dδ−κ mW ({ x ∈ W | ρ(x, ∂W ) < ε }); (4.33)

and (Gn3) as
mW (V 0

δ ) ≤ D mW ({ x ∈ W | ρ(x, ∂W ) < δσ }). (4.34)

Note that (4.33) and (4.34) are exactly the Second and the Third Growth Properties, re-
spectively.

Furthermore, (4.32) is almost the First Growth Property, actually, it is an even better
upper bound on the set of points that get close to the boundaries of T̂W 1

δ . Recall that we
need to partition the components of W 1

δ into smaller pieces to arrive at V 1
δ . We will see that

the contribution of these additional boundary components can be estimated by the second
term that appears on the right hand side of (4.1).

By the exposition of Section 4.3.1, the set W 1
δ has finitely many components (the number

of which, actually, depends on δ). Consider any such component and denote it by ∆1: we
would like to chop ∆1 into pieces which do not grow larger then δ0 in diameter when T̂ is
applied. Our argument will roughly follow [Ch1].

What we know is that T̂∆1 is a δ
1/3
1 -LUM, thus by our convention on local flatness, in

measure related calculations it can be considered as a piece of Rd−1. Furthermore, it is a
homogeneous LUM, thus the distortions of T̂ restricted to ∆1 are suitably bounded.
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We shall work in Rd−1. Let us fix δ′ = δ0
2
√

d−1
(which ensures that a hypercube of side

δ′ has diameter δ0/2). For given numbers a1, ..., ad−1 such that 0 ≤ ai < δ′; i = 1, ..., d − 1
consider the d − 1 families of hyperplanes:

Lai
:= {(x1, ..., xi−1, ai + niδ

′, xi+1, ..., xd−1) |ni ∈ Z} i = 1, ..., d − 1.

For example, the intersection T̂∆1 ∩ La1
consists of parallel hyperplanar pieces inside T̂∆1.

Let us denote their altogether (d − 2)-dimensional area by Aa1
. By Fubini theorem

∫ δ′

0

Aa1
da1 = mT̂W (T̂∆1).

Thus there is definitely one particular a′
1 for which

Aa′
1
≤ mT̂W (T̂∆1)

δ′
. (4.35)

We may repeat the above argument for all the other coordinates to get the numbers a′
i for

which an inequality analogous to (4.35) holds. For brevity we introduce the notation:

L :=

d−1
⋃

i=1

La′
i
.

With this construction, first of all, the connected components of ∆1\L have diameter ≤ δ0/2.
We denote the (d − 2)-dimensional area of L ∩ T̂∆1 by A. We shall add, inside ∆1, to W 1

δ

the pre-image of L to get V 1
δ . To estimate the new boundary term one further notation is

introduced:
Ω := {x ∈ ∆1 | ρ(T̂ x, T̂L) < ε and ρ(T̂ x, ∂T̂∆1) ≥ ε}.

Note that, for x ∈ ∆1 ⊂ W 1
δ , W 1

δ (x) = ∆1, thus our aim is to estimate mW (Ω). By the
above formulas:

mT̂W (T̂Ω) ≤ 2εA ≤ 2ε(d − 1)
mT̂W (T̂∆1)

δ′
= ε

4(d − 1)3/2

δ0
mT̂W (T̂∆1).

Now as the distortions of T̂ restricted onto ∆1 are bounded, we have:

mW (Ω) < εδ−1
0 βmW (∆1)

where the global constant β > 0 depends on the dimension, the distortion bounds and the
accuracy of the locally flat approximation. We chop all the ∆1-s (the connected components
of W 1

δ ) according to this machinery to get V 1
δ . After summation we get:

mW ({x ∈ V 1
δ | ρ(T̂ x, ∂T̂ V 1

δ (x)) < ε}) − mW ({x ∈ W 1
δ | ρ(T̂ x, ∂T̂W 1

δ (x)) < ε}) ≤
≤ εδ−1

0 βmW (W ). (4.36)

Now (4.36) along with (4.32) implies (4.1). This completes the proof of the First Growth
Property, and thus of Propostion 4.1.
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4.5 The conditions of ergodicity

Following the program outlined in the Introduction, the arguments presented in the preceding
sections verify Chernov’s axioms from Appendix A with the only exception of Condition A.3,
that is, the ergodicity of the billiard map T (and its higher iterates). As we already men-
tioned, to complete the proof of Theorem 1.7, we refer to [BBT] where Condition A.3 is
verified. More precisely, we use the result in [BBT] to prove

Proposition 4.16. The billiard dynamics satisfying the assumptions of Theorem 1.7 is
ergodic, as well as all of its iterates.

Now [BBT] proves (local) ergodicity based on a set of assumptions that are different and,
literally, independent of the conditions in Appendix A. However, the assumptions (apart
for some well-known regularity properties) in [BBT] follow from those of Appendix A with
two exceptions. First, the setting of [BBT] is symmetric with respect to the roles of the
stable and unstable direction, while Chernov’s axioms are formulated only in terms of the
unstable direction. Second, [BBT] (specifically, Assumption A5 in that paper) requires some
kind of proper alignment of unstable manifolds and negative time singularities. This does
not coincide with the notion of Alignment mentioned in Section 2.4 and used in Section 4.

4.5.1 Regularity properties and growth lemma for stable manifolds

The standard argument for checking that certain statements, already proven for the unstable
direction and the forward dynamics, can be reformulated for the stable direction and the
backward dynamics is to refer to the time reflection symmetry of the billiard map (see
e.g.[CM]). This reasoning is correct if one measures distances with respect to the Euclidean
metric, which is, indeed, symmetric with respect to time reflection – see Remark 2.5. Note,
however, that the metric we use – the regularized Chernov-Dolgopyat metric of Definition 3.6
– no longer has this time reflection symmetry. Fortunately, the regularity properties of
unstable manifolds – in particular conditions A.4 and A.5 from Appendix A – have all been
verified for the Euclidean metric (see Section 2). Condition A.7 on the growth properties of
unstable manifolds is the only property which is stated and proven in terms of the regularized
Chernov-Dolgopyat metric and is not verified in terms of the Euclidean one. We do that
now.

