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Abstract

We present an example for a periodic point in a 3-dimensional dispersing billiard configuration
around which the complexity of singularities grows exponentially with the iteration of the map. This
implies the existence of multi-dimensional dispersing billiard configurations with finite horizon where
the complexity grows exponentially. We also show that complexity growth can be faster than the
minimum expansion of unstable vectors – a phenomenon with far-reaching consequences in the study
of mixing properties for these systems. The observed behaviour is in strong contrast with the behaviour
of 2-dimensional systems.

Keywords: hyperbolic systems with singularities, complexity of the singularity set, astigmatism, multi-
dimensional dispersing billiards

1 Introduction

In the theory of dynamical systems with singularities, understanding the structure of the singularity set
is of crucial importance. In this paper we consider a discrete time dynamical system with singularities,
and address the question: “How many singularities of the n-th iterate can meet at a single point?” This
number is called the local complexity of the n-step singularity set. We will make the definition precise in
Definition 2.2. The dependence of this quantity on the number of iterates n, that is, the local complexity
growth of the singularity set plays an important role when studying the ergodic and statistical properties
of various kinds of hyperbolic systems with singularities. We will comment more on its importance in
Section 2.2.

In the present paper we focus on the case of dispersing billiards with finite horizon and no corner
points (see Section 2.3 below for a more detailed description). In the two dimensional case, according
to a result by Bunimovich (see [BSC] or [Ch]) local complexity grows at most linearly in these systems.
This property was exploited in Young’s proof of exponential decay of correlations for planar dispersing
billiard maps ([Y]). Young’s result on the exponential rate of mixing was extended by the present authors
to multidimensional dispersing billiard maps in [BaTo] under the assumption of subexponential complexity
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growth. However, so far there has been no information available on the actual rate of complexity growth in
the multidimensional case. As it usually happens, it turns out that multidimensional dispersing billiards
are much more complex then their planar counterparts: in Theorem 2.7 we show that in high (i.e. at least
three) dimensions there exist finite horizon dispersing billiards for which the complexity of the singularity
set grows exponentially.

The rest of the paper is organized as follows. In Section 2 we collect some background material on
hyperbolic systems with singularities in general (Section 2.1) and dispersing billiards in particular (Sec-
tion 2.3). The main result of our paper, Theorem 2.7 is stated in Section 2.4, along with the explicit
description of a 3-dimensional billiard configuration with exponentially growing complexity. Section 3 is
devoted to 2-dimensional dispersing billiards. We introduce a one parameter family of planar finite horizon
dispersing billiard configurations that, on the one hand, mimic some features of infinite horizon planar
dispersing billiards, and, on the other hand, provide the building bricks for our multidimensional example
with exponentially growing complexity. Finally in Section 4 we summarize some material on multidi-
mensional dispersing billiards and prove Theorem 2.7. Some arguments of more calculatory character are
presented in the Appendix.

2 Setting and statement of results

2.1 Hyperbolic dynamical systems with singularities

There are slight variations in the literature on what we mean by a hyperbolic dynamical system with
singularities. The setting we describe below is neither the most possible general, nor it is complete in
the sense that further assumptions are needed (depending on the studied example) to deduce reasonable
statements on the ergodic properties of the system. However, we think that our observations are relevant
for many interesting examples.

The two main features of the systems we consider are hyperbolicity and the presence of singularities.
The description of the singularity structure is central to our exposition, hence here we elaborate

a little more on the details. We stick to discrete time maps. The phase space M of our dynamical
system T : M → M is a (finite union of) D dimensional compact Riemannian manifold(s) (possibly
with boundary). The domains of continuity for T are finitely many, pairwise disjoint open sets Ok ⊂ M ,
k = 1, . . . , K, such that

(i) Their closures cover the phase space (∪K
k=1Ok = M).

(ii) The boundary ∂Ok of any fixed piece is a finite union of smooth 1-codimensional compact submani-
folds (possibly with boundary) in M .

(iii) Restricted to any fixed open piece, Tk = T |Ok
is a C2 smooth one-to-one map onto its image.

Furthermore, Tk has a continuous extension to the closed piece Ok. (However, its derivatives may
have no finite limit at the boundary ∂Ok.)

(iv) For x ∈ Ok ∩ Ol(= ∂Ok ∩ ∂Ol), k 6= l, Tx is defined to coincide with one of the possible continuous
extensions, i.e. – somewhat sloppily – as Tkx or Tlx.

Remark 2.1. Note that the set
⋃

k 6=l ∂Ok ∩ ∂Ol is a finite union of smooth 1 codimensional submanifolds,
in particular, it is of zero Lebesgue measure. Hence, from the viewpoint of ergodic properties, it is irrelevant
how exactly the dynamics is defined on that set. Condition (iv) above is only included to avoid ambiguities.

The set of phase points where T is possibly non-continuous, ∪K
k=1∂Ok is called the singularity set of

T . To understand the asymptotic properties of the dynamics, the singularities of all iterates T n, n ∈ Z+

must be taken into account: our aim is to “count singularities” that meet at a single point. However, the
framework we are using is not really suitable for counting singularities, because the whole singularity set
is treated as one, components are not indexed. Instead, we will count the domains of continuity. This can
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be done precisely, and then one can loosely say that m− 1 singularity components, that meet at a point,
cut the phase space locally into m pieces.

For this reason we introduce some notation: for n ≥ 1, and i = (i1, i1, . . . , in) ∈ {1, . . . , K}n we let
T n
i = Tin ◦ · · · ◦ Ti1 , which is defined on Oi, where O(i1) = Oi1, and

Oi = O(i1,...,in) = {q ∈ Oi1 such that Ti1(q) ∈ O(i2,...,in)} . (2.1)

Note that some of the Oi may be empty. In fact, our aim is exactly to study how fast the possible
combinations for nonempty Oi grow.

Definition 2.2. For every x ∈ M , the n-step complexity index of x, mn(x) is the number of possible distinct
i ∈ {1, . . . , K}n such that x ∈ Oi. The n-step complexity of the singularity set, mn is the supremum of
mn(x) for all x ∈ M .

In contrast to the description of the singularity structure, it has little significance for the present
paper how exactly the hyperbolicity of the dynamics is formulated. The only important feature is that
hyperbolicity is uniform, that is, there is a constant Λ > 1 such that unstable perturbations are expanded
– and stable perturbation are contracted – at least by a factor Λ with each iteration of the map. This can
be expressed, for example, in terms of cones, as done in the next paragraph, which can be skipped at a
first reading of the paper.

There exist two transversal continuous cone fields in the tangent bundle of M , the ds-dimensional
stable cone field Cs(x) and the du(= D− ds) dimensional unstable cone field Cu(x), x ∈ M , which satisfy
the following properties. Consider x ∈ Ok for some k (so that the derivative DTx is well-defined), then
DTx(C

u(x)) ⊂ Cu(Tx) and (DTx)
−1Cs(Tx) ⊂ Cs(x). Furthermore, hyperbolicity is uniform: there exists

some constant Λ > 1 such that for any x, and any vector v ∈ Cu(x) we have |DTxv| > Λ|v|, while for
any w ∈ Cs(Tx) we have |(DTx)

−1w| > Λ|w|. The constant Λ > 1 (which is uniform in the sense that
it depends only on the dynamical system itself) and its relation to the combinatorial properties of the
singularities plays an important role in the studies of the ergodic behaviour of the system.

