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Two penalized – balanced and normalized – versions of the Newman–Girvan modularity are intro-
duced and estimated by the nonnegative eigenvalues of the modularity and normalized modularity
matrix, respectively. In this way, the partition of the vertices that maximizes the modularity can
be obtained by applying the k-means algorithm for the representatives of the vertices based on the
eigenvectors belonging to the largest positive eigenvalues of the modularity or normalized modularity
matrix. The proper dimension depends on the number of the structural eigenvalues of positive sign,
while dominating negative eigenvalues indicate an anti-community structure; the balance between
the negative and the positive eigenvalues decides whether the underlying graph has a community,
anti-community, or random-like structure.
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I. INTRODUCTION

Spectral clustering has evolved in the last decades.
Usually, the underlying object is a graph and we
want to classify its vertices by maximizing/minimizing
some objective function favoring high/low edge densi-
ties within/between the clusters. For example, mini-
mum multiway cut problems aim at minimizing the inter-
community edge densities. Though, it is not always
stated explicitly, an equal balance between the groups
is preferable in order to form more realistic clusters and
avoid trivial solutions. Thus, we are looking for optimum
balanced partition of the vertices such that the objective
function penalizes significantly different cluster sizes or
volumes, where the volume of a vertex cluster – defined
on an edge-weighted graph – is the sum of the weights of
edges with at least one endpoint in the cluster. Even if
the number of clusters (k) is given, it is NP-complete to
find the k-partition optimizing the objective function. To
reduce computational demand, spectral clustering meth-
ods were developed for minimizing multiway cuts, ratio
cuts, and normalized cuts, cf. [1–7]. In case of a conve-
nient choice of k a good approximation of the optimal
multiway cut can be found in polynomial time in the
number of vertices (N). This significantly reduces com-
putational costs, especially if N is very large; for exam-
ple, genomic data [8] with tens of thousands of genes, and
weighted graphs of social or communication networks,
where the edge-weights are pairwise similarities between
a large number of sites. In [1] and [4] it is proved that
the more dense the clusters themselves are, the larger the
spectral gap between the k smallest normalized Laplacian
eigenvalues and the others is. In his survey paper [9], S.
Fortunato gives a nice overview of community detection
in graphs.
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The Newman–Girvan modularity introduced in [10] di-
rectly focuses on modules of higher intra-community con-
nections than expected based on the model of indepen-
dent attachment of the vertices with probabilities pro-
portional to their degrees. To maximize this modularity,
hierarchical clustering methods based on the edge be-
tweenness measure [10–13] and vector partitioning algo-
rithms based on the spectral decomposition of the mod-
ularity matrix [14] are introduced. In [15] an extremal
optimization algorithm is presented.

Our purpose is to extend the linear algebraic machin-
ery developed for Laplacian based spectral clustering to
the modularity based community detection. To this end,
two penalized versions of the Newman–Girvan modular-
ity are introduced in the general framework of an edge-
weighted graph [16], and their relation to projections onto
the subspace of partition vectors and to k-variance of the
clusters formed by the vertex representatives is investi-
gated. These considerations give useful information on
the choice of k and on the nature of the community struc-
ture. With an appropriate k (that is fairly small and cor-
responds to a spectral gap) a local maximum of the mod-
ularity can be guaranteed by processing an advanced ver-
sion of the traditional k-means algorithm in O(kN) time.
It will be proved by linear algebraic methods that the
k-means algorithm used in spectral clustering problems
is an efficient tool for community detection provided the
“best” eigenvectors are selected for vertex representation.
It is also important that we use the spectral decomposi-
tion of the matrix that is most adequate to our problem
in the sense that the objective function can be sharply
estimated by the sum of the largest/smallest eigenvalues
of it. For example, the ratio/normalized cut (to be min-
imized over k-partitions of vertices) can be sharply esti-
mated from below by the sum of the k smallest (including
the zero) eigenvalues of the positive semidefinite Lapla-
cian/normalized Laplacian matrix, see [1–7]. Therefore,
the corresponding eigenvectors (apart of the trivial one
belonging to the 0 eigenvalue) will be used for the rep-
resentation of vertices in R

k−1 that gives the input of
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the k-means algorithm with k clusters. Analogously, the
balanced/normalized modularity (to be maximized over
k-partitions of vertices) can be estimated from above by
the sum of the k largest eigenvalues of the modular-
ity/normalized modularity matrix. Similarly, the corre-
sponding eigenvectors of this matrix will be used for the
representation of vertices in R

k that gives the input of
the k-means algorithm with k+1 clusters (the increase is
due the orthogonality to the trivial eigenvector belonging
to the 0 eigenvalue that is separated from the k largest
ones). As the unpenalized Newman–Girvan modularity
is concerned, in [14] no exact estimation for it is given
by the leading modularity eigenvalues. To get sharp es-
timations, balanced or normalized partition vectors are
advisable to use so that they form a suborthogonal ma-
trix and can be relaxed to orthonormal eigenvectors.

We also prove that maximizing the normalized mod-
ularity is equivalent to minimizing the normalized cut
with the same k, therefore normalized Laplacian can as
well be used. However, the normalized modularity spec-
trum being in [-1,1], the normalized modularity matrix
is more capable to treat large graph problems. E.g., for
convergent graph sequences (see [17]), the spectrum is
accumulated around zero, and outstanding negative and
positive eigenvalues indicate the block structure. This
correlation-like matrix is also the kernel of the opera-
tor taking conditional expectation. Further, the zero is
a watershed in its spectrum, and because of this sym-
metry, it is well suited for maximizing/minimizing the
normalized modularity and may be the most adequate
to the spectral characterization of random-like graphs on
several clusters (see [18]), where the probability of two
vertices being connected depends merely on their cluster
memberships.