The version of the growth lemma that appears among the assumptions of [BBT] (both
in a stable and in an unstable form) is slightly weaker than Condition A.7; it is exactly
the δ = 0 version of (A.2). Recalling the definitons for the function rV,k and that actually

T̂ = T n0, this statement reads as (see also remarks 4.4, 4.7 and Corollary 4.13):

mW ({x ∈ W |ρ(T n0x, ∂T n0W ) < ε}) ≤ α0Λ
n0 · mW (ρ(x, ∂W ) < ε/Λn0) + εβ0δ

−1
0 mW (W ),

(4.37)
where α0 ∈ (0, 1) and β0 > 0 are some global constants.

To distinguish between the two metrics we will use ρE for the distances measured in the
Euclidean metric and ρCD for the regularized Chernov-Dolgopyat metric. We claim that
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(4.37) with ρ = ρCD implies the same statement with ρ = ρE , with slightly worse constants.
To see this, first recall from Section 3 that the two metrics are equivalent. This implies

mW ({x ∈ W |ρE(T nx, ∂T nW ) < ε}) ≤ mW ({x ∈ W |ρCD(T nx, ∂T nW ) < Cε}) (4.38)

and
mW (ρCD(x, ∂W ) < Cε/Λn) ≤ mW (ρE(x, ∂W ) < C2ε/Λn). (4.39)

But clearly C2ε/Λn ≤ ε/Λ̃n if Λ̃ is slightly less than Λ, and n is large enough. Thus (4.38),
(4.39) and (4.37) for the regularized C-D metric directly imply (4.37) for the Euclidean
metric with Λ → Λ̃ and a (possibly) larger n0. As mentioned above, this statement is
directly transferable to the inverse map and the stable direction.

Remark 4.17. In an analogous way one could check Condition A.7 in full generality for
the Euclidean metric. This means that the set of conditions from Appendix A can be verified
for the Euclidean metric ρE. However, in our proof of the growth properties the use of ρCD

is crucial (this is the only way we could reduce the statement with an inductive argument
to the one step Lemma 4.3). Furthermore, our arguments throughout Section 4 use heavily
the uniform curvature and distortion bounds for the metric ρCD, which is the reason for the
necessity of the differential geometric analysis of Section 3.

4.5.2 Alignment for negative time singularities

Let us introduce the set Γ− = Γ0 ∪ TΓ0. (Remember from Section 2.2.3 that Γ0 is the
boundary of our phase space after introducing homogeneity layers.) We think of Γ− as the
singularity set of the inverse dynamics T−1, although it is important that it also contains
the boundary of the phase space.

The notion of alignment required in Assumption A.5 of [BBT] says roughly that unstable
manifolds intersect Γ− transversally, and their angle at any intersection point is at least some
global constant c. However, this rough form of the assumption is not satisfied by our systems:
it is known that even in 2 dimensions unstable manifolds may be tangent to T∂M̃ . Actually,
for every component S of T∂M̃ , this happens exactly on one side of S (remember that S is
a one-codimensional submanifold that cuts the phase-space into two pieces). Indeed, this is
the side of S that contains images (under T ) of points near ∂M̃ . The other side typically
consists of images of points which were not near ∂M̃ , but near T−1∂M̃ , on the side which
eventually avoided the nearly-tangent collision. See Figure 6 for an explanation: Ta is a
phase point on ∂M̃ . b is on the side of T−1∂M̃ which avoids the nearly tangent collision and
travels directly to the neighbourhood of T 2a ∈ T∂M̃ , while c is first mapped near Ta, and
only thereafter near to T 2a. The violation of the rough form of Alignment happens on the
side of T∂M̃ containing T 2c.

Now we can explain the refined form of the alignment assumption (Assumption A.5 from
[BBT]): we only expect an unstable manifold (developing in time) to be transversal to Γ−

at the time of their first encounter. The following proposition states this in a precise form.
It implies the Alignment assumption of [BBT]. (The only difference is that the assumption
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Figure 6: possible trajectories of points near a singularity

in [BBT] is formulated in terms of distances instead of angles, since no smoothness of these
subsets is formally assumed there.)

Proposition 4.18. There exists a global constant c > 0 with the following property: Let
W be an unstable manifold contained entirely in a connected component of M \ Γ−, and let
x ∈ W̄ ∩ Γ− (here W̄ denotes the closure of W ). If the inverse image of x under T as a
one-sided limit,

x− := lim
y∈W, y→x

T−1y (4.40)

is not in Γ−, then the angle of W and any smooth component S of Γ− at x is at least c.

Proof. If S ⊂ ∂M = Γ0 ∪ ∂M̃ , then this transversality is known from [BChSzT1] and stated
as (part of) the alignment property in Section 2.4.

If S ⊂ TΓ0
k for some k ∈ {k0, k1, . . .} (that is, S is a secondary singularity of T−1),

then the extension of T−1 to S as a one-sided limit is the same for both sides, and the only
possible inverse image x− of x is in Γ0

k ⊂ Γ−, so there’s nothing to prove (the conditions of
the proposition cannot hold).

So the only interesting case is when S ⊂ T∂M̃ , and x− /∈ ∂M̃ . With the notation of
Figure 6 this corresponds to x = T 2a, x− = a, and the limit in (4.40) is through points
y = Tb. Let us look at this case now.

In high dimensions (when d ≥ 3) we have dim(W )+dim(S) = (d−1)+(2d−3) > 2d−2 =
dim(M), so transversality of W and S can only mean that there is a d − 1-dimensional
subspace U ⊂ TxS which is transversal to W in the sense that the angle between any
(dq1, dw1) ∈ U and any (dq2, dw2) ∈ TxW is at least c. Now d− 1-dimensional submanifolds
can typically be considered as traces of fronts on the Poincaré phase space. (Remember
from Section 2.3 that fronts are subsets of the flow phase space.) The (tangent space of the)
unstable manifold W is known from Section 2.3.2 to correspond to a well-understood convex
front described by (2.11) and (2.12). To prove transversality of S and W in the appropriate
sense, it is enough to find another front, whose trace on the Poincaré phase space lies within
S, and show that these two fronts are transversal. To see this recall from Section 2.3.4 that
if two fronts with s.f.f.-s B−

1 and B−
2 (just before collision) satisfy

B−
2 − B−

1 > c1, −C1 < B−
1 < C1, (4.41)
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then the angle of their traces in the Poincaré phase space is at least some c > 0 depending
only on c1 and C1 (and the geometry of the billiard table).

