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Abstract. For finite sets of integers A1, A2 . . . An we study the cardinality of the
n-fold sumset A1 + · · ·+An compared to those of n−1-fold sumsets A1 + · · ·+Ai−1 +
Ai+1 + . . . An. We prove a superadditivity and a submultiplicativity property for these
quantities. We also examine the case when the addition of elements is restricted to an
addition graph between the sets.

1. Introduction

Let A1, A2, . . . An be finite sets of integers. How does the cardinality of the n-fold
sumset A1 +A2 + · · ·+An compare to the cardinalities of the n−1-fold sums A1 + · · ·+
Ai−1 + Ai+1 + . . . An?

In the special case when all the sets are the same, Ai = A ⊂ Z, Vsevolod Lev

[7] observed that the quantity |kA|−1
k

is increasing (where we have used the standard
notation for the k-fold sum A + A + · · ·+ A = kA). The first cases of this result assert
that

(1.1) |2A| ≥ 2|A| − 1

and

(1.2) |3A| ≥ 3

2
|2A| − 1

2
.

Inequality (1.1) can be extended to different summands as

(1.3) |A + B| ≥ |A|+ |B| − 1,

and this inequality also holds for sets of residues modulo a prime p, the only obstruction
being that a cardinality cannot exceed p, i.e.

(1.4) |A + B| ≥ min(|A|+ |B| − 1, p);

this familiar result is known as the Cauchy-Davenport inequality.
The third author asked whether inequality (1.2) can also be extended to different

summands in the following form:

(1.5) |A + B + C| ≥ |A + B|+ |B + C|+ |A + C| − 1

2
.
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Lev noticed (personal communication) that this is true in the case when the sets have the
same diameter. (The diameter of a set is the difference of its maximum and minimum.)
In this paper we establish this property in general, for an arbitrary number of summands,
and with the extra twist that in the n-fold sumset it is sufficient to use the smallest or
largest element of at least one of the summands.

Theorem 1.1. Let A1, . . . , Ak be finite, nonempty sets of integers. Let A′
i be the two-

(or possibly one-) element set containing the smallest and largest elements of Ai. Put

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak,

S ′i = A1 + · · ·+ Ai−1 + A′
i + Ai+1 + · · ·+ Ak,

S ′ =
k⋃

i=1

S ′i.

We have

(1.6) |S| ≥ |S ′| ≥ 1

k − 1

k∑
i=1

|Si| − 1

k − 1
.

The possibility to extend inequality (1.2) to residues modulo a prime p was investi-
gated in a paper by Gyarmati, Konyagin, Ruzsa [5]. A naive attempt to extend it in
the form

|3A| ≥ min

(
3

2
|2A| − 1

2
, p

)

holds only when |A| is small in comparison to p, and for larger values the relationship
between the sizes of 2A and 3A is complicated.

In a sense, Theorem 1.1 means that the cardinality of sumsets grows faster than
linear. On the other hand, we show that it grows slower than exponential. For identical

summands this means that |kA|1/k is decreasing. This was conjectured by the third
author. Lev observed that this is a straightforward consequence of a Plünnecke-type
inequality; more details will be given in Section 4.

Here we establish a more general result for different summands.

Theorem 1.2. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary commutative
semigroup. Put

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak.

We have

(1.7) |S| ≤
(

k∏
i=1

|Si|
) 1

k−1

.

For three summands this inequality was established earlier by the third author ([11],
Theorem 5.1). The proof given in [11] is different and works also for noncommutative
groups with a proper change in the formulation. On the other hand, that argument relied
on the invertibility of the operation, so we do not have any result for noncommutative
semigroups. Neither could we extend that argument for more than three summands,
and hence the following question remains open.
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Problem 1.3. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary noncommutative
group. Put

S = A1 + · · ·+ Ak,

ni = max
a∈Ai

|A1 + · · ·+ Ai−1 + a + Ai+1 + · · ·+ Ak| .
Is it true that

(1.8) |S| ≤
(

k∏
i=1

ni

) 1
k−1

?

