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Extrema of sums of heterogeneous quadratic forms ∗

ABSTRACT

In this paper we analyze the following problem arising in various situations in
multivariate statistical analysis. We are given k symmetric, positive definite n×n
matrices, A1,A2, . . . ,Ak (k ≤ n) and we would like to maximize the function
k∑
i=1

xTi Aixi under the constraint that x1,x2, . . .xk ∈ Rn form an orthonormal

system. Some theoretical results as well as an algorithm will be presented.

1. Introduction

It is well known that given a symmetric, positive definite n×n
matrix A an orthonormal system of k elements in Rn (k ≤ n)

for which the functional
k∑
i=1

xTi Axi attains its maximum is given

by a system of k orthonormal eigenvectors corresponding to the
k largest eigenvalues of the matrix A. The subspace spanned
by the system is uniquely determined if there is a gap in the
spectrum of A between the kth and (k + 1)th eigenvalues in
descending order, actually any orthonormal system consisting
of k vectors spanning the same subspace as the eigenvectors
corresponding to the k largest eigenvector gives the same value,
because

k∑

i=1

xTi Axi = trAXXT ,

where
X = [x1, . . .xk] ,

thus the functional depends only on the subspace spanned by
the vectors x1, . . .xk. So the functional can be considered as
being defined on the Grassmannian manifold G(k,Rn) consisting
of the k-dimensional subspaces of the Euclidean space Rn. The

∗This work was supported by the Hungarian Scientific Research Foundation, OTKA
Grant No. 2042 and No. T015668.
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structure of this functional is analyzed in details in Byrnes and
Willems [BW86]. The behaviour of the matrix power method
applied to this problem is investigated in Martin and Ammar
[AM86].

The question naturally arises: what can be said on the maxi-
mum if the sum of the quadratic forms is generated by different
matrices. Naturally, each of the quadratic forms xTi Aixi tends
to be “large” (close to the maximal eigenvalue of Ai), but in
most cases it cannot be as large as λmax

i because the eigen-
vectors corresponding to the maximal eigenvalues of Ai-s are
usually not pairwise orthogonal.

It will be shown that any system x1, . . .xk giving the ex-
tremum must satisfy the matrix equation

(A1x1, . . . ,Akxk) = XS (1.1)

where S is a k× k symmetrical matrix , and the n× k matrices
(A1x1, . . . ,Akxk) and X = (x1 . . .xk) contain the enumerated
vectors as their columns. The set of orthonormal k-tuples in
Rn is called as Stiefel-manifold and denoted by Vn,k. Slightly
abusing the notation we shall write X ∈ Vn,k when the set of
column vectors of the n× k matrix X is an element of Vn,k. (cf.
James [Ja76]). Obviously this is equivalent to XTX = Ik. The
equation (1.1) is linear in X so for the corresponding matrix
S the determinant of the nk × nk matrix A − In ⊗ S must be
zero, where the nk × nk block-matrix A contains the matrices
A1, . . . ,Ak in its diagonal blocks and zeros otherwise.

In this paper, an iteration is proposed and its convergence to
a local maximum of the objective function is analyzed. Choos-
ing an arbitrary initial orthonormal system X(0) the sequence
X(1),X(2), ... is constructed in the following way: if X(m) is al-
ready known, the polar decomposition of (A1x

(m)
1 . . .Akx

(m)
k ) is

performed, i.e. it is decomposed as the product of an n× k ma-
trix with orthonormal columns and a k×k symmetrical positive
semidefinite one (m = 0, 1, 2, . . . ). (This polar decomposition is

unique if A1x
(m)
1 . . .Akx

(m)
k are linearly independent. Cf. equa-

tion (3.7).) In the next step let X(m+1) be the first factor in this
decomposition, etc.
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2. The optimization problem

We are given k symmetrical, positive definite n×n matrices,
A1,A2, . . . ,Ak (k ≤ n). Find the maximum of

fquad(X) =
k∑

i=1

xTi Aixi (2.1)

on the constraints

xTi xj = δij, (1 ≤ i, j ≤ k).

where X = (x1 . . .xk), and δij is the Kronecker’s delta. As
Vn,k is a compact manifold and fquad is continuous on Vn,k a
finite global maximum exists and it is attained at some point.