Consider the point T−1x ∈ ∂M̃ , which is Ta in Figure 6. Let τ1 denote the flight time
from x− to T−1x, and τ2 the flight time from T−1x to x.

The tangent space of T−1W at x− (as a one-sided limit) is described by a convex front
according to (2.11), so the pre-collision s.f.f. of its image at x satisfies

0 < B−
1 <

1

τ1 + τ2
. (4.42)

On the other hand, consider the post-collision front with B+ = ∞ at T−1x – or with
other words, the vectors (dr, dv) with dr = 0. One can see that the (backward) traces of all
these vectors are tangent to ∂M̃ at T−1x, so we have found a front whose image at x defines
a d−1-dimensional subspace of S. But the (pre-collision) image of this front at x is a sphere
with

B−
2 =

1

τ2

. (4.43)

Putting (4.42) and (4.43) together, we get

B−
2 − B−

1 ≥ 1

τ2
− 1

τ1 + τ2
≥ τmin

2τ 2
max

,

so the conditions in (4.41) are satisfied with c1 = τmin

2τ2
max

, C1 = 1
2τmin

.

With these considerations, all the assumptions used in [BBT] are checked, and that
paper gives the ergodicity of our billiards. So Proposition 4.16 is proven and Condition A.3
is fulfilled.

4.6 Proof of Theorem 1.7

As described before, we prove Theorem 1.7 by referring to Theorem A.9 after having checked
all the assumptions. This is now done for a dynamical system closely related to the one we
are interested in. Namely, consider the following system:

• a phase space M which consists of infinitely many homogeneity layers, see Section 2.2.3

• the dynamics T̂ = T n0, a high iterate of the original map T , see Section 4

• the usual invariant measure µ

• the regularized Chernov-Dolgopyat Riemannian structure g, see Section 3.3.

Conditions A.1,. . . ,A.7 for this system are checked in Proposition 3.12, Proposition 4.1 and
Proposition 4.16. So Theorem A.9 gives exponential decay of correlations (EDC) and the
central limit theorem (CLT) for this system.

Now to see EDC and CLT for the original system (M̃, T, µ, ge), we only have to note that
(see also Proposition 10.1 in [Ch2])
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• the notion of Hölder continuity does not depend on the Riemannian structure

• functions which are Hölder contionuous on M̃ are also Hölder on M , since chopping
the space does not spoil the property

• EDC and CLT for T n0 imply EDC and CLT for T .
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Appendix

A Chernov axioms

Here we provide, for the reader’s convenience, a very short, yet mainly self-contained formu-
lation of Theorem 2.1 from [Ch2].

For self-containedness, many notions and notations are repeatedly introduced. First we
give the conditions A.1 . . . A.7 which are required, and then the statement of the theorem.
We note that the theorem is applied with the substitutions T → T̂ , Λ → Λ̂.

It is important to make a general comment here on the terminology used to formulate the
conditions below, and actually, throughout the paper. We follow the notational conventions
that appear in most papers on hyperbolic billiards, and in particular, in [Ch2]; which is,
however, different from the standard terminology of Pesin theory, as presented in [BP], for
example. To avoid confusion, let us point out two important aspects:

• In contrast to Pesin theory, the term “local unstable manifold” may refer to a (piece of
an) unextendable unstable manifold, see the definition of LUM below and the comments
following it.

• As for regularity issues (curvature and distortion bounds, absolute continuity), it may
be missleading that properties similar to our requirements automatically hold in the
general framework of Pesin and Katok-Strelcyn theory, see [BP] and [KS]. Nonethe-
less, in our setting it is crucial to have uniform control of curvatures, distortions and
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holonomies on the phase space. That is, one can choose the same constant (KW in
Condition A.4, and C ′ in Condition A.6) or function (ϕ in Condition A.5) for every
LUM.

Condition A.1. The dynamical system is a map T : M \ Γ → M , where M is an open
subset in a C1 Riemannian manifold, M̄ is compact. Γ is a closed subset in M̄ , and T is a
C2 diffeomorphism of its domain onto its image. Γ is called the singularity set.

We note that this condition is slightly different from that formulated in [Ch2]. There
the Riemannian manifold was assumed to be C∞. However, the proof of the theorem goes
through without modification for a C2 differentiable manifold with a C1 Riemannian struc-
ture.

Condition A.2. Uniform hyperbolicity. We assume that there are two families of cone
fields Cu

x and Cs
x in the tangent planes TxM , x ∈ M̄ and there exists a constant Λ > 1 with

the following properties:

• DT (Cu
x) ⊂ Cu

Tx and DT (Cs
x) ⊃ Cs

Tx whenever DT exists;

• |DT (v)| ≥ Λ|v| ∀v ∈ Cu
x ;

• |DT−1(v)| ≥ Λ|v| ∀v ∈ Cs
x;

• these families of cones are continuous on M̄ , their axes have the same dimensions
across the entire M̄ which we denote by du and ds, respectively;

• du + ds = dim M ;

• the angles between Cu
x and Cs

x are uniformly bounded away from zero:

∃ α > 0 such that ∀x ∈ M and for any dw1 ∈ Cu
x and dw2 ∈ Cs

x one has

∢(dw1, dw2) ≥ α

The Cu
x are called the unstable cones whereas Cs

x are called the stable ones.

In our case, dim M = 2d − 2, and du = ds = d − 1.
The property that the angle between stable and unstable cones is uniformly bounded

away from zero is called transversality.

Some notation and definitions. For any δ > 0 denote by Uδ the δ-neighbourhood of the
closed set Γ ∪ ∂M . We denote by ρ the Riemannian metric in M and by m the Lebesgue
measure (volume) in M . For any submanifold W ⊂ M we denote by ρW the metric on W
induced by the Riemannian metric in M , by mW the Lebesgue measure on W generated by
ρW and by diamW , the diameter of W in the ρW metric.
LUM-s. To be able to formulate the furher properties let us fix what we mean by the notion
of local unstable manifolds. A submanifold W u ⊂ M homeomorphic to a du-dimensional
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ball is called a local unstable manifold (LUM) if (i) dim W u = du, (ii) T−n is defined and
smooth on W u for all n ≥ 0, (iii) ∀x, y ∈ W u we have ρ(T−nx, T−ny) → 0 exponentially fast
as n → ∞.