Robustness of a community structure is also an im-
portant problem discussed in [19]. We also touch upon
this problem, rather from a statistical point of view. For
large N , if there are no outstanding positive eigenvalues
in the modularity spectrum, there is no use of looking
for modules of high intra-community connections. There
are other possibilities too: an anti-community structure
with lower than expected intra-cluster connections or a
completely random-like structure discussed above. A
shift towards the positive eigenvalues indicates commu-
nity, while that toward the negative ones indicates anti-
community structure; an equal balance between them
may be an indication of a random-like structure. It is
shown through theoretical examples, how the signs of
the structural (large absolute value) eigenvalues decide
the situation. By relaxing the notion of communities we
may look for groups of vertices such that their intra- and
inter-cluster connections mainly depend on their cluster
memberships, and on this basis, noisy models are investi-
gated [20]. These structures can as well be recovered by
means of eigenvectors belonging to the structural eigen-
values of the modularity matrix. For example, equally
functioning genes, people, or web sites in genomic, so-
cial, or communication networks may form clusters in

this wider sense.

The paper is organized as follows. In Section II nota-
tion and two penalized versions of the Newman–Girvan
modularity are introduced in the framework of an edge-
weighted graph; further, efficiency of the k-means algo-
rithm is discussed. Exact mathematical formulation of
the balanced version is derived in Section III, while that
of the normalized version in Section IV, together with
their relation to the k-variance minimization problem;
hence, the k-means algorithm is applicable. In Section V
more general community structures are introduced and
identified by spectra; further, real-life examples are pre-
sented. In Section VI some future directions, concerning
consistency, are discussed.

II. PRELIMINARIES

A. Edge-weighted graphs

We shall use the general framework of an edge-
weighted graph, cf. [1, 9, 16]. Let G = (V,W) be a
graph on N vertices, where the N × N symmetric ma-
trix W has non-negative real entries and zero diagonal.
Here wij is the similarity between vertices i and j, where
0 similarity means no connection/edge at all. A simple
graph is a special case of it with 0/1 weights. In [16]
the author first investigates multigraphs that correspond
to a W of nonnegative integer entries. Without loss of
generality

N
∑

i=1

N
∑

j=1

wij = 1 (1)

will be supposed. Hence, W is a joint distribution, with
marginal entries

di =

N
∑

j=1

wij , i = 1, . . . , N

that are called generalized vertex degrees. Let d :=
(d1, . . . , dN )T be the degree vector comprising the main
diagonal of the diagonal degree matrix D (vectors are
columns and T stands for the transposition). In [1] we
estimated a variety of penalized minimum cuts by means
of the spectrum of the Laplacian L = D − W or that
of the normalized Laplacian LD = I − D−1/2WD−1/2,
where I denotes the identity matrix of appropriate size.

Let Pk = (V1, . . . , Vk) be a k-partition of the vertices,
where the disjoint, non-empty vertex subsets V1, . . . , Vk

will be referred to as modules, communities, or clus-
ters; Pk denotes the set of all k-partitions. In the edge-
weighted case, with condition (1), the Newman-Girvan
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modularity of Pk given W is defined by

Q(Pk,W) =

k
∑

a=1

∑

i,j∈Va

(wij − didj)

=

k
∑

a=1

[e(Va, Va) − Vol 2(Va)],

where e(Va, Va) =
∑

i,j∈Va
wij is twice the sum of the

weights of edges in Va, and Vol (Va) =
∑

i∈Va
di is the

volume of Va (the sum of the weights of edges with
at least one endpoint in Va); while the entries didj

of the null-model matrix ddT belong to the hypothe-
sis of independence. In other words, under the null-
hypothesis, vertices i and j are connected to each other
independently, with probabilities proportional (actually,
because of the condition (1), equal) to their generalized
degrees. Hence, for given k, maximizing Q(Pk,W) is
equivalent to looking for k modules of the vertices with
intra-community connections higher than expected under

the null-hypothesis. As
∑k

a=1

∑k
b=1

∑

i∈Va

∑

j∈Vb
(wij −

didj) = 0, the above task is equivalent to minimizing

∑

a6=b

∑

i∈Va, j∈Vb

(wij − didj), (2)

that is, to looking for k clusters of the vertices with
inter-cluster connections lower than expected under the
hypothesis of independence. In the minimum cut prob-
lem the cumulated inter-cluster connections themselves
are minimized. In the edge-weighted case the modularity

matrix is defined as B = W − ddT that is the nega-
tive of the so-called Q-Laplacian introduced in [21]. For
large N , the authors use the structural eigenvalues of
the normalized matrix D−1/2WD−1/2 that is equal to
I − LD, therefore its structural eigenvalues are 1 minus
those of the normalized Laplacian, and they also coin-
cide with the eigenvalues of the transition probability ma-
trix D−1W. Then they use specially normalized eigen-
vectors corresponding to the structural eigenvalues for
vertex representation and process the k-means algorithm
with the representatives. Therefore, the spectral method
introduced in [21] for maximizing the Newman-Girvan
modularity is closely related to that of [3–5] for minimiz-
ing the normalized cut. We will show how these spectra
are related to the maxima of the penalized modularities.
Though, it is not explicitly stated in the existing spectral
algorithms, the normalization of their matrices and the
eigenvectors implicitly favor balanced partitions defined
precisely as follows.

We want to penalize partitions with clusters of ex-
tremely different sizes. To measure the size of cluster
Va either the number of its vertices |Va| or its volume
Vol (Va) is used. In [9] the author remarks that the
Newman–Girvan modularity seems to attain its maxi-
mum for clusters of near equal sizes, though there is no
explanation for it. In fact, it is true only for completely
random networks, see Section V. In [11] and [22] the

authors also define a good modularity structure as one
having near equal sizes of modules. However, they do
not make use of this idea in their objective function. As
in the k > 2 case there are more inter-cluster sums than
intra-cluster ones, it is in (2), where we penalize clusters
of too different sizes or volumes by introducing a factor

1
|Va|

+ 1
|Vb|

or 1
Vol (Va) + 1

Vol (Vb)
for the a 6= b pair that

shifts the argmin towards balanced pairs.
On the one hand, communities of real-life networks

have practical relevance if they do not differ too much in
sizes. On the other hand, in their paper [22] Reichardt
and Bornholdt prove that the Newman–Girvan modu-
larity is a special ground state energy, and in Bolla et
al. [17] we use the convergence of ground state energies to
prove the testability of some balanced multiway cut den-
sities (roughly speaking, testability means that they can
be concluded by sampling from a large graph). There-
fore, to be testable, non-parametric statistics that can
be interpreted as ground state energies are to be maxi-
mized/minimized on conditions of balancing. However,
these conditional extrema cannot be immediately related
to spectra. As a compromise, we modify the modular-
ity itself so that it would penalize clusters of significantly
different sizes. Of course, real-life communities are some-
times very different in sizes. Our method is capable to
find fundamental clusters, and further analysis is needed
to separate small communities from the large ones. Other
possibility is to distinguish a core of the graph that is free
of low-degree vertices for which, usually near zero eigen-
values are responsible.