Obviously this maximum is at most
k∑
i=1

λimax, where λimax denotes

the maximal eigenvalue of Ai.
To characterize the critical points of the functional let us de-

note by A(X) = (A1x1, . . . ,Akxk) and X = (x1 . . .xk) the n×k
matrices containing the enumerated vectors as their columns.
It will be shown below that for an optimal orthonormal system
(x1, . . . ,xk) ∈ Vn,k

(A1x1, . . . ,Akxk) = XS (2.2)

holds, where the multipliers are entries of the k×k symmetrical
matrix S. Together with the system of equations

XTX = Ik (2.3)

where Ik is the k×k identity matrix, we obtain nk+k(k+ 1)/2
equations. As the total number of unknowns in X and S is also
nk + k(k + 1)/2, in the generic case only a finite number of
solutions is expected.

Before analyzing the structural behaviour of this functional
let us consider an algorithm to maximize it.

3. The algorithm

In order to construct an algorithm let us return to the equa-
tions determining the critical point of the functional.
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Theorem 3.1. X ∈ Vn,k is a critical point of fquad if and
only if S = A(X)TX is symmetric, i.e.

A(X) = XS (3.1)

holds, with a symmetric S.

Proof: Assume that X ∈ Vn,k is a critical point of fquad.
Thus the derivatives – along Vn,k – of fquad vanish at X. Hence
considering a small perturbation X∆ of X which is tangential
to Vn,k, i.e. it satisfies the equation

XTX∆ + XT
∆X = 0 ,

in other words XTX∆ is skew-symmetric, the difference

fquad(X + X∆)− fquad(X)

must be zero in the first order as X∆ → 0. But

fquad(X + X∆)− fquad(X)

= tr (X + X∆)TA(X + X∆)− tr XTA(X)

= 2tr A(X)TX∆ + tr A(X∆)TX∆ .

Consequently the equation

tr A(X)TX∆ = 0 (3.2)

when XTX∆ is skew symmetric characterizes the critical points
of fquad. We have

tr A(X)TX∆ =
1

2
tr [A(X)TX−XTA(X)]XTX∆

+ tr [(I−XXT )A(X)]T [(I−XXT )X∆] .

Observe that A(X)TX−XTA(X) is skew-symmetric, and

XT ((I−XXT )A(X)) = 0 .

On the other hand for any skew-symmetric k× k matrix Z and
for any n × k matrix V satisfying the identity XTV = 0 there
exists obviously a perturbation X∆ for which

XTX∆ = Z ,

and
(I−XXT )X∆ = V .
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Consequently (3.2) implies that the set of equations

A(X)TX = XTA(X) (3.3)

A(X) = XXTA(X) (3.4)

characterizes the critical points of fquad, concluding the proof.
�

At an arbitrary critical point the matrix S = XTA(X) is not
necessarily positive semidefinite. The next lemma shows that
this is necessary at the global maximum points of fquad.

Lemma 3.1. If X ∈ Vn,k is a global maximum of the func-
tional fquad then the corresponding matrix

S = XTA(X)

is positive semidefinite.

Proof: Consider the decomposition

A(X) = XS ,

and assume in contrary with the statement that S is not positive
semidefinite. Writing

S = C∆CT

where ∆ is a diagonal, C is an orthogonal matrix, according
to our assumption there is at least one negative element in the
diagonal of ∆. Choosing an appropriate diagonal matrix D with
values +1 or −1 in the diagonal we can achieve that D∆ has
only nonnegative elements in its diagonal. Obviously

tr D∆ > tr ∆ .

With the notation
Y = XCDCT

one can write A(X) in the form

A(X) = Y(CD∆CT ) .

Observe that the column vectors of Y are orthogonal and

k∑

i=1

xTi Aixi = tr S = tr ∆ ,

k∑

i=1

yTi Aixi = tr D∆ .
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Consequently

k∑

i=1

yTi Aixi >
k∑

i=1

xTi Aixi . (3.5)

The inequality

k∑

i=1

(yi − xi)
TAi(yi − xi) ≥ 0 (3.6)

together with (3.5) gives that

fquad(Y) > fquad(X) ,

so X is not a global maximum. �
Theorem 1 and Lemma 1 together yield that at global max-

imum points
A(X) = XS ,

where S is a positive semidefinite matrix. Let us remark that
a factorization of the form XS, where XTX = Ik and S ≥ 0 is
called polar decomposition. (See [Fuhr81]. Observe that

A(X) =

{
A(X)

[(
A(X)TA(X)

) 1
2

]#
} [(

A(X)TA(X)
) 1

2

]

(3.7)

determines a polar decomposition, where # denotes the gener-
alized inverse. Consequently, S is always unique as the positive
semidefinite square root of A(X)TA(X), but the decomposition
itself is unique only if S > 0.)

Let us briefly analyze the connection between the singular
value decomposition and the polar decomposition of the same
matrix. More generally, we consider two types of decomposition
of an n× k matrix B:

B = XS , (3.8)

where X is an n × k, S is a k × k matrix, XTX = Ik, S is
symmetric and

B = PVQT , (3.9)

where P is an n×k, Q,V are k×k matrices, PTP = QTQ = Ik
and V is a diagonal matrix.