It is worth noting that this notion of LUM does not coincide with the standard concept of
a local unstable manifold in Pesin theory, as formulated, for example, in [BP]. In particular,
unextendable unstable manifolds – maximal ones for which T−n is smooth for any n ≥ 0 –
are LUMs as well. Here the term “local” simply refers to the presence of singularities, which
put restriction on the size of any LUM.
We denote by W u(x) (or just W (x)) a local unstable manifold containing x. Similarly, local
stable manifolds (LSM) are defined.

Condition A.3. SRB measure. The dynamics T has to have an invariant ergodic Sinai-
Ruelle-Bowen (SRB) measure µ. That is, there should be an ergodic probability measure µ
on M such that for µ-a.e. x ∈ M a LUM W (x) exists, and the conditional measure on W (x)
induced by µ is absolutely continuous with respect to mW (x).
Furthermore, the SRB-measure should have nice mixing properties: the system (T n, µ) is
ergodic for all finite n ≥ 1.

In our case the SRB measure is simply the Liouville measure defined by (2.1). Absolute
continuity and invariance of µ are straightforward, while ergodicity is proved in [BBT], based
on the conditions mentioned in Section 4.5.

Condition A.4. Uniformly bounded curvature. There should exist a global constant
KW < ∞ such that the curvature of any unstable manifold at any of its points is at most
KW .

The meaning of the word “curvature” for the purpose of this condition is made precise
in Section 3.4. Accordingly, the condition is formulated more precisely as Condition 3.10.

Some notation. Denote by Ju(x) = | det(DT |Eu
x)| the Jacobian of the map T restricted to

W (x) at x, i.e. the factor of the volume expansion on the LUM W (x) at the point x. Let
Γ(n) denote the singularity set of T n – that is, the smallest set ⊂ M for which T n is defined
on M \ Γ(n) in the sense of Condition A.1.

Condition A.5. Uniform distortion bounds. Let x, y be in one connected component
of W \ Γ(n−1), which we denote by V . Then

log

n−1
∏

i=0

Ju(T ix)

Ju(T iy)
≤ ϕ (ρT nV (T nx, T ny))

where ϕ(·) is some function, independent of W , such that ϕ(s) → 0 as s → 0.

Condition A.6. Uniform absolute continuity. Let W1, W2 be two sufficiently small
LUM-s, such that any LSM W s intersects each of W1 and W2 in at most one point. Let
W ′

1 = {x ∈ W1 : W s(x) ∩ W2 6= ∅}. Then we define a map h : W ′
1 → W2 by sliding
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along stable manifolds. This map is often called a holonomy map. This has to be absolutely
continuous with respect to the Lebesgue measures mW1

and mW2
, and its Jacobian (at any

density point of W ′
1) should be bounded, i.e.

1/C ′ ≤ mW2
(h(W ′

1))

mW1
(W ′

1)
≤ C ′

with some C ′ = C ′(T ) > 0.

Some further notation. Let δ0 > 0. We call W a δ0-LUM if it is a LUM and diam W ≤ δ0.
For an open subset V ⊂ W and x ∈ V denote by V (x) the connected component of V
containing the point x.

Let n ≥ 0. We call an open subset V ⊂ W a (δ0, n)-subset if V ∩ Γ(n) = ∅ (i.e., the map
T n is smoothly defined on V ) and diam T nV (x) ≤ δ0 for every x ∈ V . Note that T nV is
then a union of δ0-LUM-s. Define a function rV,n on V by

rV,n(x) = ρT nV (x)(T
nx, ∂T nV (x)) (A.1)

Note that rV,n(x) is the radius of the largest open ball in T nV (x) centered at T nx. In
particular, rW,0(x) = ρW (x, ∂W ).

Now we formulate Chernov’s Growth Properties, in essentially (cf. Remark A.8) the
same form as they appeared in [Ch1] and [Ch2]. In view of the curvature and distortion
bounds (conditions A.4 and A.5) these conditions can roughly be seen as conditions about
some piecewise linear expanding map on a union of flat hypersurfaces.

Condition A.7. Growth of unstable manifolds. Let us assume there is a fixed δ0 > 0,
furthermore, there exist constants α ∈ (0, 1) and β, D, κ, σ, ζ > 0 with the following property.
For any sufficiently small δ > 0 and any δ0-LUM W there is an open (δ0, 0)-subset V 0

δ and
an open (δ0, 1)-subset V 1

δ ⊂ W \ Γ[δ] (one of these may be empty) such that the two sets are
disjoint, mW (W \ (V 0

δ ∪ V 1
δ )) = 0 and ∀ε > 0

First Growth Property:

mW (rV 1
δ ,1 < ε) ≤ αΛ · mW (rW,0 < ε/Λ) + εβδ−1

0 mW (W ) (A.2)

Second Growth Property:

mW (rV 0
δ ,0 < ε) ≤ Dδ−κ mW (rW,0 < ε) (A.3)

and Third Growth Property:

mW (V 0
δ ) ≤ D mW (rW,0 < ζδσ) (A.4)

Remark A.8. Note that these growth properties are slightly different from those assumed
in [Ch2], namely, there it was assumed that V 0

δ ⊂ Γ[δ]. However, it is easy to see, that the
whole strategy of [Ch2] works without this assumption. What is indeed important is that the
set V 1

δ is disjoint both from V 0
δ and Γ[δ], and that the measure of V 0

δ can be estimated by the
third growth lemma.

How V 0
δ and Γ[δ] are related is discussed in Section 4.2.1.
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Now we can formulate Theorem 2.1 from [Ch2].

Theorem A.9. (Chernov, 1999) Under the conditions A.1,. . . ,A.7, the dynamical system
enjoys exponential decay of correlations and the central limit theorem for Hölder-continuous
functions.

The properties stated in the theorem are defined in Definition 1.5 and Remark 1.8.