For the above reasons, analogously to the the weighted
cut of Bolla and Tusnády [1] and the ratio cut of Alpert
and Yao [6], we define the balanced Newman–Girvan mod-

ularity of Pk given W as

QB(Pk,W) =

k
∑

a=1

1

|Va|
∑

i,j∈Va

(wij − didj)

=
k

∑

a=1

[

e(Va, Va)

|Va|
− Vol 2(Va)

|Va|

]

,

and analogously to the normalized cut of Meilă and
Shi [3] for k = 2, further that of Bolla and Molnár-
Sáska [5], and Azran and Ghahramani [7] for a general k,
we define the the normalized Newman–Girvan modularity

of Pk given W as

QN (Pk,W) =

k
∑

a=1

1

Vol (Va)

∑

i,j∈Va

(wij − didj)

=

k
∑

a=1

e(Va, Va)

Vol (Va)
− 1,

where we used the fact that
∑k

a=1 Vol (Va) = 1. In [7]
it is shown that minimizing the normalized cut of G =
(V,W) over k-partitions of vertices is equivalent to max-

imizing
∑k

a=1
e(Va,Va)
Vol (Va) . Hence, maximizing the normal-

ized Newman–Girvan modularity can be solved with the
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same spectral method (using the normalized Laplacian)
as the normalized cut problem. However, in Section IV
we introduce another method based on the normalized
modularity matrix. Of course, for increasing N the value
of the penalized modularity will decrease akin to the
Pearson correlation, relatively small values of which can
be significant for large sample sizes. However, for fixed
N , the penalized modularity is larger as the modules are
nearer to those of an equitable partition.

We also want to show another insight into the problem
of the choice of k from the point of view of computational
demand and by using the linear algebraic structure of our
objective function. In this way, we will prove that for the
selected k, maximizing the above adjusted modularities
is equivalent to minimizing the k-variance of the vertex
representatives by choosing an appropriate representa-
tion; hence, the k-means algorithm is applicable.

B. The k-means algorithm

Let us consider the following clustering problem in a
finite dimensional Euclidean space. Given the points
x1, . . . ,xN ∈ R

d and an integer 1 < k < N , we are
looking for the k-partition of the index set {1, . . . , N}
(or equivalently, the clustering of the points into k dis-
joint non-empty subsets) which minimizes the following
k-variance of the points over all possible k-partitions
(V1, . . . , Vk):

S2
k(x1, . . . ,xN ) =

k
∑

a=1

∑

j∈Va

‖xj − ca‖2,

ca =
1

|Va|
∑

j∈Ca

xj .

(3)

In general, d ≤ k, and they are much less than N . To find
the global minimum is NP-complete, but the iteration of
the k-means algorithm, first described in [23], is capable
to find a local minimum in polynomial time. If there ex-
ists a well-separated k-clustering of the points (even the
largest intra-cluster distance is smaller than the smallest
inter-cluster one) the convergence of the algorithm to the
global minimum is proved in [24, 25], with a convenient
starting. Under relaxed conditions, the speed of the algo-
rithm is increased by a filtration in [26]. The algorithm
runs faster if the separation between clusters increases
and an overall running time of O(kN) can be guaranteed.
When we apply the k-means algorithm, these separation
conditions will be kept in mind.

Sometimes the points x1, . . . ,xN are endowed with the
positive weights d1, . . . , dN , where without loss of gener-

ality
∑N

i=1 di = 1 can be supposed. In such cases the

weighted k-variance of the points

S̃2
k(x1, . . . ,xN ) =

k
∑

a=1

∑

j∈Va

dj‖xj − ca‖2,

ca =
1

∑

j∈Va
dj

∑

j∈Va

djxj

(4)

is minimized over all possible k-partitions (V1, . . . , Vk).
The above algorithm can be easily adapted to this situ-
ation.

III. MAXIMIZING THE BALANCED

NEWMAN–GIRVAN MODULARITY

The k-partition Pk is uniquely defined by the N × k
balanced partition matrix Zk = (z1, . . . , zk), where the
a-th balanced k-partition vector za = (z1a, . . . , zNa)

T is
the following: zia = 1√

|Va|
if i ∈ Va and 0, otherwise.

This yields

QB(Pk,W) = QB(Zk,B) =

k
∑

a=1

zT
a Bza = trZT

k BZk.

We want to maximize trZT
k BZk over balanced k-

partition matrices Zk ∈ ZB
k . Observe that the k columns

of Zk form an orthonormal system in R
n. Therefore, Zk

is a suborthogonal matrix, and hence, ZT
k Zk = Ik (Ik

being the k × k identity matrix).
By the notation of Section II, let β1 ≥ · · · ≥ βN de-

note the eigenvalues of the modularity matrix B with
corresponding unit-norm, pairwise orthogonal eigenvec-
tors u1, . . . ,uN . Let p denote the number of its positive
eigenvalues; thus, βp+1 = 0 and up+1 = 1/

√
N . Now let

Y = (y1, . . . ,yk) be an arbitrary N × k suborthogonal
matrix (k ≤ N). Then by a simple linear algebra (see
e.g., Bathia [27]),

max
YT Y=Ik

tr (YT BY) = max
yT

a yb=δab

k
∑

a=1

yT
a Bya =

k
∑

a=1

βa

and equality is attained when y1, . . . ,yk are eigenvectors
of B corresponding to β1, . . . , βk. Though the vectors
themselves are not necessarily unique (e.g., in case of
multiple eigenvalues), the subspace Span {y1, . . . ,yk} is
unique if βk > βk+1.