Dynamical systems with the above discussed properties have been in the focus of investigation for
several decades. Main questions of interest are the existence of at most finitely many ergodic SRB measures
along with their statistical properties, such as rates of mixing and probabilistic limit laws. Various methods,
which may study the system directly or apply some coding, and may use various sophisticated tools such
as modern functional analysis or probabilistic coupling, have been implemented to study these problems.
Not aiming for completeness, we mention [Y], [DL], [CD], [CZ], [BG1], [BG2] as some of the most recent
and best known examples. These works may have various purposes in mind and correspondingly, the
results obtained also have a different range of applicability. However, it is a common feature in all of them
that, to prove strong statistical properties for the SRB-measure(s), one has to ensure that “hyperbolicity
dominates singularities” in an appropriate sense.

The most convenient case is when the growth of mn is subexponential:

Definition 2.3. The singularity set has sub-exponential complexity growth if mn = o(λn) for every λ > 1.

However, when one studies statistical behaviour in uniformly hyperbolic systems, a somewhat weaker
property is usually enough:

Definition 2.4. The singularity set has sub-expansion complexity growth – or, in other words, hyperbol-
icity dominates singularities if

mn = O(λn) for some λ < Λ, (2.2)

where Λ is the factor of least expansion for unstable vectors.

Since it is typically hard to get explicit lower bounds on Λ, sub-expansion complexity growth is often
proven as a trivial consequence of sub-exponential growth.
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2.2 The role of complexity growth

To indicate the significance of (2.2), let us mention that we are unaware of any proof of strong statistical
properties (such as exponential decay of correlations) for a truly hyperbolic system (i.e. when there
are both stable and unstable directions) with singularities, that does not use this condition (or some
essentially equivalent version of it). It is an interesting open question whether there exist models at all
with an exponentially mixing unique SRB measure for which, however, condition (2.2) fails.

On the other hand, in the example we are presenting – where complexity growth is too fast – it may
still happen that correlation decay will once turn out to be exponential – although all presently existing
methods of proof break down. This is a very important open question and a highly interesting specific
system for further detailed study.

At this point it may be worth commenting briefly on piecewise expanding maps, i.e. when every direc-
tion is unstable. Here the collection of results is much larger, see eg. [BG1] for a list of references. There
is, however, a big difference between piecewise expanding interval maps (D = 1) and higher dimensinal
systems. In the former, the singularity set consists of finitely many points, hence, as already observed
in [LY], practically no additional assumptions are needed to prove strong statistical properties. On the
contrary, in the multidimensional case (if D ≥ 2) interesting counterexamples by Tsujii ([T]) and Buzzi
([Bu]) indicate that some assumptions in the spirit of (2.2) are necessary. Without any assumptions, not
even the existence of an absolutely continuous invariant measure (which plays the role of SRB measures
in the context of expanding maps) can be ensured.

2.3 Multidimensional dispersing billiards

In this paper we consider one of the most popular class of hyperbolic systems with singularities, dispersing
billiards with finite horizon (or Sinai billiards). For this particular class of dispersing billiards, the natural
absolutely continuous invariant measure – the Liouville-measure – is known to be ergodic and mixing
(under the natural condition that the scatterers are defined by algebraic equations, see [BChSzT2]). How-
ever, exponential decay of correlations was only proven under the additional assumption of sub-expansion
complexity growth (cf. [BaTo]). It is natural to ask whether particular billiard configurations have this
property or not. Here we present an example of a multidimensional dispersing billiard configuration with
finite horizon for which complexity is shown to grow exponentially, and actually, (2.2) also fails. Hence
the rate of mixing for the dynamics in our particular billiard configuration is unknown.1

Before describing our counterexample we collect some material on the class of dispersing billiards
studied in this paper. Let us consider a connected billiard domain in the d-dimensional flat torus Q ⊂ Td,
and a point particle that travels uniformly (follows straight lines with constant speed) within Q, and
bounces off the boundary (the scatterers) via elastic collisions (angle of incidence is equal to the angle of
reflection). We will concentrate on the case of d ≥ 3 and make some further assumptions.

The boundary ∂Q is assumed to be a finite collection of pairwise disjoint, compact d − 1 dimensional
C3-smooth submanifolds in Td: ∂Q = ∪K

k=1∂Qk. Furthermore, the billiard is strictly dispersing. That is,
the boundary components, as viewed from the exteriour, are strictly convex.

In continuous time, the dynamics can be described as a flow Φt : M → M, where M = Q × Sd−1.
Here Sd−1 is the d−1 dimensional unit sphere, and for q ∈ ∂Q, phase points with incoming (〈n(q), v〉 ≤ 0)
and outgoing (〈n(q), v〉 ≥ 0)velocities are identified (here n(q) is the unit normal vector of ∂Q at q).
Nonetheless there is a natural Poincaré section for this flow corresponding to collision moments. Consider
q ∈ ∂Q (a configuration point) and v ∈ Sd−1 with 〈n(q), v〉 ≥ 0 (an outgoing velocity). The pair w = (q, v)
is a phase point in our dynamical system for which we may consider the free flight function: τ(w) measures
the distance along the straight line that starts out of q in the direction of v until it reaches ∂Q again. We
assume that the horizon is finite; there is a positive constant τmax < ∞, depending only on the billiard
domain, such that for any phase point w = (q, v) we have τ(w) ≤ τmax. At this point it is worth recalling

1We remark that the opposite direction is still completely open: it is unknown whether there exists a multi- (not 2)
dimensional configuration with sub-expansion complexity growth.
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that the smooth components of the boundary (the scatterers) are assumed to be disjoint, hence there are
no corner points. This implies, on the basis of compactness, that the free flight function is bounded from
below: there exists a constant τmin > 0, depending only on the billiard domain, such that for any phase
point w = (q, v) we also have τ(w) ≥ τmin.

In a summary, we consider dispersing billiards with finite horizon and no corner points. Let us describe
briefly why these models belong to the above defined class of hyperbolic systems with singularities. We
investigate the dynamics in discrete time, that is, we work with the Poincaré section (or collision) phase
space:

M =
{

w = (q, v) | q ∈ ∂Q, v ∈ Rd, ‖v‖ = 1, 〈v, n(q)〉 ≥ 0
}

,

where, as already mentioned above, n(q) denotes the (unit) normal vector of ∂Q at q pointing inward Q.
It can be shown that M is indeed a finite collection of D = 2d − 2 dimensional Riemannian manifolds
(actually, semi-sphere bundles, see [BChSzT1]) corresponding to the smooth components of the boundary,
in other words, to the scatterers. Hence, roughly: M = ∪K

k=1Mk = ∪K
k=1∂Qk × Sd−1

+ , where Sd−1
+ is

the semisphere of outgoing velocities. The boundary ∂M = ∪K
k=1∂Mk of the phase space corresponds to

tangential collisions (〈v, n(q)〉 = 0) which determine the singularities of the system (see below). We will
consider the component of the phase space corresponding to a fixed scatterer, say M1, other components
can be treated similarly.