The superadditivity property clearly does not hold in such a general setting (as it
fails already mod p, see [5]). However, it can easily be extended to torsion-free groups
(just as everything that holds for finite sets of integers) with the change of formulation
that “smallest” and “largest” do not make sense in such generality.

Theorem 1.4. Let A1, . . . , Ak be finite, nonempty sets in a torsion-free group G,

S = A1 + · · ·+ Ak,

Si = A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak.

There are subsets A′
i ⊂ Ai having at most two elements such that with

S ′i = A1 + · · ·+ Ai−1 + A′
i + Ai+1 + · · ·+ Ak,

S ′ =
k⋃

i=1

S ′i

we have

(1.9) |S| ≥ |S ′| ≥ 1

k − 1

k∑
i=1

|Si| − 1

k − 1
.

Another natural way of generalizing Theorem 1.2 is to restrict the summation of
elements to a prescribed addition graph. A possible meaning of this in the case k = 3
(and identical sets) could read as follows. We consider a graph G on our set A; on
the right hand side of the proposed inequality we take the number of different sums of
connected pairs; on the left hand side we take the number of different sums of those

triplets where each pair is connected. However, the resulting inequality, |A +
G
+A +

G
+A|2 ≤ |A +

G
+A|3, can fail spectacularly. Take A = [1, n], let S ⊂ (2n/3, 4n/3) be a

set of even integers and connect two elements of A if their sum is in S. Then for every
s1, s2, s3 ∈ S we can find a1, a2, a3 ∈ A, a1 = (−s1+s2+s3)/2, etc., whose pairwise sums
give these si’s. Also, a1 + a2 + a3 = (s1 + s2 + s3)/2. Therefore, if S is such that all the
triple sums s1 + s2 + s3 are distinct, then the above mapping (s1, s2, s3) 7→ (a1, a2, a3)

is injective, and the left side of the inequality will be
(|S|

3

)2 ≈ 1
6
|S|6, much larger than

the right hand side, which is S3.
It would be interesting to say something when the graphs are sufficiently dense.
However, we will prove a similar statement in the case when only one pair of sum-

mands is restricted.
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Theorem 1.5. Let A,B1, B2 be finite sets in a commutative group, and S ⊂ B1 + B2.
Then

(1.10) |S + A|2 ≤ |S||A + B1||A + B2|
The analogous statement for more than three sets remains an open problem.

Problem 1.6. Let A,B1, . . . Bk be finite sets of integers, and S ⊂ B1 + · · ·+ Bk. Is it
true that

(1.11) |S + A|k ≤ |S|
k∏

i=1

|A + B1 + · · ·+ Bi−1 + Bi+1 + · · ·+ Bk| ?

2. Proof of superadditivity

In this section we prove Theorems 1.1 and 1.4.

Proof of Theorem 1.1. Both sides of the inequality are invariant under translation, there-
fore we can assume that the smallest element of each Ai is 0. Also, let us denote the
largest element of Ai by ai. Then S is a subset of the interval [0, a1 + a2 + · · ·+ ak].

Make k − 1 copies of the set S. In the first copy mark the elements of
0+A1 + · · ·+Ak−1. They all belong to the interval [0, a1 + · · ·+ak−1]. In the remaining
interval (a1 + · · ·+ ak−1, a1 + · · ·+ ak−1 + ak] of the first copy of S mark the elements of
ak−1 +A1 +A2 + · · ·+Ak−2 +Ak which fall in there. These elements correspond exactly
to the elements of A1 + A2 + · · ·+ Ak−2 + Ak which are larger than a1 + · · ·+ ak−2. We
denote this latter set by (A1 + A2 + · · ·+ Ak−2 + Ak)>a1+···+ak−2