Therefore,

max
Zk∈ZB

k

QB(Zk,B) ≤
k

∑

a=1

βa ≤
p+1
∑

a=1

βa. (5)

Both inequalities can be attained by equality only in the
k = 1, p = 0 case, when our underlying graph is the
complete graph (all the weights are equal). This corre-
sponds to perfectly assortative mixing. In this case there
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is only one cluster with partition vector of equal coor-
dinates (balanced eigenvector belonging to the single 0
eigenvalue). For k > 1, partition vectors for no graph can
coincide with eigenvectors belonging to positive eigenval-
ues, since their coordinates do not sum to zero that would
be necessary to be orthogonal to the vector belonging to
the 0 eigenvalue.

It is also obvious that the maximum with respect to
k of the maximum in (5) is attained with the choice of
k = p + 1. In [14], for the non-penalized case, the author
shows how p+1 clusters can be constructed by applying a
vector partitioning algorithm for u1, . . . ,up. However, in
case of large networks, p can also be large, and computa-
tion of the positive eigenvalues together with eigenvectors
is time consuming. As a compromise, it will be shown
that choosing a k < p such that there is a remarkable
gap between βk−1 and βk will also suffice. Further, even
for a fixed “small” k < p, to find the true maxim over
k-partitions cannot be solved in polynomial time in N ,
but due to our estimations, spectral partitioning algo-
rithms can be constructed like spectral clustering based
on Laplacian eigenvectors, see [1, 4]. Now, we are going
to discuss this issue in details.

We expand QB(Zk,B) with respect to the eigenvalues
and eigenvectors of the modularity matrix:

QB(Zk,B) = trZT
k BZk =

k
∑

a=1

zT
a (

N
∑

i=1

βiuiu
T
i )za

=
N

∑

i=1

βi

k
∑

a=1

(uT
i za)2.

We can increase the last sum if we neglect the terms
belonging to the negative eigenvalues, hence, the outer
summation stops at p, or equivalently, at p + 1. In this
case the inner sum is the largest in the k = p + 1 case,
when the partition vectors z1, . . . , zp+1 are “close” to the
eigenvectors u1, . . . ,up+1, respectively. As both systems
consist of orthonormal sets of vectors, the two subspaces
spanned by them should be close to each other. The
subspace Fp+1 = Span{z1, . . . , zp+1} consists of stepwise
constant vectors on p + 1 steps, therefore up+1 ∈ Fp+1,
and it suffices to process only the first p eigenvectors. The
notation Q′

p+1,p will be used for the increased objective
function based on the first p eigenvalue–eigenvector pairs
and looking for p + 1 clusters:

QB(Zp+1,B) ≤ Q′
p+1,p(Zp+1,B) :=

p
∑

i=1

βi

p+1
∑

a=1

(uT
i za)2,

and in the sequel, for given B, we want to maximize
Q′

p+1,p(Zp+1,B) over ZB
p+1.

For this purpose, let us project the vectors
√

βiui onto
the subspace Fp+1:

√

βiui =

p+1
∑

a=1

[(
√

βiui)
T za]za+ortFp+1

(
√

βiui),

i = 1, . . . , p.

(6)

The first term is the component in the subspace, and the
second is orthogonal to it. In fact, the projected copies
will be in a p-dimensional subspace of Fp+1 orthogonal
to the 1 vector (scalar multiple of up+1). They will be
stepwise constant vectors on p + 1 steps, and their coor-
dinates sum to 0. This is why one less eigenvectors are
used than the number of clusters looked for.

By the Pythagorean Theorem, for the squared lengths
of the vectors in the decomposition (6) we get that

βi = ‖
√

βiui‖2 =

p+1
∑

a=1

[(
√

βiui)
T za]2

+ dist2(
√

βiui,Fp+1), i = 1, . . . , p.

By summing for i = 1, . . . , p, the cumulated second
term will turn out to be the sum of inner variances of
the vertex representatives in an appropriate represen-
tation, defined as follows. For a given positive integer
d ≤ p, let the d-dimensional representatives x1, . . . ,xN

of the vertices be row vectors of the N × d matrix
Xd = (

√
β1u1, . . . ,

√
βdud). For brevity’s sake, the k-

variance S2
k(x1, . . . ,xN ) is denoted by S2

k(Xd), cf. the
notation of Section II. Since Fk consists of stepwise con-
stant vectors on the partition (V1, . . . , Vk), by an Analysis
of Variance argument (see [1])it follows that

S2
k(Xd) =

d
∑

i=1

dist2(
√

βiui,Fk).

Indeed, dist2(
√

βiui,Fk) is the minimum squared dis-
tance between

√
βiui and the subspace of stepwise con-

stant vectors on (V1, . . . , Vk). In view of Steiner’s Theo-
rem, the minimum is attained by the stepwise constant
vector with coordinates having at most k different val-
ues c1i, . . . , cki. Namely, if j ∈ Va, the jth coordinate
of the distance minimizing stepwise constant vector is
cai = 1

|Va|

∑

ℓ∈Va

√
βiui(ℓ), yielding

dist2(
√

βiui,Fk) =

k
∑

a=1

∑

j∈Va

[
√

βiui(j) − cai]
2.