The dynamics T : M → M determines the state of the particle at the next collision as a function of
the present state. Hyperbolicity of T is related to the strict convexity of the boundary, on details of this
mechanism see eg. [CM] or [BaTo]. Some important features of the hyperbolicity in dispersing billiards,
in particular, phenomena relevant to the present paper, will be discussed in course of our exposition in
sections 3 and 4.

Concerning singularities, it is easy to see that the dynamics is discontinuous at preimages of tangential
collisions: if w ∈ M1 such that Tw ∈ ∂Mi for some i ∈ {1, . . . , K}, then there are w1 and w2 arbitrary
close to w such that Tw1 ∈ intMi while Tw2 ∈ intMj for some j 6= i. The lack of corner points guarantees
that preimages of tangential collisions are the only singularities.

Remark 2.5. The billiard configuration on Td lifts to a Zd-periodic billiard configuration on Rd. Actually,
it is the later that is relevant for the singularity structure of T . However, as long as the horizon is finite,
it makes no essential difference to consider the configuration on the torus. Indeed, the scatterers of the
infinite periodic configuration can be indexed by (i,k), where i ∈ {1, . . . , K} and k = (k1, ..., kd) ∈ Zd. Any
w ∈ M1 lifts to some w̃ ∈ M(1,0) (where 0 = (0, ..., 0) is chosen to avoid ambiguity). Finiteness of the
horizon implies that there are only finitely many scatterers M(i,k) visible from M(1,0). Hence, by choosing
the fundamental cell of the periodic configuration larger – and, consequently, increasing K, the number of
distinct scatterers contained in configuration on Td – it can be ensured that for any i ∈ {1, . . . , K} there
is a unique ki ∈ Zd such that any w ∈ M1 with Tw ∈ Mi lifts uniquely to w̃ ∈ M(1,0) and T w̃ ∈ M(i,ki).
(Actually, the entries of any such ki are 0 or ±1.)

Hence we have open sets Oi ⊂ M1, i = 1, . . . , K defined as Oi = {w ∈ M1 | Tw ∈ intMi}. It is known
(see eg. [CM], or [BChSzT1] and [BaTo] specifically on the multidimensional case) that the open pieces
Oi (restricted onto which the dynamics is continuous) fit the assumptions for hyperbolic systems with
singularities, cf. the description in Section 2.1.

To address the issue of complexity, we consider a phase point w ∈ M1 such that none of the first n
collisions is tangential on the trajectory of w. Then the symbolic collision sequence of length n for w is the
sequence of symbols in(w) = (i1, . . . , in) ∈ {1, . . . , K}n that lists the indices of the consecutive scatterers
along the trajectory of w, that is, for which T lw ∈ intMil , l = 1, . . . , n. The open pieces restricted onto
which the n-th iterate of the dynamics is continuous can be identified with symbolic collision sequences.
That is, for jn = (j1, . . . , jn) ∈ {1, . . . , K}n we have Ojn = {w ∈ M1 | in(w) = jn}.

The above observations can be summarized as follows:

Lemma 2.6. For every w ∈ M , the complexity mn(w) equals the number of distinct symbolic collision
sequences in that can be realized by trajectories starting out of phase points arbitrary close to w.
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2.4 Description of the counterexample

Now we are in the position that we can state the main result of our paper.

Theorem 2.7. For every d ≥ 3 there exists a d-dimensional dispersing billiard configuration with finite
horizon and no corner points that has exponentially growing complexity. Actually, any multidimensional
finite horizon dispersing billiard can be modified, by adding finitely many scatterers, in such a way that the
new configuration has exponentially growing complexity.

Actually, our result is not merely an existence statement, we can explicitly construct a billiard configura-
tion to which Theorem 2.7 applies. For simplicity, we restrict to the three dimensional case, generalization
to higher dimensions is automatic.

x

y

z

w0

1

2

3

4

Figure 1: 3D configuration with exponential complexity

The configuration (see Figure 1) consists of four spherical scatterers 1, 2, 3, 4, and a periodic orbit of
a phase point w0 that bounces back and force between the two “big” scatterers 1 and 4. Between two
consecutive perpendicular bounces on the big scatterers, the orbit will collide tangentially on both of the
two “small” scatterers 2 and 3. The configuration has the following parameters:

– r is the radius of the “small” scatterers,

– R is the radius of the big scatterers,

– L1 is the length of the free flight (along the trajectory of w0) between the regular collision on 1 and the
tangential collision on 2,

– L2, the length of the free flight (along the trajectory of w0) between the regular collision on 4 and the
tangential collision on 3,

– and finally D, the length of the free flight (along the trajectory of w0) between the tangential collisions
on 2 and 3.

Note that L = L1 +D + L2 is the distance of scatterers 1 and 4, and thus, it is (half of) the length of the
periodic trajectory of w0. We will assume, only for the convenience of notation, that L1, L2, D > r, which
ensures that all the spheres are disjoint.

Specifically

– scatterers 1 and 4 are spheres of radius R in R3, centered around the points (−R, 0, 0) and (L+R, 0, 0),
respectively;

– scatterers 2 and 3 are spheres of radius r in R3, centered around the points (L1, r, 0) and (L1+D,−r, 0),
respectively;

6



– the point w0 = (q0, v0) (the phase point from which the singular periodic orbit originates) has configu-
rational coordinate q0 = (0, 0, 0) and velocity v0 = (1, 0, 0).

For our demonstration of exponential complexity to work, we will need to assume a further relation
between the geometric parameters (see Theorem 2.8) meaning essentially that R is big enough compared
to the other parameters.

Our example could be generalized in several ways as long as the following crucial features of the
configuration are maintained:

(i) the periodic trajectory collides on the spheres 1 and 4 perpendicularly,

(ii) it touches scatterers 2 and 3 tangentially between two such perpendicular bounces,

(iii) there is a plane containing the trajectory such that scatterers 2 and 3 are on the opposite sides of
that plane.

Now we can give an explicit description of the set of collision sequences that can be realized arbitrary
close to the orbit of w0, which we will denote by Σn. Let

A1,2 = {(1, 2), (2, 1)} and A3,4 = {(3, 4), (4, 3)}.

Then
Σn = {(2, w1, w2, . . . , wn−1) |wi ∈ A3,4 for odd i, and wi ∈ A1,2 for even i}.

In words, an (almost) tangential collision on scatterer 2 should be followed by an (almost) tangential
collision on scatterer 3. However, this collision on scatterer 3 may take place either before or after the
perpendicular bounce on scatterer 4. Similarly, an (almost) tangential collision on scatterer 3 should be
followed by an (almost) tangential collision on scatterer 2. However, this collision on scatterer 2 may take
place either before or after the perpendicular bounce on scatterer 1.