B Equivalence of Riemannian structures and inherited

regularity properties

In this section we consider the problem of having two different Riemannian structures on the
same differentiable manifold. The essence of the statements is that under the mildest possible
regularity conditions (adequate differentiability of the metric tensor fields) the regularity
properties of submanifolds and maps (uniform curvature and distortion bounds) are inherited
from one Riemannian manifold (or rather: one Riemannian structure) to the other. That
is, these notions are independent of the choice of the Riemannian structure. The goal is to
prove Proposition 3.12.

In the statements to come, M will always denote a C2 differentiable manifold. g, g̃ will be
C1 Riemannian metric tensor fields on M , and W a C2 smooth submanifold of M . Since the
notions of ‘covariant differentiation’, ‘second fundamental form’, ‘orthogonality’ and ‘norm’
depend on the Riemannian structure, we will use ∇, II, ⊥, ‖.‖ to denote them when g is
used, and ∇̃, ĨI, ⊥̃, ‖.‖˜ to denote them with respect to g̃. As before, the phrase ‘second
fundamental form’ will be abbreviated as s.f.f.

Definition B.1. Let M be a C2 differentiable manifold, possibly with boundary. Two C1

Riemannian metric tensor fields g and g̃ on M are said to be C1 equivalent with constant K
if both g̃ and ∇g̃ (as tensors) are bounded by K when g is used for the definition of norm
and covariant derivation, and vice versa. In detail: for any x ∈ M , u, v, w ∈ TxM

|g̃(v, w)| ≤ K‖v‖‖w‖,
|(∇ug̃)(v, w)| ≤ K‖u‖‖v‖‖w‖,

|g(v, w)| ≤ K‖v‖˜‖w‖˜,
|(∇̃ug)(v, w)| ≤ K‖u‖˜‖v‖˜‖w‖˜.

If translated to norms of vectors, the first and third inequality of the definition say that
‖v‖˜≤

√
K‖v‖ and ‖v‖ ≤

√
K‖v‖˜, but for convenience we will omit the square root and use

‖v‖˜≤ K‖v‖, ‖v‖ ≤ K‖v‖˜. This is fine since K ≥ 1.

Lemma B.2. On a compact C2 differentiable manifold M (possibly with boundary) any
two C1 Riemannian metric tensor fields g and g̃ are C1 equivalent with some constant K
(depending of course on the tensor fields).
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Proof. Since g̃ and g are continuous, the norm of g̃ with respect to g, ‖g̃‖ = sup{|g̃(v, w)| |
‖v‖ = ‖w‖ = 1} is a continuous function on M , so it has a finite maximum, since M is com-
pact. Similarly, ∇g̃ is continuous, so its norm with respect to g, ‖∇g̃‖ = sup{|(∇ug̃)(v, w)| |
‖u‖ = ‖v‖ = ‖w‖ = 1} is a continuous function on M , so it has a finite maximum. The
same is true with g and g̃ interchanged. The greatest of these four maxima can be chosen
as K.

Lemma B.3. For any K1, K2 < ∞ there is a K̃ < ∞ (depending only on K1, K2 and
dim(M)), such that for any g, g̃ and W , if g and g̃ are C1 equivalent with constant K1 and
the s.f.f. of W with respect to g is bounded by K2, then the s.f.f. of W with respect to g̃ is
bounded by K̃.

Before we can start the proof, we state and prove a sublemma:

Sublemma B.4. The norm of the vector-valued tensor S defined by S(v, w) = ∇̃vw−∇vw is
bounded by a constant K̂ depending only on K1 and dim(M). That is, ‖S(v, w)‖ ≤ K̂‖v‖‖w‖.
Proof. The fact that S is indeed a vector-valued tensor is known, see e.g. [KN].

At any point x ∈ M we can take normal coordinates with respect to g. In this coor-
dinate chart, the Christoffel-symbols of ∇ are zero (at the single point x). This has two
consequences. First, the components of S are exactly the Christoffel-symbols of ∇̃. Second,
in this coordinate chart, at x, the partial derivatives of the components of g̃ are exactly the
components of ∇g̃, and are thus bounded by K1 because of the C1 equivalence we assumed.
So are the components of g−1, again by the equivalence of g and g̃. Since the Christoffel-
symbols of ∇̃ can be expressed in terms of the above two, they can clearly be estimated
using K1 and dim(M). This implies a similar estimate for the norm of S. The estimate is
clearly independent of the choice of the point x.

Now we can turn to the proof of Lemma B.3.

Proof. of Lemma B.3. We want to estimate ĨI, the s.f.f. of W with respect to g̃. We will
use the definition of II, the definition of S and the fact that

∇uv = ∇W
u v + ∇⊥

u v = ∇W
u v + II(u, v),

where ∇W
u v is parallel to W . We write

ĨI(u, v) = (∇̃uv)⊥̃ = (∇uv + S(u, v))⊥̃

= (∇W
u v + II(u, v) + S(u, v))⊥̃

= (∇W
u v)⊥̃ + (II(u, v))⊥̃ + (S(u, v))⊥̃.

The first term is zero, and the other two can be overestimated if we omit the ⊥̃. So we get
– using all the assumptions of the lemma and the statement of the sublemma

‖ĨI(u, v)‖˜≤ ‖II(u, v)‖˜+ ‖S(u, v)‖˜≤
≤ K1‖II(u, v)‖+ K1‖S(u, v)‖ ≤ K1K2‖u‖‖v‖+ K1K̂‖u‖‖v‖ ≤

≤ K1K2K1‖u‖˜K1‖v‖˜+ K1K̂K1‖u‖˜K1‖v‖˜ = K3
1 (K2 + K̂)‖u‖˜‖v‖˜.
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Lemma B.5. For any K < ∞ there is a K ′ < ∞ (depending only on K), such that for any
g, g̃ and W if g and g̃ are C1 equivalent with constant K and the s.f.f. of W with respect to
g is bounded by K, then the restrictions of g and g̃ to W , g|W and g̃|W , are C1 equivalent
with constant K ′.

Proof. To have the equivalence, we first need to see that the norm with respect to g|W of
g̃|W is bounded, and vice versa. This is obviously inherited from g and g̃, so K ′ = K would
do.