By summing for i = 1, . . . , d and rearranging the summa-

tion,
∑d

i=1 dist
2(
√

βiui,Fk) equals S2
k(Xd) with cluster

centers ca = (ca1, . . . , cad), a = 1, . . . , k, cf. (3). Hence,

p
∑

i=1

βi =

p
∑

i=1

p+1
∑

a=1

[(
√

βiui)
T za]2 +

p
∑

i=1

dist2(
√

βiui,Fp+1)

= Q′
p+1,p(Zp+1,B) + S2

p+1(Xp),

where the rows of Xp = (
√

β1u1, . . . ,
√

βpup) are re-
garded as p-dimensional representatives of the vertices.
We could as well take (p+1)-dimensional representatives
as the last coordinates are zeros, and hence, S2

p+1(Xp) =

S2
p+1(Xp+1). Thus, maximizing Q′

p+1,p is equivalent to

minimizing S2
p+1(Xp) that can be obtained by applying
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the k-means algorithm for the p-dimensional representa-
tives with p + 1 clusters.

More generally, if there is a gap between βd and βd+1 >
0, then we may look for k clusters based on d-dimensional
representatives of the vertices. Analogously to the above
calculations, for d < k ≤ p + 1 we have that

d
∑

i=1

βi =

d
∑

i=1

k
∑

a=1

[(
√

βiui)
T za]2 +

d
∑

i=1

dist2(
√

βiui,Fk)

=: Q′
k,d(Zk,B) + S2

k(Xd).
(7)

If βd is much greater than βd+1, the k-variance S2
k(Xd+1)

is not significantly greater than S2
k(Xd), since Xd+1’s last

column,
√

βd+1ud+1, will not increase too much the k-
variance of the d-dimensional representatives, its norm
being much less than that of the first d columns. As
the left hand side of (7) is not increased significantly
by adding βd+1, the quantity Q′

k,d+1(Zk,B) is not much

greater than Q′
k,d(Zk,B) is. Neither the classification nor

the value of the modularity is changed much compared
to the cost of taking one more eigenvector into consid-
eration. After d has been selected, we can process the
k-means algorithm with k = d + 1, . . . , p + 1 clusters.
By an easy argument, S2

k+1(Xd) ≤ S2
k(Xd), but we can

stop, if it is much less. These considerations would min-
imize computational demand and proved good for ran-
domly generated graphs from different block structures,
see Section V.

Calculating eigenvectors is costly; the Lánczos method
performs well if we calculate only eigenvectors belonging
to some leading eigenvalues followed by a spectral gap.
In [6] the authors suggest to use as many eigenvectors
as possible. In fact, using more eigenvectors (up to p)
is better from the point of view of accuracy, but using
less eigenvectors (up to a gap in the positive part of the
spectrum) is better from the computational point of view,
cf. [4, 11]. We have to compromise. By these arguments,
a local maximum of the modularity can be expected at
k = d + 1.

The advantage of the modularity matrix versus the
Laplacian is that here 0 is a watershed, and for small
graphs, the d = p, k = p + 1 choice is feasible; for large
graphs we look for gaps (like in case of the Laplacian)
in the positive part of the spectrum, and the number of
clusters is one more than the number of the largest posi-
tive eigenvalues with corresponding eigenvectors entered
into the classification.

IV. MAXIMIZING THE NORMALIZED

NEWMAN–GIRVAN MODULARITY

The k-partition Pk is also uniquely defined by the N×k
normalized partition matrix Zk = (z1, . . . , zk), where the
a-th normalized k-partition vector za = (z1a, . . . , zNa)T

is the following: zia = 1√
Vol (Va)

, if i ∈ Va and 0, other-

wise. By these,

QN(Pk,W) = QN(Zk,B) =

k
∑

a=1

zT
a Bza

= tr (D1/2Zk)TBD(D1/2Zk),

where BD = D−1/2BD−1/2 will be called normalized

modularity matrix. Since the matrix D1/2Zk is sub-
orthogonal, the maximization here happens with respect
to ZT

k DZk = Ik, that is over normalized k-partition ma-
trices Zk ∈ ZN

k .
Let β′

1 ≥ · · · ≥ β′
N denote the eigenval-

ues of the symmetric normalized modularity matrix
BD with corresponding unit-norm, pairwise orthogo-
nal eigenvectors u′

1, . . . ,u
′
N . First we establish the

range of the eigenvalues of BD = D−1/2WD−1/2 −
D−1/2ddT D−1/2 = D−1/2WD−1/2 −

√
d
√

d
T
, where√

d := (
√

d1, . . . ,
√

dN )T . The correlation-like eigen-
values of the first term are in the [−1, 1] interval; the
largest eigenvalue is always 1 with corresponding unit-
norm eigenvector

√
d. The only non-zero eigenvalue of

the rank 1 second term is also 1 with the same eigen-
vector. Therefore, the spectrum of the matrix BD is the
same as the spectrum of the first term, with the only ex-
ception that – due to the subtraction of the second term –
the eigenvalue 1 of D−1/2WD−1/2 becomes an eigenvalue
0 of BD with eigenvector

√
d. Hence, the spectrum of

BD is in [−1, 1] and includes the 0. These considerations
also give an exact relation between the normalized Lapla-

cian and modularity matrix: BD = I − LD −
√

d
√

d
T
.

If the eigenvalues of LD are 0 = λ1 ≤ · · · ≤ λN ≤ 2,
then the spectrum of BD consists of the numbers 1 − λi

(i = 2, . . . , N) and the zero with corresponding eigenvec-

tor
√

d. Further, the multiplicity of 0 is one more than
the multiplicity of the eigenvalue 1 of LD. The multi-
plicity of 1 is one less than multiplicity of the eigenvalue
0 of LD; hence, 1 cannot be an eigenvalue of BD if G is
connected (W is irreducible).

Let p denote the number of positive eigenvalues of BD

(this p not necessarily coincides with that of Section III).
Now let Y = (y1, . . . ,yk) be an arbitrary N × k matrix
(k ≤ N) such that YT DY = Ik. With the same linear
algebra as used in Section III,

max
YT DY=Ik

tr (YT BY) =
k

∑

a=1

β′
a (8)

and equality is attained with y1 = D−1/2u′
1, . . . ,yk =

D−1/2u′
k. Therefore,

max
Zk∈ZN

k

QN (Zk,B) ≤
k

∑

a=1

β′
a ≤

p+1
∑

a=1

β′
a.