Theorem 2.8. Consider the above 3-dimensional billiard configuration, the phase point w0 and the set
Σn of symbolic collision sequences. Assume also that L1 = L2 and R > 169 L3

(2L1−r)2
. Then for any n ≥ 1

and any δ > 0 there exists some point w ∈ Bδ(w0) (in the δ-neighbourhood of w0) with symbolic collision
sequence i2n−1(w) = j. Thus m2n−1(w0) ≥ |Σn| = 2n−1.

Remark 2.9. In course of our proof of Theorem 2.8, given n ≥ 1 we will first choose a constant δ0(n) > 0
such that in the δ0-neighbourhood of w0 we can give a description for a rich class of trajectories up to the
n-th collision. Then for any δ > 0 we let δ1 = min(δ0, δ) and construct w with symbolic sequence j ∈ Σn

in the δ1-neighbourhood of w0.

The rest of our paper is devoted to the proof of Theorem 2.8. Theorem 2.7, and the following two
statements, are easy consequences, which we prove at the end of Section 4 and in the Appendix, respec-
tively.

To get an example where this exponential growth of complexity is surely not sub-expansion, we need
an observation about the unstable expansion in our example:

Lemma 2.10. The minimum unstable expansion factor Λ in the above billiard configuration can be made
arbitrarily close to 1 by choosing the geometric parameters appropriately, that is, by choosing R big enough
compared to L.

Corollary 2.11. The above 3-dimensional billiard configuration, if R is big enough compared to L, does
not have the sub-expansion complexity growth property.
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3 Planar dispersing billiards

To understand our three-dimensional example easier, it is useful to first look at certain two-dimensional
dispersing billiard configurations. We will see how the iterates of the billiard map can have exponen-
tially many singularity manifolds – or, with other words, exponentially many possible symbolic collision
sequences – “near” a reference phase point. To avoid confusion, it is important to mention that (according
to a result by Bunimovich [BSC], see also [Ch]) in a 2D finite horizon dispersing billiard with no corner
points, complexity grows at most linearly. Hence this “near” cannot be exactly zero distance, as that would
mean exponential complexity for a 2D system. However, the mechanism of the growth in the number of
nearby singularities is the same as it will be in our true three-dimensional example.

3.1 Infinite horizon

For the first step, consider a periodic configuration of circular scatterers on the (infinite) two-dimensional
plane. The interesting part is the so-called corridor near a flow phase point with infinite free flight. This
is shown in Figure 2.{

A B A B A B

A B A B

{ {
{ {

1.

2.

3.

4.

5.

w0

w
2ε

Figure 2: The corridor in a 2D infinite horizon billiard

The figure shows a reference phase point w0 with an infinite free flight, and a “nearby” phase point w
with a pretty arbitrary collision history. Actually, if the geometric parameters are chosen properly, then
w is indeed quite close to w0. In particular, their distance is of order ε, where 2ε denotes the “width” of
the corridor, that is, the distance of the two (dotted) lines tangent to the infinitely many scatterers (see
the figure). We will use the phrase “optical axis” for the (solid) line in the middle of the corridor which is
the (configuration trace of the) trajectory of w0. We will also use the phrase “horizontal” for the direction
of the optical axis, and the words “below”, “above”, “left” and “right” accordingly.

We will show in a proposition that if ε is small enough (w.r.t the other geometric parameters), then
indeed many symbolic collision sequences are possible. To state the proposition, let us introduce the
following notations: r is the radius of the (identical) scatterers, 2L is the horizontal periodicity of our
configuration (hence L is the distance between the midpoints of two consecutive pairs of scatterers, located
on the two opposite sides of the corridor) and d(< L − 4r) is the (horizontal) distance between the two
scatterers “A” and “B” within a pair.

Proposition 3.1. For any choice of r, L and d there is some ε0 such that whenever the width of the
corridor is ε < ε0, the following property holds. For any finite sequence σ = (σ1, σ2, σ3, . . . , σn) of “A”-s
and “B”-s it is possible to choose some w in the Cε-neighbourhood of w0 such that the n-long symbolic
collision sequence of w is equal to σ. In other words, it is possible to hit exactly scatterer σi from each
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couple i as shown in Figure 2. So the number of possibilities grows exponentially with the length of the
piece of the corridor considered. Here C is a numerical constant that could be determined explicitly, its
value is, however, not important.

The proof of this proposition is based on a lemma about the evolution of fronts in the corridor. To
this end, let us first recall (cf. [CM], [BChSzT1]) that in billiard theory a front is a one codimensional
smooth, compact and oriented submanifold W ⊂ Q which, when supplied with its unit normal vector field
(the velocities), can be regarded as a submanifold of the billiard flow phase space. In the two dimensional
case, W is simply a curve in Q (supplied with its normal vector, i.e. the velocity, in each of its points).
The class of fronts is preserved by the billiard flow. To state the lemma, first we introduce an appropriate
subclass by defining the temporary notion of a “good front in the corridor”. Roughly speaking, this means

– a front which contains many phase points traveling along the corridor (thus having nearly horizontal
velocities);

– the directions of the velocities at the endpoints are such that the phase points in between are guaranteed
to collide at many different points of the next two scatterers;

– and the front is far enough from the next scatterer so that these collisions are nearly tangential.

We will use the notation introduced above, see also Figure 3. K denotes a large constant that depends
on r, L and d, and by “nearly horizontal velocity” we mean a unit vector with vertical component at most
K2ε, see Lemma 3.3 and its proof.

ε

s1

s2

d
A

A B

Φt1W1 Φt2W2

W1
W2

W

Figure 3: Evolution of a good front in the corridor

Definition 3.2. A front is called a good front in the corridor, tending up, if

• it consists of phase points with nearly horizontal velocities flying to the right,

• it is entirely below the optical axis,

• the distance of any of its points from the optical axis is at most 2ε,

• the tangent of the velocity at its bottom endpoint is ≤ ε/K,

• the tangent of the velocity at its top endpoint is ≥ Kε,

• the next two scatterers along the corridor approached by the front (denoted by A and B) are at the
top of the corridor,

• the horizontal distance of any of its points from any point of A or B is between L/2 and 3L. (With
the notation of Figure 3: L/2 ≤ s1, s2 ≤ 3L.)
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A good front in the corridor, tending down is defined analogously. It is the mirror image (reflected over
the optical axis) of a good front tending up, shifted horizontally with L so that the next two scatterers
approached are at the bottom of the corridor.

For better transparency of the arguments we can assume (although this is not needed) that a good
front is convex.

Lemma 3.3. For any K ∈ R+ large enough there exists an ε0 > 0 such that for every ε < ε0 the following
holds: If W is a good front in the corridor tending up, then W contains sub-fronts W1,W2 ⊂ W and there
are times t1, t2 with L/2 ≤ t1, t2 ≤ 2L such that

• W1 and W2 only intersect at their common endpoint that hits scatterer A tangentially,

• points of W1 collide (only) on scatterer A before time t1 and miss scatterer B after that,

• points of W2 miss scatterer A and collide on B before time t2,

• Φt1W1 and Φt2W2 are good fronts in the corridor, tending down.