Second, we need that the derivatives are bounded. Let us denote, for a moment, the
covariant derivative with respect to g|W by ∇g|W , and similarly for g̃. We need to see that
the norm with respect to g|W of ∇g|W g̃|W is bounded (and vice versa), but this is of course
the same as the norm with respect to g, so we introduce no new notation.

To understand ∇g|W g̃|W , we first describe how ∇g|W acts on vectors. It is known (see e.g.
[KN] again) that when we split the covariant derivative ∇uv into tangential and orthogonal
components using ∇uv = ∇W

u v + II(u, v), the tangential component is nothing else than the

covariant derivative with respect to the metric tensor restricted to W , so ∇W
u v = ∇g|W

u v.
We will express ∇g|W g̃|W by using the definition of covariant differentiation for a tensor,

and the above fact. Let u, v, w be tangent vectors of W (at the same point).

(∇g|W
u g̃|W )(v, w) = u(g̃(v, w))− g̃(∇g|W

u v, w) − g̃(v,∇g|W
u w) =

u(g̃(v, w)) − g̃(∇uv, w) + g̃(II(u, v), w)− g̃(v,∇uw) + g̃(v, II(u, w)) =

(∇ug̃)(v, w) + g̃(II(u, v), w) + g̃(v, II(u, w)).

These three terms can be readily estimated using the bounds on ‖∇g̃‖, ‖g̃‖ and ‖II‖ that
we have assumed. We get

|(∇g|W
u g̃|W )(v, w)| ≤ K‖u‖‖v‖‖w‖+ K‖II(u, v)‖‖w‖+ K‖v‖‖II(u, w)‖ ≤

K‖u‖‖v‖‖w‖+ KK‖u‖‖v‖‖w‖+ K‖v‖K‖u‖‖w‖ = (K + 2K2)‖u‖‖v‖‖w‖.

We got that ‖∇g|W g̃|W‖ ≤ K ′ = K+2K2. The bound for ‖∇g̃|W g|W‖˜ is exactly the same.

Now we investigate how sensitive distortions are to the choice of the Riemannian struc-
ture. The following lemma states that if a map of one manifold to the other satisfies certain
distortion bounds, then modifying the Riemannian structures on both manifolds up to C1

equivalence, distortion bounds remain valid. Later we will apply the result to the restriction
of the dynamics to an unstable manifold, which maps to another unstable manifold.

In the lemma let M and M ′ be two C2 differentiable manifolds. Let M carry two C1

Riemannian metric tensor fields, g and g̃. Similarly, let M ′ carry two C1 Riemannian metric
tensor fields, g′ and g̃′. Let T : M → M ′ be a C1 map and let x, y ∈ M . The two metrics
on M defined by g and g̃ are denoted by d and d̃, the two metrics on M ′ defined by g′ and
g̃′ are denoted by d′ and d̃′. The Jacobian of T with respect to (g, g′) is denoted by J , and
the Jacobian of T with respect to (g̃, g̃′) is denoted by J̃ .
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Lemma B.6. For any k > 0, K < ∞ and any h ∈ o(1) there exist k̃ > 0 and h̃ ∈ o(1)
(depending only on h, K, k and dim(M)), such that
if

• g and g̃ are C1 equivalent (on M) with constant K and

• g′ and g̃′ are C1 equivalent (on M ′) with constant K and

• d′(Tx, Ty) ≥ k d(x, y) and

• | log Jy − log Jx| ≤ h(d′(Tx, Ty))

then

• d̃′(Tx, Ty) ≥ k̃ d̃(x, y) and

• | log J̃y − log J̃x| ≤ h̃(d̃′(Tx, Ty)).

Remark B.7. The function h̃ is similar in shape to h – it is obtained from h basically by
linear rescaling and adding a linear term (see the end of the proof). We will not make use of
this fact, but it could be useful in applications where the asymptotics is important. However,
it is important that h̃ does not depend on T (as long as the conditions are satisfied with the
same k, K and h), so we will be able to apply the lemma to T n instead of T – actually, to
all the T n simultaneously, getting the same h̃.

Proof. The first statement follows from the third assumption and the equivalence of the
metrics:

d̃′(Tx, Ty) ≥ 1

K
d′(Tx, Ty) ≥ 1

K
kd(x, y) ≥ 1

K
k

1

K
d̃(x, y),

so k̃ = k
K2 will do.

For the second statement, let A be a parallelepiped (ordered dim(M)-tuple of tangent
vectors) at x, and B a parallelepiped at y (let them be nondegenerate). With slight abuse
of notation, we denote their images under the derivative of T by TA and TB. Denote the
volume element (canonical dim(M)-form) associated to g, g̃ g′ and g̃′ by V , Ṽ , V ′ and Ṽ ′,
respectively. Then we have

Jx =
V ′(TA)

V (A)
; Jy =

V ′(TB)

V (B)
; J̃x =

Ṽ ′(TA)

Ṽ (A)
; J̃y =

Ṽ ′(TB)

Ṽ (B)
, (B.5)

which are of course independent of the choice of A and B.

Also, the ratios Ṽ (.)
V (.)

and Ṽ ′(.)
V ′(.)

are independent of the argument – they are actually the
square root of the appropriate determinant:

Ṽ (.)

V (.)
=
√

detg g̃ ;
Ṽ ′(.)

V ′(.)
=
√

detg′ g̃
′
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which of course, depend on the base point. The (covariant) derivative of detg g̃ can be
expressed (say, coordinate-vise) in terms of g̃ and ∇g̃, so it is bounded by some constant
K ′ < ∞ depending only on K and dim(M). detg g̃ is also separated from zero, so the same
is true for its logarithm with some K ′′ < ∞. This implies that

∣

∣

∣

∣

∣

log
Ṽ (B)

V (B)
− log

Ṽ (A)

V (A)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
log detg g̃(y) − 1

2
log detg g̃(x)

∣

∣

∣

∣

≤ K ′′d(x, y). (B.6)

Similarly,
∣

∣

∣

∣

∣

log
Ṽ ′(TB)

V ′(TB)
− log

Ṽ ′(TA)

V ′(TA)

∣

∣

∣

∣

∣

≤ K ′′d′(Tx, Ty). (B.7)

Knowing this, we can force these quantities to show up in the expression for log J̃y−log J̃x.
First write

J̃y

J̃x

=
Ṽ ′(TB)

Ṽ (B)

Ṽ (A)

Ṽ ′(TA)
=

Ṽ ′(TB)

V ′(TB)

V ′(TB)

V (B)

V (B)

Ṽ (B)

Ṽ (A)

V (A)

V (A)

V ′(TA)

V ′(TA)

Ṽ ′(TA)
,

than take the logarithm to get

log J̃x − log J̃y =
(

log Ṽ ′(TB)
V ′(TB)

− log Ṽ ′(TA)
V ′(TA)

)

+
(

log Ṽ (A)
V (A)

− log Ṽ (B)
V (B)

)

+
(

log V ′(TB)
V (B)

− log V ′(TA)
V (A)

)

.