For further investigation, we expand our objective
function with respect to the eigenvectors:

QN (Zk,B) =

N
∑

i=1

β′
i

k
∑

a=1

[(u′
i)

T (D1/2za)]2.
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We can increase this sum if we neglect the terms belong-
ing to the negative eigenvalues, hence, the outer sum-
mation stops at p, or equivalently, at p + 1. The inner
sum is the largest in the k = p + 1 case, when the unit-
norm, pairwise orthogonal vectors D1/2z1, . . . ,D

1/2zp+1

are close to the eigenvectors u′
1, . . . ,u

′
p+1, respectively.

In fact, the two subspaces spanned by them should
be close to each other. Now the subspace Fp+1 =

Span{D1/2z1, . . . ,D
1/2zp+1} does not consist of stepwise

constant vectors, but the following argument is valid. By
the notation Q′′

p+1,p(Zp+1,B) for the increased objective
function based on the first p eigenvalue–eigenvector pairs
and looking for p + 1 clusters we get that

QN (Zp+1,B) ≤ Q′′
p+1,p(Zp+1,B)

:=

p
∑

i=1

β′
i

p+1
∑

a=1

[(u′
i)

T (D1/2za)]2.

In the sequel, for given B, we want to maximize
Q′′

p+1,p(Zp+1,B) over ZN
p+1.

With the argument of Section III, now the vectors
√

β′
i u

′
i are projected onto the subspace Fp+1:

√

β′
i u

′
i =

p+1
∑

a=1

[(
√

β′
i u

′
i)

TD1/2za]D1/2za

+ ortFp+1
(
√

β′
i u

′
i), i = 1, . . . , p.

As
√

β′
p+1 u′

p+1 = 0, there is no use of projecting it.

By the Pythagorean Theorem, for the squared lengths
of the vectors in the above orthogonal decomposition we
get that

β′
i = ‖

√

β′
i u

′
i‖2 =

p+1
∑

a=1

[(
√

β′
i u

′
i)

TD1/2za]2

+ dist2(
√

β′
i u

′
i,Fp+1), i = 1, . . . , p.

Let the vertex representatives x′
1, . . . ,x

′
N ∈ R

p

be the row vectors of the N × p matrix X′
p =

(
√

β′
1 D−1/2u′

1, . . . ,
√

β′
p D−1/2u′

p). Then

dist2(
√

β′
i u

′
i,Fp+1) =

N
∑

j=1

dj(x
′
ji − cji)

2, i = 1, . . . , p

where x′
ji is the ith coordinate of the vector x′

j and cji

is the same for vector cj ∈ R
p, where there are at most

p+1 different ones among the centers c1, . . . , cN assigned
to the vertex representatives. Namely,

cji =
1

∑

ℓ∈Va
dℓ

∑

ℓ∈Va

dℓx
′
ℓi, j ∈ Va, i = 1, . . . , p.

In other words, the column vectors of the N × p matrix
of rows c1, . . . , cN are stepwise constant vectors on the
same p+1 steps belonging to the (p+1)-partition of the
vertices encoded into the partition matrix Zp+1.

By summing for i = 1, . . . , p, in view of the Analysis of
Variance argument of Section III, the cumulated second
term will turn out to be the weighted (p+1)-variance (4)
of the vertex representatives in the (p + 1)-partition des-
ignated by the partition matrix Zp+1:

S̃2
p+1(X

′
p) =

p
∑

i=1

dist2(
√

β′
i u

′
i,Fp+1)

=
n

∑

j=1

dj‖xj − cj‖2.

Therefore,

p
∑

i=1

β′
i = Q′′

p+1,p(Zp+1,B) + S̃2
p+1(X

′
p).

This applies to a given (p + 1)-partition of the vertices.
We are looking for the (p + 1)-partition maximizing the
first term. In view of the above formula, increasing
Q′′

p+1,p can be achieved by decreasing S̃2
p+1(X

′
p); lat-

ter one is obtained by applying the k-means algorithm
with p + 1 clusters for the p-dimensional representatives
x′

1, . . . ,x
′
N with respective weights d1, . . . , dN .

Analogously, for d < k ≤ p + 1:

d
∑

i=1

β′
i =

d
∑

i=1

k
∑

a=1

[(
√

β′
i u

′
i)

TD1/2za]2

+
d

∑

i=1

dist2(
√

β′
i u

′
i,Fk)

= Q′′
k,d(Zk,B) + S̃2

k(X′
d),

where the row vectors of the N × d matrix
X′

d = (
√

β′
1 D−1/2u′

1, . . . ,
√

β′
d D−1/2u′

d) are d-
dimensional representatives of the vertices. Hence,
in the presence of a spectral gap between β′

d and
β′

d+1 > 0 – in the miniature world of the [0,1] interval –

neither
∑d

i=1 β′
i nor S̃2

k(X′
d) can be increased significantly

by introducing one more eigenvalue-eigenvector pair
(by using (d + 1)-dimensional representatives instead of
d-dimensional ones). Consequently, Q′′

k,d(Zk,B) would
not change much, and by the argument of Section III,
k = d+1 clusters based on d-dimensional representatives
will suffice.

In their new paper [28], Karrer and Newman introduce
a model that takes into consideration the heterogeneity
in the degrees of vertices. While the usual blockmodel is
biased towards placing vertices of similar degrees in the
same cluster, the new model is capable to find clusters of
vertices of heterogeneous degrees. I had the same motiva-
tion when introduced the normalized modularity matrix.
To get this matrix, the edge-weights in the modularity
matrix are divided by the square-roots of the degrees of
their end vertices; therefore, the normalized modularity
matrix supports the effort for eliminating degree differ-
ences.