Proof. To prove the lemma, we only need to understand the mechanism of infinite expansion of billiard
dynamics near tangent collisions, as sketched in Figure 4. This shows that if we have two parallel incoming
trajectories of some small distance h, one colliding tangentially, the other non-tangentially at the same
scatterer, then the two trajectories are diverted by the collision to an extent much greater than h. Namely,
h = r(1− cosα) ≤ rα2 (for small enough h or α), so the slope of the post-collision trajectory line is

tan 2α ≥ 2α ≥ 2

√

h

r
=

2√
r

√
h. (3.1)

h

2α

α

r

Figure 4: Greatly diverted trajectory near a tangent one

The requirements on the position of W and the direction of the velocities at the endpoints ensure that
the upper endpoint hits A at a point at least (KL/2 − 3)ε ≥ 100ε higher than the bottom point of A,
while the lower endpoint of W misses both A and B (if K is chosen large enough in terms of L). Due to
the smoothness of the front, the points in between will scan the entire surface of A and B that is visible
from W .
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First, let W2 be the set of points in W which do not hit A but hit B. (In Figure 3 only a subset of
this is shown.) Let t2 be a time shortly after all points of W2 collided on B. The phase point with largest
collision time is, actually, the lower endpoint of the incoming W2, and it is hitting B tangentially. To see
that Φt2W2 is indeed a good front in the corridor tending down, it is enough to see that the endpoints
satisfy the requirements for the direction of the velocity. For the upper endpoint (of the outgoing front) this
is obvious, since the slope is required to be greater than −ε/K (the trajectory can descend only slightly),
but the velocity is actually positive (the outgoing trajectory is ascending). For the lower endpoint of the
outgoing front (which is the Φt2-image of the upper endpoint of the incoming front W2) we have to check
that A does not block too much of B. However, the geometric requirements ensure that this endpoint
(after just avoiding a tangent collision on A) hits B at a point h ≥ d

3L
ε high, so (3.1) guarantees that the

slope after collision is

≤ − 2√
r

√

d

3L
ε = −2

√

d

3Lr

√
ε ≤ −Kε

(descending steeply), if ε is small enough. (The fact that the incoming trajectory is not horizontal – unlike
in Figure 4 – makes the situation even better.)

Second, let W1 be the set of points in W which hit A and then miss B. (Again, in Figure 3 only a
subset of this is shown.) Let t1 be a time shortly after all points of W1 collided on A. The phase point
with largest collision time is, actually, the lower endpoint of the incoming W1: after colliding on A, it is
hitting B tangentially. Again, the only thing to check is the post-collision direction of the velocities at the
endpoints. Note that the lower endpoint of the outgoing front is the Φt1-image of the upper endpoint of
the incoming front W1, which is hitting A at a height at least 100ε if K is chosen sufficiently large. Hence
it is easy to see that its velocity slope is ≤ −Kε . For the upper endpoint one has to see that not too
much of the outgoing front is blocked by B. An argument analogous to the previous one gives that we can
guarantee a slope ≥ −constε2 ≥ −ε/K (descending slowly) if ε is small enough.

Proof of Proposition 3.1. Let K be so large and ε0 be so small that the statement of Lemma 3.3 holds,
and let ε < ε0. For every m ∈ R let em denote the unit vector with slope m. We write w0 = (q0, v0), so q0
is the configuration part of the reference phase point w0. Let q′0 denote the configuration point which is
ε

100
below q0. Now consider the following set of phase points:

W∅ := Φ
ε

100K {(q′0, em) : 0 ≤ m ≤ Kε} .

In words: take a configuration point just a little bit below q0, equip it with all possible velocities with slopes
0 ≤ m ≤ Kε, and let these phase points evolve under the free flight for a very short time. The resulting
set W∅ is a good front in the corridor tending up, all of whose points are within the 2Kε-neighbourhood
of w0. So we set C = 2K and claim that W∅ contains the desired phase point w with the appropriate
symbolic collision sequence σ – actually it contains an entire sub-front Wσ of such points. This completes
the proof of the proposition.

We prove the claim by induction.

a.) For n = 1, Lemma 3.3 ensures the claim, with the choice W(A) := W1, W(B) := W2.

b.) Assume inductively that the claim holds for n − 1 with some n > 1. Let σ = (σ1, σ2, σ3, . . . , σn).
Assume first that σ1 = A. Apply first Lemma 3.3 to obtain W(σ1) = W(A) = W1. The lemma ensures
that Φt1W1 is a good front, so the inductive assumption can be applied with σ′ = (σ2, σ3, . . . , σn) to
obtain the sub-front W ′

σ′ of Φt1W1 which has symbolic collision sequence σ′. Now Wσ := Φ−t1W ′
σ′ is

a sub-front of W with symbolic collision sequence σ. The case when σ1 = B is exactly the same with
W(σ1) = W(B) = W2, with W ′

σ′ being a subfront of the good front Φt2W2 and Wσ := Φ−t2W ′
σ′ . This

finishes the inductive proof of the claim, and the proof of the proposition.
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3.2 Finite horizon

One could ask why we need to construct phase points with such arbitrary collision sequences, since in
the infinite horizon case already the (first iterate of the) billiard map has infinitely many singularities
accumulating at a single point, as shown by Figure 5. However, what we are truly interested in is the
finite horizon case which we get by adding “transparent walls” to the infinite horizon configuration. These
transparent walls are indicated by dashed lines in the figures. When one of these walls is reached, the
velocity of the flying particle is unchanged, but a collision event is counted. So the example of Figure 5
does not work: many transparent walls are crossed before a distant scatterer can be hit, so the singular
collisions shown in Figure 5 are only seen by high iterates of the (artificially-constructed) finite horizon
billiard map. Indeed, the singularities of Figure 5 only contribute a linearly growing complexity.

Figure 5: A bad example: infinitely many singularities of the infinite horizon billiard map accumulating
at a point

On the other hand, many of the collision sequences of Proposition 3.1 are guaranteed to be seen by
relatively low iterates of the map. Indeed, until reaching the k-th transparent wall, at least 2k symbolic
collision sequences are shown to exist, all of which are at most 2k long. If all these symbolic collision
sequences were possible arbitrarily close to w0 for a fixed ε, it would mean that the complexity of T n at
w0 is at least 2n/2.

Next we consider further slight variations of the two dimensional configuration displayed in Figure 2.
First let us replace the dashed lines by real straight lines as scatterers, such that the velocity of the billiard
particle is reflected when it reaches these straight lines (see Figure 6(a)). The billiard dynamics obtained

w0
2ε

(a) straight reflecting walls

w0
2ε

(b) curved reflecting walls

Figure 6: 2D finite horizon examples with many symbolic collision sequences

this way is equivalent to that of Figure 2, hence Proposition 3.1 applies. Now as a final variation, let us
replace the straight lines by some strictly convex scatterers (say circles of some big radius), on which w0

bounces perpendicularly, see Figure 6(b). This way we obtain a two dimensional configuration with finite
horizon and strictly dispersing scatterers, to which again Proposition 3.1 applies. To see this, note that this
proposition relied on Lemma 3.3 which ensured that there is enough amount of scattering, so that good
fronts are sufficiently expanded to realize both of the two possible continuations of the symbolic collision
sequence. If instead of straight lines we have strictly convex scatterers, there is additional scattering,
and the good fronts are expanded even stronger, so that the exponential growth of realizable sequences is
maintained.