The first and second term can be estimated using (B.7) and (B.6), while the third term is
log Jy − log Jx by (B.5) and can be estimated using the last assumption of the lemma. We
get

| log J̃y − log J̃x| ≤ K ′′d′(Tx, Ty) + K ′′d(x, y) + h(d′(Tx, Ty)).

Now we use the equivalence of metrics and the third assumption to replace all distances by
d̃′(Tx, Ty), and get

| log J̃y − log J̃x| ≤ K ′′Kd̃′(Tx, Ty) + K ′′ 1

k
Kd̃′(Tx, Ty) + sup{h(s) | s ≤ Kd̃′(Tx, Ty)}.

So h̃(t) = K ′′K(1 + 1
k
)t + sup{h(s) | s ≤ Kt} ∈ o(1) will do.

With these lemmas, we van prove two strong theorems about the invariance of the reg-
ularity properties with respect to the choice of a Riemannian structure. In both statements
we think of the W as unstable manifolds, but this is not required. Actually, in the first
statement, not even the presence of a dynamics is required.

Theorem B.8. Let g and g̃ be two C1 Riemannian structures on the compact manifold M .
Then for any K < ∞ there exists a K̃ < ∞ (depending only on g, g̃ and K) such that if
{Wi}i∈I is any collection of submanifolds of M that have the second fundamental forms with
respect to g bounded everywhere by K, then the second fundamental forms with respect to g̃
are bounded by K̃.
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Proof. This is an immediate consequence of Lemma B.2 and Lemma B.3.

Theorem B.9. Let M be a compact manifold with the C1 Riemannian structure g. Let
{Wi}i∈I be a collection of submanifolds of M with all s.f.f.-s bounded by some constant
K < ∞. Let T be a map which is defined and C2 smooth on ∪i∈IWi, and suppose that each
TWi is also a submanifold of M with the s.f.f. bounded by K. Assume that T restricted to the
Wi satisfies uniform distortion bounds in the sense that there is a function ϕ (independent
of i) with lims→0 ϕ(s) = 0 such that for any x, y ∈ Wi

log
JWi(x)

JWi(y)
≤ ϕ(ρWi

(Tx, Ty)), (B.8)

where JWi denotes the Jacobian of T restricted to Wi, and ρWi
is the metric on the subman-

ifold Wi induced by g.
Assume also that the contraction by T along the Wi is uniformly limited: there is a k > 0

such that ||DTv|| ≥ k||v|| for any v in the tangent space of any Wi.
Then, if g̃ is another C1 Riemannian structure on M , then there exists a function ϕ̃

depending only on g, g̃, k, K and ϕ (so not depending on T and {Wi}i∈I) with lims→0 ϕ̃(s) =
0, such that (B.8) is satisfied with ϕ̃ instead of ϕ, when J and ρ are defined with respect to
g̃ instead of g.

Proof. We apply Lemma B.6 to the restriction of T to each Wi. The conditions of this lemma
are insured by lemmas B.2, B.3 and B.5.

Now we summarize the results of this section by proving Proposition 3.12.

Proof of Proposition 3.12. In the case of

• piecewise Hölder continuity of the dynamics

• bounded expansion away from the singularities

• transversality of stable and unstable cone fields

• alignment

• absolute continuity, and

• Corollary 2.11

the statement is easy to see without detailed analysis: these depend only on the C0 equiva-
lence of metrics, which is the comparability of length.

The statement about curvature bounds and smoothness of the one-step singularities
follows from Proposition 3.7 (which claims that the C-D structure is indeed C1), and Theo-
rem B.8.

The fact that distortion bounds are inherited follows from Proposition 3.7, the curvature
bounds, and Theorem B.9. Here Theorem B.9 is applied directly (and simultaneously) to
the iterates T n (restricted to the unstable manifold), about which the bounded distortion
condition is formulated.
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Remark B.10. We note that the reason for using the regularized structure instead of the
C-D metric tensor is deeper than the easyness and robustness of the proof we gave for the
regularity properties. Actually, we have checked by explicit calculation, that the unstable
manifolds do not satisfy the bounded curvature assumption, if the unregularized C-D metric
is used: the curvature blows up near the boundary of M̃ , even in the simplest 3-dimensional
configurations. Surprisingly, this does not happen in 2D (despite the degeneracy of the
metric), which is why Chernov and Dolgopyat could use this tool with such success in [CD].
Blow-up of curvatures with respect to the C-D metric is – beside the anisotropy of the unstable
expansion and the pathological behaviour of higher-order singularities – another typical multi-
dimensional phenomenon.

C Geometric Lemmas

Here we prove the geometric sublemmas 4.10, 4.11 and 4.15. Please recall the relevant nota-
tion and the statement of the these sublemmas from sections 4.2.2 and 4.3.2. Sublemmas 4.10
and 4.11 will be easy corollaries of Sublemma C.1 below. We denote the distance in Rm by
ρ.

Sublemma C.1. For any ε ≥ 0 and 0 ≤ ξ ≤ 1,

Leb ({x ∈ Wl | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) ≤ ξLeb({x ∈ Wr | ρ(x, ∂W ) ≤ ε}).

The same is true with Wl and Wr interchanged.

Proof. Denote the two sets to compare by A and B, so

A = {x ∈ Wl | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε},

B = {x ∈ Wr | ρ(x, ∂W ) ≤ ε}.
At any point z ∈ E, denote the line orthogonal to E by ez. Denote the Lebesgue measure on
ez by Lebez , and the Lebesgue measure on E by LebE. Finally, let Az = A∩ez, Bz = B∩ez.
See Figure 7.