.
Then, for 2 ≤ i ≤ k − 2, in the ith copy of S mark the elements of

0 + (A1 + A2 + · · ·+ Ak−i + Ak−i+2 + · · ·+ Ak)≤a1+···+ak−i
, and the elements of

ak−i +(A1 + · · ·+Ak−i−1 +Ak−i+1 + · · ·+Ak)>a1+...ak−i−1
. Finally, in the k−1st copy of S

mark the elements of 0+(A1+A3+· · ·+Ak)≤a1 and the elements of a1+(A2+· · ·+Ak)>a1 .
Note that all marked elements belong to S ′. Also, for 1 ≤ i ≤ k − 2 the number of

marked elements in the second section of the ith copy and the first section of the i+1st
copy of S is exactly |A1 + · · ·+ Ak−i−1 + Ak−i+1 + · · ·+ Ak|. Furthermore, the number
of marked elements in the first section of the first copy is |A1 + · · ·+Ak−1|, while in the
second section of the last copy it is |A2 + A3 + · · · + Ak| − 1. Let M denote the set of
marked elements. Then, by construction,

(2.1) (k − 1)|S| ≥ (k − 1)|S ′| ≥ |M | =
k∑

i=1

|Si| − 1

and we are done. ¤

Proof of Theorem 1.4. This is a standard reduction argument to the case of integers.
Let H denote the subgroup generated by the elements of ∪k

i=1Ai. As a finitely generated
torsion-free group H is isomorphic to Zd for some d, therefore we can assume without
loss of generality that Ai ⊂ Zd. Then, for a large enough integer m the homomorphism
φm : Zd → Z defined by (z1, z2, . . . zd) 7→ mz1 + m2z2 + . . . mdzd preserves the additive
identities of all elements of sumsets involved in the desired inequality (this means that
φm is one-to-one restricted to these elements). Finally, if Bi denotes the image of Ai

under φm then the desired two-element subsets A′
i can be chosen as A′

i = φ−1
m (B′

i). ¤



SUPERADDITIVITY AND SUBMULTIPLICATIVITY FOR SUMSETS 5

3. Proof of submultiplicativity

In this section we prove Theorem 1.2. We begin with a lemma on the size of projec-
tions.

Lemma 3.1. Let d ≥ 2 be an integer, X1, . . . , Xd arbitrary sets,

B ⊂ X1 × · · · ×Xd

be a finite subset of their Cartesian product. Let

Bi ⊂ X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xd

be the corresponding “projection” of B:

Bi = {(x1, . . . , xi−1, xi+1, . . . , xd) : ∃x ∈ Xi such that (x1, . . . , xi−1, x, xi+1, . . . , xd) ∈ B}.
We have

(3.1) |B|d−1 ≤
d∏

i=1

|Bi| .

This lemma is not new. It is essentially equivalent to an entropy inequality of Han
[6], see also Cover–Thomas [4], Theorem 16.5.1. It follows from Shearer’s inequality [3]
or from Bollobás and Thomason’s Box Theorem [2]. We include a proof for fun.

Proof. We prove this lemma by induction on d. For d = 2 the statement is obvious.
Assume now that the statement holds for d− 1, and consider the case d.

Make a list {b1, b2, . . . , bt} of those elements of X1 which appear as a first coordinate
of some element in B. Partition the set B according to these first coordinates as

(3.2) B = B(b1) ∪B(b2) ∪ · · · ∪ B(bt),

where

(3.3) B(bi) = {(bi, x2, x3, . . . , xd) = b : b ∈ B}.
By the inductive hypothesis we have |B(bi)|d−2 ≤ |B(bi)2| · · · |B(bi)d| , that is,

(3.4) |B(bi)|
d−2
d−1 ≤ (|B(bi)2| · · · |B(bi)d|)

1
d−1 .

It is also clear that |B(bi)| ≤ |B1| , and hence

(3.5) |B(bi)| ≤ (|B(bi)2| · · · |B(bi)d|)
1

d−1 |B1|
1

d−1 .

Using this and Hölder’s inequality we obtain

|B| =
t∑

i=1

|B(bi)| ≤ |B1|
1

d−1

t∑
i=1

(|B(bi)2| · · · |B(bi)d|)
1

d−1 ≤(3.6)

≤ |B1|
1

d−1

d∏
j=2

(
t∑

i=1

|B(bi)j|
) 1

d−1

=
d∏

j=1

|Bj|
1

d−1 ,(3.7)

which proves the statement. ¤

We now turn to the proof of Theorem 1.2.
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Proof. Let us list the elements of the sets A1, A2, . . . , Ak in some order:

A1 = {c11, c12, . . . , c1t1},
A2 = {c21, c22, . . . , c2t2},

...