Again, we would like to emphasize that Figure 6(b) is not an example for the exponential growth of
complexity. Here ε (the width of the corridor) is a fixed positive parameter, and the high number of
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distinct collision sequences can be observed in an ∼ ε-neighbourhood of w0. However, by adding one more
dimension, we can realize this scenario with ε → 0: this is exactly what happens in the three-dimensional
configuration of Figure 1, as we discuss in Section 4.

4 Multidimensional dispersing billiards

In the present section we consider the three dimensional billiard configuration of Figure 1 and prove
Theorem 2.8. In accordance with Remark 2.9, the essence of our reasoning is that given n (i.e. the length
of the time interval we would like to control) it is possible to choose δ0(n) such that for a large class of
phase points w that are δ0-close to the reference point w0, we can give an explicit description of how
the trajectory of w deviates from that of w0 (for the n steps we are interested in). Once this explicit
description is given, we will argue that the 2-dimensional picture in Figure 6 is of high relevance (cf.
Proposition 4.3 below). The explicit description we give is accurate up to “negligible error” which should
be interpreted as follows. Consider the distance dt = d(Φtw,Φtw0) at a specific moment t within the
studied time interval. Note that, by continuity of the flow Φt, if δ0 is chosen sufficiently small, dt can be
regarded as a small parameter. Now by “negligible error” we mean that the actual Φtw differs form our
explicit description at most by o(dt): that is, our explicit description can be made arbitrarily accurate by
choosing δ0 sufficiently small.

A key feature of the configuration of Figure 1, on which our explicit description relies, is the following
fact:

Lemma 4.1. For phase points sufficiently close to w0, up to negligible error, perturbations in the y and z
directions evolve independently in course of collisions with any of the four scatterers of Figure 1.

We postpone the rigorous proof of this lemma to the Appendix. Here we only mention that the key to
the proof is the well-understood behaviour of the two kinds of collisions along the trajectory:

• Collisions on the big scatterers are (nearly) orthogonal collisions on spheres. This has a scatter-
ing effect in both the y and z direction, but the y and z components of any perturbation evolve
independently.

• Collisions on the small scatterers are nearly tangential collisions with the surface normal vectors
pointing (nearly) in the y direction. This causes unbounded scattering in the y direction, but no
scattering at all in the z direction. Again the two components of any perturbation evolve indepen-
dently.

To proceed, recall that the parameter δ0 in Remark 2.9 – which is the maximum distance of our phase
point w from the singular periodic point w0 – can be chosen depending on the length n of the trajectory
segment we consider, and we only need to consider a fixed n. So for any such fixed n, the distance of Φtw

from Φtw0 can be made as small as we need during the entire time period considered, just by choosing δ0
small enough. To see this, we need nothing more than

• the continuity of the flow Φt, which is always true, even at the multiply singular point w0.

• the boundedness (for a fixed n) of the time interval considered, which follows from the finiteness of
the horizon.

This means that if δ0 = δ0(n) is small enough, then, during the entire time period considered, the
following picture about the trajectory is correct up to negligible error:

• Evolution of the x coordinate:
As in the previous sections, x can be thought of either as a periodically changing, or as a monotonously
increasing function of time – in fact, x = t, up to a negligible error, if δ0 is small enough. We choose
this latter point of view. This has the advantage that both y and z can be thought of as functions
of time as the independent variable, or equivalently, as functions of x.

13



• Evolution of z:

– Nearly tangential collisions on 2, 3 have negligible effect, if δ0 is small enough.

– nearly orthogonal collisions on 1, 4 cause scattering in the z direction, which is, however, inde-
pendent of the evolution of y.

So to understand the behaviour of z, consider the planar dispersing billiard configuration obtained
by intersecting the 3D configuration of Figure 1 with the x − z plane. This is shown in Figure 7.
Indeed, the evolution of z is – up to negligible error – exactly the same as the evolution of z in this
two-dimensional configuration.

x

z

Figure 7: the evolution of z near the reference phase point

Before considering the evolution of y, we will first fix the z component of the initial perturbation of
w0 to a specific value, and thus fix the entire evolution of z. In particular:

Let the pair (δz, δvz) be an unstable perturbation of the reference phase point w0. (4.1)

Then z grows along
z(t) ≈ δz eλt (4.2)

(without any decaying stable component, but approximated, of course, by a polygonal line), where λ
is exactly the positive Lyapunov exponent of the reference trajectory in the configuration displayed
on Figure 7. Later we will need the value of this unstable Lyapunov exponent, so we state it as a
lemma:

Lemma 4.2. The unstable Lyapunov exponent of the periodic point in the 2-dimensional billiard
configuration of Figure 7 is

λ =
1

L
log(1 +

L

R
+

√

L2

R2
+

2L

R
).

The proof is a routine calculation in billiard theory, and we postpone it to the Appendix.

• Evolution of y:

– Consider the intersection of the configuration in Figure 1 with the {z = z0} plane for some
0 6= |z0| ≪ 1. This is exactly the configuration shown in Figure 6, right, with ε = 1

2r
z20 + o(z20)

(from the geometry of scatterers 2 and 3). If z were fixed and equal to z0, y would evolve as in
this planar configuration.
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– However, the width ε of the corridor shown there increases in time, due to the growth of z,
since at each time moment the intersection of the 3-dimensional configuration with a specific
{z = const} plane is relevant. Having fixed the t-dependence of z (by the choice of the z
component of the initial perturbation) as (4.2), we have in fact “fixed the scenario” in which y
evolves.

– Recall our convention on the description of the evolution of the x coordinate, according to which
x = t, up to negligible error. As a consequence, (4.2) becomes

z(x) ≈ δz eλx. (4.3)

So the 2-dimensional configuration, according to which y evolves, is like in Figure 2, but the two
dotted lines are not straight – instead, they are nearly horizontal, and their distance – although
always small – grows as

ε(x) =
1

2r
z(x)2 + o(z(x)2) =

(δz)2

2r
e2λx, (4.4)

up to negligible error within the first n “half-periods” of length L, if the initial perturbation (δz, δvz)
is small enough. This is shown in Figure 8. In particular, during a half-period L, the width of the
corridor grows with a factor

M = (eλL)2. (4.5)

Having fixed (δz, δvz) as (4.1) and thus the scenario for the evolution of y, we now vary the y component
of the intial point w to get all the symbolic collision sequences in Σn. With this, the proof of the theorem
will be complete.