We can calculate the measure of A and B as

Leb(A) =

∫

E

Lebez(Az) dLebE(z) , Leb(B) =

∫

E

Lebez(Bz) dLebE(z).

To get the statement of the lemma, it is clearly enough to see that

Lebez(Az) ≤ ξLebez(Bz) for any z ∈ E. (C.1)

To see this, let Cz be the interval of length ξε in ez which is just left of E. Clearly,
Az ⊂ Cz and thus Lebez(Az) ≤ ξε.

If Cz is not entirely a subset of W , then either it is entirely outside W , or it contains a
point of ∂W . In both cases, Az is empty and (C.1) is trivial.
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Figure 7: notation in the proof of Sublemma C.1

So, suppose Cz ⊂ W . Let v be the nearest point of ∂W ∩ ez on the right of E, and let
Dz be the interval of length ε in ez just left of v. If d := ρ(v, z) ≥ ε, then Dz ⊂ Bz, so
Lebez(Bz) ≥ ε and (C.1) is trivial again. If not, then the intersection of Cz and Dz belongs
to neither Az nor Bz, so the estimate still holds:

Lebez(Az) ≤ Lebez(Cz \ Dz) ≤ max{ξε − (ε − d), 0} = max{ξd − (1 − ξ)(ε − d), 0} ≤ ξd

and
Lebez(Bz) ≥ ρ(v, z) = d

imply (C.1).
The statement with Wl and Wr interchanged is the same (with other notation).

Proof of Sublemma 4.10. The set on the left hand side can be decomposed as

{x ∈ Wl | ρ(x, ∂Wl) ≤ ε} =

= {x ∈ Wl | ρ(x, ∂W ) ≤ ε} ∪ ({x ∈ Wl | ρ(x, E) ≤ ε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) .

The measure of the second term can be estimated using Sublemma C.1 with ξ = 1. We get

Leb{x ∈ Wl | ρ(x, ∂Wl) ≤ ε} ≤ Leb{x ∈ Wl | ρ(x, ∂W ) ≤ ε} + Leb{x ∈ Wr | ρ(x, ∂W ) ≤ ε},

which is exactly what we need. The statement for Wr is the same.
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Proof of Sublemma 4.11. The set on the left hand side can be decomposed into the parts to
the left and right of E as

{x ∈ W | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε} =

= ({x ∈ Wl | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) ∪
∪ ({x ∈ Wr | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) .

Both terms can be estimated using Sublemma C.1, and the result is

Leb ({x ∈ W | ρ(x, E) ≤ ξε} \ {x ∈ W | ρ(x, ∂W ) ≤ ε}) ≤
≤ ξLeb({x ∈ Wr | ρ(x, ∂W ) < ε}) + ξLeb({x ∈ Wl | ρ(x, ∂W ) < ε})

which is what we need.

Proof of Sublemma 4.15. We use the notation Hε = {x ∈ W | ρ(x, ∂W ) ≤ ε}, Hkε = {x ∈
W | ρ(x, ∂W ) ≤ kε}, Vε = Leb(Hε), Vkε = Leb(Hkε). We use the property of the Lebesgue
measure that it can be obtained as the infimum of sums of volumes of spheres in a countable
covering:

Vε = inf

{ ∞
∑

i=1

Γmrm
i |Hε ⊂

∞
⋃

i=1

Bri
(yi), yi ∈ Rm, ri ∈ R+

}

,

where Br(y) denotes the sphere of radius r centered at y, and Γm is the volume of the
m-dimensional unit sphere. So for any δ > 0 there exist {yi}∞i=1 and {ri}∞i=1 such that
Hε ⊂

⋃∞
i=1 Bri

(yi) and Γm

∑∞
i=1 rm

i < Vε + δ.
Now for every i, let xi be one of the points of ∂W which is the closest to yi. Such a

point exists, since ∂W is compact, so the infimum defining ρ(yi, ∂W ) is obtained. Define
zi = xi + k(yi − xi) and B′

i = Bkri
(zi). That is, B′

i is obtained with the magnification of
Bri

(yi) with a factor k, but with xi as the center of the magnification. See Figure 8 for the
notation.

We claim that Hkε ⊂ ⋃∞
i=1 B′

i. This immediately implies the statement of the lemma,
since it means that

Vkε ≤ Γm

∞
∑

i=1

(kri)
m = kmΓm

∞
∑

i=1

(ri)
m ≤ km(Vε + δ)

by the choice of {yi}∞i=1 and {ri}∞i=1, and this holds for every δ > 0.
To see the claim, choose any point c ∈ Hkε. Let a be one of the points of ∂W closest

to c – again, such a point exists. Define b = a + c−a
k

. We can see that ρ(b, ∂W ) = ρ(b, a),
because the existence of a point d ∈ ∂W with ρ(b, d) < ρ(b, a) would imply ρ(c, d) < ρ(c, a),
which contradicts the choice of a.

Notice that b ∈ Hε, because ρ(b, ∂W ) = ρ(b, a) = ρ(c,a)
k

= ρ(c,∂W )
k

≤ kε
k

= ε by the choice
of c, and b ∈ W because c ∈ W and ρ(c, ∂W ) > ρ(c, b). This means that there is an i for
which b ∈ Bri

(yi). We will show that for the same i, c ∈ B′
i, and this completes the proof.
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Figure 8: notation for the proof of Sublemma 4.15

To make the proof of c ∈ B′
i transparent, we introduce the vectors e = xi − a, f = b − a

and g = yi − xi. We will make use of the choice of xi and a through the inequalities

ρ(yi, a) ≥ ρ(yi, xi) ; ρ(c, xi) ≥ ρ(c, a).

Our statement follows from
ρ(zi, c) ≤ kρ(yi, b).

With the vectors introduced, the conditions can be written as

|e + g| ≥ |g| ; |kf − e| ≥ |kf |

and the statement becomes

|e + kg − kf | ≤ k|e + g − f |.

The conditions can be further rewritten as

e2 + 2eg ≥ 0 ; e2 − 2kef ≥ 0,

and the statement becomes (using k > 1)

ke2 + e2 + 2keg − 2kef ≥ 0.

In this form, the statement is just the sum of k times the first condition and the second.
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