The Cramér–Rao inequality for multidimensional parameter spaces

The Cramér–Rao inequality (under some regularity conditions) gives unified lower bound for the covariance matrix of every unbiased estimator (for a given parameter function) based merely on a quantity, called Fisher information matrix, which can be calculated from the underlying distribution as a function of the parameter.

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be dominated, identifiable, parametric statistical space, and X_1, \ldots, X_n be i.i.d. (univariate or multivariate) sample from the \mathbb{P}_{θ} distribution, where $\theta \in \Theta \subset \mathbb{R}^k$ is the parameter space. Suppose, we want to estimate the function $\psi(\theta) = (\psi_1(\theta), \ldots, \psi_k(\theta))$ of the parameter, where $\psi : \mathbb{R}^k \to \mathbb{R}^k$ is one-to-one function (usually it is the identity, when the parameter θ itself is to be estimated).

1. Based on the above i.i.d. sample, construct the k-dimensional statistic $\mathbf{T}(X_1, \ldots, X_n)$, briefly $\mathbf{T} = (T_1, \ldots, T_k)$ which is an unbiased estimator of $\psi(\theta)$ in the sense that

$$\mathbb{E}_{\theta}\mathbf{T} = \psi(\theta), \quad \forall \theta \in \Theta,$$

where the expectation of the random vector \mathbf{T} is the vector $(\mathbb{E}_{\theta}T_1, \ldots, \mathbb{E}_{\theta}T_k)'$ and ' denotes the transposition so that the vectors be column vectors.

2. Based on the \mathbb{P}_{θ} distribution itself, calculate the Fisher information matrix of the 1-element sample:

$$\mathbf{I}_{1}(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln f_{\theta}(X) \right) \left(\frac{\partial}{\partial \theta} \ln f_{\theta}(X) \right)' = \operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \ln f_{\theta}(X) \right),$$

where $X \sim \mathbb{P}_{\theta}$ and f_{θ} is the p.d.f. of the \mathbb{P}_{θ} distribution (if it is absolutely continuous, and use p_{θ} for the p.m.f. if \mathbb{P}_{θ} is discrete). Here under Var of a random vector its covariance matrix is understood, whereas under the derivative with respect to the vector θ of the scalar valued function g the column vector of the derivatives with respect to the components of θ is understood, that is $\frac{\partial}{\partial \theta}g = (\frac{\partial}{\partial \theta_1}g, \dots, \frac{\partial}{\partial \theta_k}g)'$. The information matrix of the *n*-element sample is defined by $\mathbf{I}_n(\theta) = n\mathbf{I}_1(\theta)$, provided the regularity condition

$$\mathbb{E}_{\theta}\left(\frac{\partial}{\partial\theta}\ln f_{\theta}(\mathbf{X})\right) = \mathbf{0}$$

holds, where **0** is the zero vector. In fact, this condition follows from some simpler ones (we can "differentiate through" the \int or \sum). In this case, $\mathbf{I}_n(\theta)$ is the $k \times k$ covariance matrix of the k-dimensional random vector $\frac{\partial}{\partial \theta} \ln \prod_{i=1}^n f_{\theta}(X_i)$.

3. The Cramér–Rao inequality states the following relation between 1 and 2. Denote by $\mathbf{S} = (s_{ij})$ the $k \times k$ matrix of entries $s_{ij} = \frac{\partial}{\partial \theta_j} \psi_i(\theta)$. Then for the covariance matrix of any unbiased estimator (for $\psi(\theta)$) the inequality

$$\operatorname{Var}_{\theta} \mathbf{T} \geq \frac{1}{n} \mathbf{SI}_{1}^{-1}(\theta) \mathbf{S}' = \mathbf{SI}_{n}^{-1}(\theta) \mathbf{S}'$$

holds, where the inequality means that the difference of the left and right hand sides is positive semidefinite. Here **S** also depends on θ , however, if θ itself is estimated, then **S** is the identity matrix and does not appear in the formula above.