To see that the symbolic collision sequences in Σn are all possible, it is enough to show that in this
scenario, the modified version of Proposition 3.1 holds. Namely:

x

y

Figure 8: Expanding corridor as seen by the evolution of y

Proposition 4.3. Consider the billiard configuration shown in Figure 8. Fix an n ∈ N. Suppose that

(i) the width of the corridor (the distance of the scatterers from the optical axis) grows monotonically
with x,

(ii) there is some constant M < ∞ such that the width of the corridor grows at most by a factor M
during one half-period (of length L) in x,
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(iii) M < 1 + d
L
(< 2).

Then (for any R) there is some ε0 = ε0(n) such that for every ε1 < ε0, whenever the width of the corridor
is ε(x) < ε1 for all x < nL, the following property holds. For any finite sequence σ = (σ1, σ2, σ3, . . . , σn)
of “A”-s and “B”-s it is possible to choose some w in the Cε1-neighbourhood of w0 such that the n-long
symbolic collision sequence of w is equal to σ. In other words, it is possible to hit exactly scatterer σi from
each couple i as shown in Figure 8. So the number of possibilities grows exponentially with the length of
the piece of the corridor considered. Here C is a numerical constant that could be determined explicitly,
its value is, however, not important.

Proof. We do not write the proof of this proposition in full detail, because it contains no new idea compared
to the proof of Proposition 3.1, but the increased amount of notation (due to the variable width of the
corridor) could hide the essence. Instead, we point out the only element of the proof where more care is
needed.

The proof of the proposition is based on the notion of “good fronts in the corridor” and Lemma 3.3
describing their evolution. The definition of this notion contains the parameter ε, which denoted (half of)
the width of the corridor. In the new setting the width is not constant. However, our assumption (ii)
guarantees that it changes at most by a factor M2 < 4 within a period of length L. Since the mentioned
lemma only concerns the evolution of a front within such a period, the half-width there grows from some
εleft to some εright with 1 <

εright
εleft

< 4. To get this notion of “good fronts in the corridor” for the setting of

the growing corridor, the ε-s in the definition can be replaced by any value within the interval [εleft, εright].
So Lemma 3.3 remains valid, and the proof is unchanged2, except for one detail:

Since the width of the corridor is growing, to construct W2 (the sub-front that hits B) we have to make
sure that those phase points of W that hit B at the appropriate place, actually miss A before. In other
words, the scatterer A should not cover B, as seen from the good front. This is ensured by condition (iii).

Once we have the appropriate version of Lemma 3.3, the inductive proof of the proposition, based on
the lemma, goes through without modification.

Proof of Theorem 2.8. To complete the proof of Theorem 2.8, all we need is to verify that the conditions
of Proposition 4.3 are satisfied – in particular, condition (iii) needs to be checked, where M is given by
(4.5), so we need

(eλL)2 < 1 +
d

L
(4.6)

Qualitatively it is obvious that if R is chosen big enough (with L and d given), then the Lyapunov exponent
λ of the reference trajectory in Figure 7 can be made sufficiently small to satisfy this requirement. To get
the quantitative statement, we refer to Lemma 4.2 for the value of λ, and we write it in the form

λ =
1

L
log(1 +

L

R
(1 +

√

1 + 2
R

L
)).

Let us now demand that L
R
< 1. This implies that L

R
<

√

L
R
. Using this estimate several times, we get

eλL = 1 +
L

R
(1 +

√

1 + 2
R

L
) < 1 + (1 +

√
3)

√

L

R
,

and

(eλL)2 < 1 + [2(1 +
√
3) + (1 +

√
3)2]

√

L

R
< 1 + 13

√

L

R
.

This means that the condition (4.6) is guaranteed to hold if

1 + 13

√

L

R
< 1 +

d

L
(and

L

R
< 1),

2All estimates containing ε are generous enough to remain valid with the above uncertainty in choosing ε.
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which follows from

R > 169
L3

d2
,

which is exactly the condition assumed in Theorem 2.8. So condition (iii) of the proposition is verified.
To complete the proof of Theorem 2.8, for given δ and n-long symbolic collision sequence j ∈ Σn,

we need to specify a phase point w in the δ-neighbourhood of w0 with i2n−1(w) = j. In the spirit of
Remark 2.9, first we choose δ0 according to two requirements:

• δ0(n) ≤ 2Cε0(n), where C and ε0(n) are the constants that appear in the statement of Proposi-
tion 4.3,

• δ0(n) should be small enough so that, in the δ0-neighbourhood of w0, the above description of the
evolution of y and z coordinates remains true with the required precision.3

Then we let δ1 = min(δ, δ0) and construct w with symbolic sequence j in the δ1-neighbourhood of w0 in
two steps.

• As a first step we consider a phase point w′ which is a perturbation of w0 in the x− z plane by an
unstable vector (δz, δvz), cf. Figure 7 and the description preceding Lemma 4.2. The length of this
unstable perturbation, which we denote by δ2, should satisfy the following two requirements:

(i) δ2 < δ1/2,

(ii) δ2 should be so small that throughout the time interval considered (i. e. for 0 ≤ x ≤ nL) the
width of the corridor in the x − y plane, which is determined by Formula (4.4), should not
exceed δ1

2C
.

• Now as a second step, we apply Proposition 4.3 with ε1 = δ1
2C

. Our requirement (ii) on δ2 ensures
that there exists a phase point w in the Cε1-neighbourhood of w′ with symbolic sequence j.

Finally, by our requirement (i) on δ2, we have

d(w0,w) ≤ d(w0,w
′) + d(w′,w) ≤ δ1

2
+ Cε1 = δ1,

which completes the proof of Theorem 2.7.

The proof of Lemma 2.10 (along with its Corollary 2.11) is given in the Appendix as it is directly
related to some calculations presented there. It remains to prove Theorem 2.8.

Proof of Theorem 2.7. Take a multi-dimensional dispersing billiard configuration with finite horizon. Such
configurations exist, even without corner points, which follows e.g. form the results of [BoTa]. Then add
to this configuration a (suitably small) copy of the configuration given in Theorem 2.8, so that the newly
inserted spheres do not intersect any of the old scatterers. This configuration obviously satisfies the claim
of the theorem.

Appendix

Here we present the proofs of lemmas 4.2, 4.1, 2.10 and Corollary 2.11.

3That is, the existence of phase points with all specified symbolic collision sequences, as described in Proposition 4.3,
should remain valid (note that this is an open condition).
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Proof of Lemma 4.2. Of course, the Ljapunov exponent we are looking for is a quantity corresponding to
the billiard flow. When using it later, we will translate it into the appropriate expansion factor of the
dicrete time map.

To prove the lemma, we need to consider the evolution of perturbations of the periodic point on
the billiard configuration of Figure 7. Since this is a planar configuration, general perturbations are two
dimensional. It is convenient to follow a common convention in billiard theory: instead of using directly the
coordinates on the flow phase space M, we describe the evolution of such two dimensional perturbations in
terms of the coordinates of the local orthogonal section to the flow. That is, any non-neutral perturbation
of the periodic point gives rise to an infinitesimal local orthogonal front (see Section 3 on the description
of local orthogonal fronts). Such an infinitesimal front can be characterized by a two dimensional vector
(δq, δv), the two components of which are the configuration and the velocity components of the perturbation
on the front.

