
Exponential Family distribution

In exponential family, the underlying pdf or pmf is

fθ(x) = c(θ) · e
∑k
j=1 θjtj(x) · h(x)

where θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk is the canonical parameter. Then, based on
the i.i.d. sample X = (X1, . . . ,Xn), the canonical sufficient statistic is

t(X) = (

n∑
i=1

t1(Xi), . . . ,

n∑
i=1

tk(Xi)) := (t1(X), . . . , tk(X)),

which is also complete (if Θ contains k-dimensional parallelepiped), and there-
fore it is a minimal sufficient statistic. Then we say that the exponential family
is minimally represented (which also means that it is not overparametrized).
Usually, Θ is an open set, in which case, the exponential family is called regular.

Proposition 1 Under the usual regularity conditions (see the Cramér–Rao in-
equality and the Cramér–Dugué theorem), in regular exponential families the
likelihood equation boils down to solving

Eθ(t(X)) = t(X).

Proof. The likelihood function has the following form:

Lθ(X) = cn(θ) · e
∑k
j=1 θj

∑n
i=1 tj(Xi) ·

n∏
i=1

h(Xi) =
1

a(θ)
· e〈θ,t(X)〉 · b(X),

where

a(θ) =

∫
X
e〈θ,t(x)〉 · b(x) dx. (1)

is the normalizing constant, while X ⊂ Rn is the sample space. This formula
will play a crucial role in our subsequent calculations.

The likelihood equation is

∇θ lnLθ(X) = 0,

that is
−∇θ ln a(θ) +∇θ〈t(X),θ〉 = 0. (2)

Under the regularity conditions, by (1) we get that

∇θ ln a(θ) =
1

a(θ)

∫
X
t(x)e〈t(x),θ〉 · b(x) dx = Eθ(t(X)).

Therefore, (2) is equivalent to

−Eθ(t(X)) + t(X) = 0

that finishes the proof. �
Note that this resembles the idea of the moment estimation. Indeed, if

t1(X) = 1
n

∑n
i=1Xi, . . . , tk(X) = 1

n

∑n
i=1X

k
i , then the ML estimator of the
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canonical parameter is the same as the moment estimator. This is the case,
e.g., when our underlying distribution is Poisson, exponential, or Gaussian.

Observe that with introducing the so-called log-partition (in other words,
cumulant) function Z(θ) := ln a(θ), the likelihood function has the form

Lθ(X) = e〈θ,t(X)〉−Z(θ) · h(X). (3)

Based on Proposition 1, in regular exponential families, the ML equation
∇θ lnLθ(X) = 0 is also equivalent to

∇θZ(θ) = t. (4)

Since ∇θZ(θ) = Eθt, the ML equation (4) means that the canonical sufficient
statistic is made equal to its expectation. But when is it possible? Now we
briefly summarize existing theoretical results on this issue.

Let M = {Eθt : θ ∈ Θ} denote the so-called mean parameter space; it is
necessarily convex. Let M0 denote its interior.

Proposition 2 In exponential family, the gradient mapping ∇Z : Θ → M is
one-to-one if and only if the exponential family representation is minimal.

Proposition 3 In a minimally represented exponential family, the gradient
mapping ∇Z is onto M0.

By Propositions 2 and 3, any parameter in M0 is uniquely realized by the
Pθ distribution for some θ ∈ Θ. Also, in a regular and minimal exponential
family, M is an open set and is identical to M0.

As the ML estimate of θ is the solution of (4), we have the following.

Proposition 4 Assume, the (canonical) parameter space Θ is open (i.e., we

are in a regular exponential family). Then there exists a solution θ̂ ∈ Θ to the
ML equation ∇θZ(θ) = t if and only if t ∈ M0; further, if such a solution
exists, it is also unique.

Note that in regular and minimal exponential families,M0 is also the interior
of T , which is the convex hull of all possible values of t. T is usually not
open, and its boundary may have positive probability (in particular, when the
underlying distribution is discrete). If we unfortunately start with a sampling
statistic t on this boundary, then we have no solution to the ML equation.

Example 1 (discrete distribution)
Let us apply the above theory for the P(λ) Poisson distribution. Its pmf is

p(x) = e−λex lnλ 1

x!
= eθx−e

θ 1

x!
, x ∈ X = {0.1.2, . . . }.

From here we can see that the canonical parameter is θ = lnλ, and the canonical
sufficient statistic based on an n-element sample X1, . . . , Xn ∼ P(λ) is

∑n
i=1Xi.

Based on it, the likelihood equation boils down to

E(

n∑
i=1

Xi) = nλ =

n∑
i=1

Xi.
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The mean parameter is E(X) = λ.
There is indeed a one-to-one correspondence between the canonical parameter-

space R and the mean parameter-space (0,∞). They are open sets, so M0 =
(0,∞). By proposition 4, the likelihood equation has a (unique) solution if and
only if

∑n
i=1Xi ∈ (0,∞). But here T = [0,∞), the interior of which is indeed

M0. Therefore, if
∑n
i=1Xi is on the boundarry of T , i.e., if

∑n
i=1Xi = 0, then

the likelihood equation has no solution. This happens with positive probability
e−nλ, albeit this probability exponentially decreases with increasing n. Other-
wise, the unique solution of the ML equation is λ̂ = 1

n

∑n
i=1Xi = X̄ by the

above theory, no further considerations are needed.

Example 2 (absolutely continuous distribution)
Let us apply the above theory to the N (µ, σ2). The usual parameters µ, σ2 are,
in fact, equivalent to the mean value parameters here. Let us find the canonical
parameters, and based on them, the ML estimators of µ and σ2. Assume that
σ2 > 0. Introduce the following notation:

k =
1

σ2
, h = kµ.

Proposition 5 k and h are canonical parameters of the normal distribution.

Proof. For x ∈ R we have

f(x) =
1

(2πσ2)1/2
e−

1
2σ2

(x−µ)2 =
k1/2

(2π)1/2
e−

1
2k(x−µ)

2

=
k1/2

(2π)1/2
e−

1
2µ

2ke−
1
2x

2k+xh

that finishes the proof. �
It also turns out from the proof that, based on the sample X1, . . . , Xn, the

canonical sufficient statistics are
n∑
i=1

Xi and

n∑
i=1

X2
i .

Therefore, by Proposition 1, the ML equations boil down to

E

[
n∑
i=1

Xi

]
=

n∑
i=1

Xi and E

[
n∑
i=1

X2
i

]
=

n∑
i=1

X2
i .

Equivalently,

nµ =

n∑
i=1

Xi and nσ2 + nµ2 = S2
n + nX̄2,

from where

µ̂ = X̄ and σ̂2 =
1

n
S2
n

easily follows.
It can be proven that the sufficient statistic (only the second moment ones

are critical) is on the boundary of T if and only if S2
n is zero. In the n > 1 case

S2
n > 0 with probability 1, so it is on the boundary of T with 0 probability.

Consequently, provided n > 1 holds, the ML equation has a solution with
probability 1.
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