8

V. COMMUNITIES IN GENERAL

A. Anti-community structure

Given the weighted graph G = (V,W) instead of tak-
ing the maximum, we take the minimum of QB(Pk,W) =
QB(Zk,B) over balanced k-partition matrices Zk. As for
fixed k, analogously to (5),

min
YT Y=Ik

tr (YT BY) = min
yT

a yb=δab

k
∑

a=1

yT
a Bya =

k
∑

a=1

βN+1−a,

and similarly to the inference of Section III,

min
Pk∈Pk

QB(Zk,B) = min
ZT

k
Zk=Ik

trZT
k BZk

≥
k

∑

a=1

βN+1−a ≥
n+1
∑

a=1

βN+1−a,

where n is the number of negative eigenvalues of B

(n + p < N). For the classification, here we use the
scaled (by the square root of the absolute value of the
corresponding eigenvalue) eigenvectors belonging to the
negative eigenvalues for the representation to find n + 1
clusters. For large N , it suffices to choose d < n struc-
tural negative eigenvalues such that there is a remark-
able spectral gap between βN+1−d and βN−d. Then with

Xd = (
√

|βN | ·uN , . . . ,
√

|βN+1−d| ·uN+1−d), we find the
minimum of S2

d+1(Xd) by the k-means algorithm with
d + 1 clusters.

The same can be done by minimizing the normal-
ized modularity QN(Zk,B) based on the largest absolute
value negative eigenvalues and the corresponding eigen-
vectors of the normalized modularity matrix.

B. Examples

The following theoretical examples illustrate that large
positive eigenvalues of the modularity matrix reflect a
community, while large absolute value negative ones, an
anti-community structure.

• Pure community structure: G is the disjoint union
of k complete graphs on N1, . . . , Nk vertices, re-
spectively (there are no inter-community edges, but
all possible intra-community edges are present).
This belongs to perfectly assortative mixing. G’s
modularity matrix has k − 1 positive eigenvalues,
βk = 0 with corresponding eigenvector 1/

√
N , and

there is only one negative eigenvalue with multi-
plicity N − k. (In the N1 = · · · = Nk special case
β1 = · · · = βk−1 is a multiple positive eigenvalue.)
Here k communities are detected by the k-means
algorithm applied for the (k − 1)-dimensional rep-
resentatives based on the eigenvectors correspond-
ing to the positive eigenvalues. As these eigen-
vectors themselves have piecewise constant struc-
tures on the steps belonging to the vertex clusters,

the k-variance of the representatives is 0, and the
maximum QB(Zk,B) is a slightly smaller positive
number than the maximum Q′

k,k−1(Zk,B), latter
one being the sum of the positive eigenvalues. In
the k = 1 case the modularity matrix is negative
semidefinite, and both the maximum QB(Zk,B)
and Q′

k,k−1(Zk,B) are zeros. The normalized mod-
ularity matrix BD has the eigenvalue 1 with mul-
tiplicity k − 1, one 0 eigenvalue and all the other
eigenvalues are in the (−1, 0) interval taking on at
most k − 1 different values. (In the N1 = · · · = Nk

case there is only one negative eigenvalue with mul-
tiplicity N − k.)

• Pure anti-community structure: G is the complete
k-partite graph on N1, . . . , Nk vertices, respectively
(there are no intra-community edges, but all pos-
sible inter-community edges are present). These
modules may model hub-authorities and belong to
perfectly disassortative mixing. G’s modularity
matrix has k− 1 negative eigenvalues, all the other
eigenvalues are zeros. (In the N1 = · · · = Nk spe-
cial case there is one negative eigenvalue with mul-
tiplicity k − 1.) Here k communities are detected
by the k-means algorithm applied for the (k − 1)-
dimensional representatives based on the eigenvec-
tors corresponding to the negative eigenvalues. As
these eigenvectors themselves have piecewise con-
stant structures on the steps belonging to the ver-
tex clusters, the k-variance of the representatives is
0, the minimum QB(Zk,B) is negative, but slightly
larger than the minimum Q′

k,k−1(Zk,B), latter one
being the sum of the negative eigenvalues. The
normalized modularity matrix BD has k − 1 nega-
tive eigenvalues in the [−1, 0) interval, all the other
eigenvalues are zeros. (In the N1 = · · · = Nk case
the negative eigenvalue has multiplicity k − 1.)

• Noisy community structure: Now we investigate a
case close to the community structure. Let W be
a noisy matrix obtained by burdening a blown up
k × k symmetric pattern matrix with a so-called
Wigner-noise (its entries in and above the main
diagonal are independent, uniformly bounded ran-
dom variables, otherwise it is symmetric).

The blown up matrix is a symmetric block-matrix
with k2 blocks of Ni ×Nj sizes and it has the same

entries within the blocks. If N =
∑k

i=1 Ni is large
and the block sizes are of the same magnitude, the
spectral decomposition of the edge-weighted graph
G = (V,W) is very “close” to that of the follow-
ing random graph model on the vertex set V : edges
come into existence within/between the blocks with
probabilities given in the pattern matrix, see [20]
for details. If the pattern matrix has “large” diag-
onal, and “small” off-diagonal entries, further, the
blow up sizes are of the same magnitude, then the
modularity matrix has k − 1 outstanding positive
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eigenvalues (larger than the absolute value of the
smallest negative eigenvalue), and the representa-
tives based on the corresponding eigenvectors can
be well classified into k clusters: S2

k(Xk−1) is much
smaller than S2

k−1(Xk−1), but not much larger than

S2
k+1(Xk−1).

• Noisy anti-community structure: Now we investi-
gate a case close to the anti-community structure.
Let W be a noisy matrix obtained from a pat-
tern matrix with “small” diagonal and “large” off-
diagonal entries. The modularity matrix has k − 1
protruding negative eigenvalues (in absolute value
larger than the positive ones), and the representa-
tives based on the corresponding eigenvectors can
be well classified into k clusters: S2

k(Xk−1) is much
smaller than S2

k−1(Xk−1), but not much larger than

S2
k+1(Xk−1).

We also applied our spectral algorithm for real-life net-
works.

• Zachary’s karate club data: Maximizing the bal-
anced modularity by means of applying the k-
means algorithm (with k = 2 clusters) for the coor-
dinates of the eigenvector belonging to the leading
positive eigenvalue of the modularity matrix, our
algorithm gave exactly the same partition of the
club members as found in the original paper [29],
see Fig. 1.