Remark 4.4. The fact that we are looking for the stable and unstable perturbations in a 2-dimensional
sub-plane of the tangent space correspond to the fact that

• perturbations changing the length of v are not allowed: they would change the energy and thus lead
out of the phase space M, which is a constant energy surface.

• Perturbations of the configuration point in the velocity direction are obviously neutral perturbations
independent of both the stable and the unstable direction.

So it remains to consider perturbation for which both the configuration and the velocity component is
orthogonal to the velocity – one dimension each.

Now an unstable perturbation (and also a stable perturbation) (δq, δv) is characterized by the fact that
it is mapped into a constant M̃2 times itself by the derivative of the dynamics during an entire period.
Moreover, M̃2 = e2Lλ where 2L is the length of the periodic orbit and λ is the Lyapunov exponent. Since
the considered configuration is symmetric, it is enough to consider a half-period of length L, during which
the perturbation (δq, δv) is mapped into (M̃δq, M̃δv) with M̃ = eLλ. The evolution during the half-period
consists of two steps:

• During the free flight, (δq, δv) evolves into (δq′, δv′) = (δq + Lδv, δv).

• During the collision, (δq′, δv′) evolves into (δq′′, δv′′) = (δq′, δv′ + 2
R
δq′). This comes directly from

the differentiation of the collision formula v′′ = v′ − 2〈n, v′〉n, since the collision normal vector n has
the differential δn = 1

R
δq′ and 〈n, v′〉 = 1.

Putting these together, we need to find the nontrivial solutions of

(M̃δq, M̃δv) = (δq + Lδv, δv +
2

R
(δq + Lδv)).

Introducing the notation κ = δv
δq

(for the curvature of the front), this leads to M̃ = 1 + Lκ and

κ =
1

R
±

√

1

R2
+

2

RL
.

All in all,

M̃ = 1 +
L

R
±

√

L2

R2
+

2L

R
.

Of course, the greater value (with the +) corresponds to the unstable perturbation, and the other one to
the stable, so the unstable Lyapunov exponent is

λ =
1

L
log(1 +

L

R
+

√

L2

R2
+

2L

R
).
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Proof of Lemma 2.10. This lemma is about the minimum unstable expansion factor in a 3-dimensional
billiard. What “minimum expansion factor” exactly means can slightly vary depending on the way how the
hyperbolic properties are formulated for our system (e.g. how the unstable cones are defined). Fortunately
we do not need to go into the details, since – whatever formulation of hyperbolicity is used – the minimum
expansion factor can never exceed the expansion factor for any direction in the unstable subspace (an
unstable direction for short). In particular we have

Λ ≤ eλ̃

if λ̃ is an unstable Lyapunov exponent of some periodic point (for the discrete time map). We prove our
statement by looking at an unstable Lyapunov exponent of the periodic pointw0. Namely, this point clearly
has an unstable perturbation which is entirely in the x− z plane: this is exactly the unstable perturbation
of the periodic point in the 2-dimensional billiard of Figure 7. The corresponding Lyapunov exponent is

given by Lemma 4.2 as λ = 1
L
log(1+ L

R
+
√

L2

R2 +
2L
R
) for the flow, so we get λ̃ = Lλ = log(1+ L

R
+
√

L2

R2 +
2L
R
)

for the map. This gives

Λ ≤ 1 +
L

R
+

√

L2

R2
+

2L

R
.

The right hand side tends to 1 as L
R
approaches zero, which completes the proof of the lemma.

Proof of Corollary 2.11. By Theorem 2.8, complexity of the singularity set at w0 grows as mn(w0) ≥ c2n/2

for some fixed c > 0. On the other hand, by Lemma 2.10 for R big enough we have Λ <
√
2. This completes

the proof of the Corollary.

Proof of Lemma 4.1. Throughout the argument, we will use the notion of negligible error in the sense
described at the beginning of Section 4. The reference trajectory (of w0) is characterized by the following
property: for any phase point Φtw0 = (q0t , v

0
t ) along the trajectory the y and z coordinates of both the

position q0t and the velocity v0t are identically zero. By following a “perturbed” trajectory “near” this
reference trajectory for a fixed time interval [0, T ] we mean that for w sufficiently close to w0 we keep
track of the y and z components of both the position and the velocity of Φtw, as long as 0 ≤ t ≤ T . When
we claim that the y and z directions evolve independently (in course of any single collision) we mean that
the post-collision values of z and vz can be calculated from the pre-collision values of z and vz only, and
similarly, the post-collision values of y and vy can be calculated from the pre-collision values of y and vy
only – up to negligible error. In what follows we show that all errors that arise are indeed negligible.

First note that during free flight the velocity of the particle is unchanged, while the evolution of y and
z is determined by the value of vy and vz, respectively. In course of a (momentary) collision, the position
of the particle is unchanged – that is, the collision has an immediate effect only on the velocity. Hence it
is enough to investigate the post-collision values of vy and vz, the part of the statement which concerns
the evolution of y and z will follow automatically. As mentioned just after the statement of Lemma 4.1,
there are two types of collisions along the reference trajectory: nearly orthogonal and nearly tangential
collisions. In both cases, the independence of the evolution of the two components of a perturbation can
be seen from the collision rule

v+ = v− − 2〈n, v−〉n = v− − 2 cosϕn,

where v− is the pre-collision velocity, v+ is the post-collision velocity, n is the surface normal vector at the
collision point and ϕ = ∢(n, v+) ∈ [0, π

2
] is the collision angle.

• In case of the nearly orthogonal collisions (on scatterers 1 and 4), we have cosϕ ≈ 1 within arbitrarily
small error, so

v+ = v− − 2n.

But in this case – again, within arbitrarily small relative error –

n = n0 +Kq,

where
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– n0 is the surface normal for the reference trajectory – that is, n0 = (1; 0; 0) for collisions on
sphere 1 and n0 = (−1; 0; 0) for collisions on sphere 4,

– q = (0, y, z) is the relevant component of the collision configuration point (that is, the component
orthogonal to v0),

– K is the curvature operator (or second fundamental form) of the scatterer (at the collision point
of the reference trajectory).

The crucial point is that the operator K is diagonal – in fact, it is the scalar K = 1
R
, since the

scatterers are spheres. This means that – again, within arbitrarily small relative error –

v+ = v− − 2n0 −
2

R
q,

so indeed, the change in the y and z component of the velocity depends only on y and z, respectively.

• In case of the nearly tangential collisions (on scatterers 2 and 3), the scatterers are spheres centered
somewhere in the x− y plane, so the z coordinate of n is simply proportional to the z coordinate of
the collision point – in particular, nz = z/r. So we have

v+z = v−z − 2 cosϕ
z

r
.

Since for these collisions cosϕ ≈ 0 within arbitrarily small (absolute) error, this gives

v+z = v−z

within an error arbitrarily small (relative to z). On the other hand, the y coordinate of n is nearly
±1, so 〈n, v〉 ≈ ±y, which leads to

v+y = v−y ∓ 2y,

again within arbitrarily small relative error.
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