Ak = {ck1, ck2, . . . , cktk}.
For each s ∈ S let us consider the decomposition

(3.8) s = c1i1 + c2i2 + · · ·+ ckik ,

where the finite sequence (i1, i2, . . . , ik), composed of the (second) indices of cjij , is
minimal in lexicographical order. Let us define a function f from S to the Cartesian
product A1 × A2 × · · · × Ak, by

(3.9) f(s) = (c1i1 , c2i2 , . . . , ckik) ∈ A1 × · · · × Ak.

This function is well-defined, and it maps the set S to a set B ⊂ A1 × · · · × Ak such
that |B| = |A1 + · · ·+ Ak| . Applying Lemma 3.1 to the set B we get

(3.10) |B|k−1 ≤ |B1| |B2| · · · |Bk| .
Therefore, it is sufficient to show that

(3.11) |Bj| ≤ |A1 + A2 + · · ·+ Aj−1 + Aj+1 + · · ·+ Ak| .
This inequality, however, follows easily from the fact that sum of the coordinates is
distinct for each element in Bj. Indeed, assume that there exist two elements z 6= z′ ∈ Bj

such that
z = (c1i1 , c2i2 , . . . , cj−1ij−1

, cj+1ij+1
, . . . ckik),

z′ = (c1i′1 , c2i′2 , . . . , cj−1i′j−1
, cj+1i′j+1

, . . . , cki′k),

and
c1i1 + c2i2 + · · ·+ ckik = c1i′1 + c2i′2 + · · ·+ cki′k .

We may assume that

(i1, i2, . . . , ij−1, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, i

′
j+1, . . . , i

′
k).

in lexicographical order.
Now, z′ ∈ Bj therefore there exists an element d ∈ Aj and u ∈ S, such that

u = c1i′1 + c2i′2 + · · ·+ cj−1i′j−1
+ d + cj+1i′j+1

+ · · ·+ cki′k ,

and
f(u) = (c1i′1 , c2i′2 , . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′k) ∈ B.

Note that
u = c1i1 + c2i2 + · · ·+ cj−1ij−1

+ d + cj+1ij+1
+ · · ·+ ckik ,

also holds. However, with d = cjij we have

(i1, i2, . . . , ij−1, ij, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, ij, i

′
j+1, . . . , i

′
k).

in lexicographical order, therefore the definition of f implies that
f(u) 6= (c1i′1 , c2i′2 , . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′k), a contradiction. ¤

A similar method is used by Alon [1] for the particular case when we have sets instead
of numbers, the operation is intersection, and the sets Ai are identical. As Alon observes,
the same approach works for general semigroups where the elements are idempotent.
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4. Restricted sums and Plünnecke-type results

Plünnecke [10] developed a graph-theoretic method to estimate the density of sumsets
A + B, where A has a positive density and B is a basis. The third author published a
simplified version of his proof [12, 13]. Accounts of this method can be found in Malouf
[8], Nathanson [9], Tao and Vu [14].

The simplest instance of Plünnecke’s inequality for finite sets goes as follows.

Theorem 4.1. Let i < k be integers, A, B sets in a commutative group and write
|A| = m, |A + iB| = αm. There is an X ⊂ A, X 6= ∅ such that

(4.1) |X + kB| ≤ αk/i|X|.
As Lev observed, this is sufficient to deduce the monotonicity of |kA|1/k. Indeed, in

the above result replace B by A and A by {0}. Then α = |iA|, the only possibility is

X = {0} and (4.1) reduces to |kA| ≤ |iA|k/i.
The application to different summands is less straightforward. We start from the

following result from [12], which extends the case i = 1 of Theorem 4.1 to the addition
of different sets.

Theorem 4.2. Let A, B1, . . . , Bh be finite sets in a commutative group and write |A| =
m,
|A + Bi| = αim, for 1 ≤ i ≤ h. There exists an X ⊂ A, X 6= ∅ such that

(4.2) |X + B1 + · · ·+ Bh| ≤ α1α2 . . . αh|X|.
In the sequel we will need a ’large’ subset X ⊂ A, not just a non-empty one. This

will be achieved by the following result.