• The bottlenose dolphin community of Doubtful

Sound : We investigated the graph of social connec-
tions of 40 bottlenose dolphins retained for associ-
ation analysis by Lusseau et al. [30]. They found
three groups with individuals most frequently seen
together (see Lusseau’s Fig. 5), though the groups
were not separated clearly by their hierarchical
clustering algorithm. Based on one and two leading
positive eigenvalues and the corresponding eigen-
vectors of the modularity matrix, by k-means al-
gorithm, we found two and three clusters, respec-
tively. Though we processed the algorithm for the
two and three clusters cases separately, one cluster
of the three turned out to be the same as one of
the clusters of the two-cluster case. In our Fig. 2,
squares and circles represent individuals of the two
main clusters obtained by our spectral clustering al-
gorithm maximizing the balanced modularity with
k = 2, and the shaded and open circles denote the
separation of the second cluster when we processed
our algorithm with k = 3. These three communities
are practically the same as discussed on page 401
of [30]. Squares correspond to a male group with
an unknown sex individual at the bottom, shaded
circles correspond to the group of six males and
one female (Trigger) at the left upper corner, fi-
nally, open squares represent the female band at
the top right of Lusseau’s Fig. 5; there were loose

connections between these two kinds of circles in ac-
cord with the fact that they belonged to one cluster
in the two-cluster situation. The two main com-
munities observed in the original paper are sepa-
rated by dashed lines, while the intermediate low
degree nodes – corresponding to the middle part of
Lusseau’s Fig 5 – are not classified uniquely in the
original paper.

VI. CONCLUSIONS AND FUTURE

DIRECTIONS

In [31] the total modularity is normalized by a fac-
tor so that the perfectly assortative network’s modular-
ity attains the maximum value 1, and that of the per-
fectly disassortative network is in the [−1, 0) interval.
The author also remarks that the optimum modularity
of a perfectly disassortative network is closer to that of
a randomly mixing network. Our idea is that a real-
life network is generally the superposition of these types;
however, for large N , we are able to identify the domi-
nating structure. If N is large, in the noisy cases there
are a lot of positive/negative eigenvalues, but for detect-
ing the community/anti-community structure it suffices
to take only the structural ones. We can spare memory
and computational time in this way.

Summarizing, a shift toward the positive/negative
eigenvalues indicates community/anti-community struc-
ture. The number of structural eigenvalues plus one
can be taken for the number of clusters, while the clus-
ter memberships can be concluded by applying the k-
means algorithm for the representatives based on the
corresponding normalized eigenvectors. Equal balance
between the positive and the negative eigenvalues (not
only in their number, but also in their magnitudes) indi-
cates a random-like structure of [18]. Normalized modu-
larity spectrum may play an important role in the spec-
tral characterization of these random-looking graphs. It
seems that the bulk of the normalized modularity spec-
trum is responsible for the pairwise regularities, while
the structural (large absolute value) eigenvalues together
with eigenvectors indicate the blocks. Though, the num-
ber of clusters may be large, at the cost of the accu-
racy it can be decreased by applying spectral methods
using eigenvectors belonging to the largest absolute value
eigenvalues, cf. [32].

A drawback of the spectral methods is that the struc-
tural eigenvalues with corresponding eigenvectors are
only capable to reveal fundamental clusters (this is why
they are related to balanced modularities), while small
communities are hidden behind the near zero eigenvalues.
It seems straightforward to enter eigenvectors belonging
to “small” eigenvalues into the representation based clas-
sification, but it would cause complications: partly be-
cause in case of “large” graphs there are too many small
eigenvalues (normalized modularity spectrum has ten-
dency accumulate around zero) and partly because small
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FIG. 1. The network of social connections in the karate club network of Zachary [29]. Circles and squares represent nodes of
the two clusters with sizes proportional to their degrees. The shaded nodes are the administrator (1) and the instructor (34,
covering 33). The separation of the two clusters found by our spectral algorithm maximizing the balanced modularity coincides
with the real-life separation of the club members found in the original paper and denoted by the dashed line.

eigenvalues can be indications of small clusters and low
degree vertices at the same time. These considerations
are valid for large and dense enough graphs. For sparse
ones, a so-called core of the graph can be separated which
is used to decide whether the graph has a community or
anti-community structure. In [33] the separation is done
in terms of the normalized Laplacian eigenvalues. In view
of Section IV, the normalized modularity spectrum can
as well be used.

In [34] Bickel and Chen state the asymptotic consis-
tency of the Newman–Girvan modularity in a submodel
of their block model. As these modularities are non-
parametric statistics, and the conditions apply to the
unknown model parameters, it is possible to substitute
their estimates for the parameters, and if these satisfy
the conditions, we may expect consistency. It is a future
direction to check the consistency conditions for the pe-
nalized modularities. We conjecture that for large N , the
balanced modularity is a consistent estimator of the true
modularity structure of the underlying weighted graph if
the optimum k and optimum k-partition (V1, . . . , Vk) of
its vertices satisfy the following requirement: for every
a = 1, . . . , k

√

|Va| · e(Va, Va) >
∑

b6=a

√

|Vb| · e(Va, Vb)

holds. For the normalized modularity this condition
seems to be

√

Vol (Va) · e(Va, Va) >
∑

b6=a

√

Vol (Vb) · e(Va, Vb).

The conditions formulated in the above conjectures are
more likely to be satisfied by balanced clusters. If these
requirements are violated, one should treat carefully the
result of the classification and suspect other possibilities:
an anti-community or random-like structure.
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FIG. 2. The network of social connections between 40 bottlenose dolphins retained for association analysis by Lusseau et al. [30].
Squares and circles represent individuals of the two main clusters obtained by our spectral clustering algorithm maximizing
the balanced modularity with k = 2. In the k = 3 case, the squares remained in the same cluster, while circles separated into
the shaded and open ones. The dense parts of these clusters coincide with the three communities described in [30]. The two
main communities observed in the original paper are separated by dashed lines, while the intermediate low degree nodes are
not classified uniquely by the original paper.
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