Theorem 4.3. Let A, B1, . . . , Bh be finite sets in a commutative group and write |A| =
m,∏ |A + Bi| = s, B1 + · · ·+ Bh = B. Let an integer k be given, 1 ≤ k ≤ m. There is an
X ⊂ A, |X| ≥ k such that

(4.3) |X + B| ≤ s

mh
+

s

(m− 1)h
+ · · ·+ s

(m− k + 1)h
+ (|X| − k)

s

(m− k + 1)h
.

Proof. We use induction on k. The case k = 1 is Theorem 4.2.
Assume we know it for k; we prove it for k + 1. The assumption gives us a set X,

|X| ≥ k with a bound on |X + B| as given by (4.3). We want to find a set X ′ with
|X ′| ≥ k + 1 and

(4.4) |X ′ + B| ≤ s

mh
+

s

(m− 1)h
+ · · ·+ s

(m− k)h
+ (|X ′| − k − 1)

s

(m− k)h
.

If |X| ≥ k +1, we can put X ′ = X. If |X| = k, we apply Theorem 4.2 to the sets A\X,
B1, . . . , Bh. This yields a set Y ⊂ A \X such that

|Y + B| ≤ s

(m− k)h
|Y |

and we put X ′ = X ∪ Y . ¤

The following variant will be more comfortable for calculations.
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Theorem 4.4. Let A, B1, . . . , Bh be finite sets in a commutative group and write |A| =
m,∏ |A + Bi| = s, B1 + · · ·+ Bh = B. Let a real number t be given, 0 ≤ t < m. There is
an X ⊂ A, |X| > t such that

(4.5) |X + B| ≤ s

h− 1

(
1

(m− t)h−1
− 1

mh−1

)
+ (|X| − t)

s

(m− t)h
.

Proof. We apply Theorem 4.3 with k = [t] + 1. The right side of (4.5) can be written

as s
∫ |X|
0

f(x) dx, where f(x) = (m − x)−h for 0 ≤ x ≤ t, and f(x) = (m − t)−h for
t < x ≤ |X|. Since f is increasing, the integral is ≥ f(0)+ f(1)+ · · ·+ f(|X|− 1). This
exceeds the right side of (4.3) by a termwise comparison. ¤

Proof of Theorem 1.5. Let us use the notation |A| = m, s = |A+B1||A+B2|, as above.
Observe that if |S| ≤ s/m2 then

(4.6) |S + A| ≤ |S||A| =
√
|S|

√
|S||A| ≤

√
|S|(√s/m)|A| =

√
s|S|

and we are done.
If |S| > s/m2 then define t = m−

√
s/|S|, and use Theorem 4.4 above to find a set

X ⊂ A such that |X| = r > t and (4.5) holds with h = 2. For such an X we have

(4.7) |S + X| ≤ |B1 + B2 + X| ≤ s

m− t
− s

m
+ (|X| − t)

s

(m− t)2

and

(4.8) |S + (A \X)| ≤ |S||A \X|.
We conclude that

(4.9) |S + A| ≤ |S + X|+ |S + (A \X)| ≤ s

m− t
− s

m
+ (r − t)

s

(m− t)2
+

+|S| ((m− t)− (r − t)) = 2
√

s|S| − s/m ≤ 2
√

s|S|.
This inequality is nearly the required one, except for the factor of 2. We can dispose of
this factor as follows. Consider the sets A′ = Ak, B′

1 = Bk
1 , B′

2 = Bk
2 and S ′ = Sk in the

k’th direct power of the original group. Applying equation (4.9) to A′, etc., we obtain

(4.10) |S ′ + A′| ≤ 2
√

s′|S ′|.
Since |S ′ + A′| = |S + A|k, s′ = sk and |S ′| = |S|k, we get

(4.11) |S + A| ≤ 21/k
√

s|S|.
Taking the limit as k →∞ we obtain the desired inequality

(4.12) |S + A| ≤
√

s|S|.
¤
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