In the polar decomposition S ≥ 0, in the singular value de-
composition V ≥ 0.
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Proposition 3.1. Let B be an arbitrary n× k matrix. The
formulae

V,Q,P→ S = QVQT , X = PQT

and
S,X→ SQ = QV , P = XQ

provide a correspondence between the decompositions of B of
type (3.8) and (3.9).

Proof: If B = PVQT is of type (3.9) then

B = PQT QVQT

and X = PQT satisfies the equation XTX = I, also S =
QVQT ≥ 0 so B = XS is a decomposition of type (3.8).

Conversely, if B = XS is a decomposition of type (3.8) then
considering the principal axis transformation of S leading to the
equation

S = QVQT

and defining P = XQ we get that

B = PVQT

is a decomposition of type (3.9). �
Remark. Obviously V ≥ 0 if and only if S ≥ 0. Also if

B = XS is a decomposition of type (3.8), S = QVQT , then

BQ = (XQ)V ,

BT (XQ) = QV .

Observe that the columns of Q and that of XQ are orthonormal,
so the absolute value of the diagonal elements of V, i.e. the
absolute value of the eigenvalues of S are the singular values of
B. Consequently, if σ1(B) ≥ · · · ≥ σk(B) denote the singular
values of B then

k∑

i=1

σi(B) ≥ tr S

and we have equality if and only if S ≥ 0.
The considerations before this propositions suggest the algo-

rithm outlined in the Introduction. From an arbitrary initial set
of orthonormal k-tuples we define recursively a sequence in Vn,k
as follows: from the mth element of this sequence X(m) ∈ Vn,k
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the next one is obtained by a polar decomposition of the matrix
A(X(m)) as

A(X(m)) = X(m+1)S(m+1) . (3.10)

Let us consider one single step in this iteration. To ease the
notation let us denote the corresponding elements in Vn,k by X
and Y, i.e.

A(X) = YS (3.11)

Let us recall a theorem which was proved by Bolla [Bo82] or in
a slightly more general form by Brockett [Br89].

Theorem 3.2. Assume that X ∈ Vn,k is a fixed orthonormal
k-tuple. Then the solution of the minimization problem

k∑

i=1

‖Aixi − yi‖2 → min , (3.12)

where y1 . . .yk are orthonormal vectors is provided by the col-
umn vectors of Y in the polar decomposition of A(X):

A(X) = YS .

Remark. In [Br89] the so-called matching problem A asks
for the solution of the minimization problem

k∑

i=1

‖zi − φ(yi)‖2 → min ,

where zi,yi, i = 1, . . . k are fixed vectors, and φ is an element of
a Lie group acting on Rn.

Remark. Since

k∑

i=1

‖Aixi − yi‖2 =
k∑

i=1

‖Aixi‖2 + k − 2
k∑

i=1

yTi Aixi

the problem (3.12) is equivalent to

fbilin(X,Y) =
k∑

i=1

yTi Aixi → max , (3.13)

where x1, . . . ,xk and y1, . . .yk are orthonormal vectors.
In other words the algorithm described above is a partial

optimization of the functional fbilin. Similar argument to the
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one which was used in the proof of Theorem 1 yields that the
critical points of the functional

Y → fbilin(X,Y)

for fixed X ∈ Vn,k are characterized by the equations

YTA(X) = A(X)TY , (3.14)

A(X) = YYTA(X) . (3.15)

The inequality (3.6) can be now written as

fquad(X) + fquad(Y) ≥ 2fbilin(X,Y) (3.16)

for any X,Y ∈ Vn,k, moreover we have equality here if and only
if X = Y. We shall exploit this elementary observation several
times. It might be instructive to write the inequality in form

fbilin(X,Y)− fquad(X) ≤ fquad(Y)− fbilin(X,Y) ,
(3.17)

and to read it in the following way: once the substitution of one
X for Y in fbilin(X,X) increases the value of the bilinear form
then the use of the same substitution as a second step is also
increasing.

4. Structural properties of the functionals

First we determine the Hessian form of fquad and fbilin at
critical points.

Proposition 4.1. Consider a critical point X ∈ Vn,k of
fquad. Let ξ be the derivative at X of a curve lying on the surface
Vn,k and going through the critical point X, i.e. let ξ be such
that XT ξ is a skew-symmetric matrix. Then the quadratic form
determined by the Hessian of fquad at X evaluated at ξ has the
value

tr ξTA(ξ)− tr ξXTA(X)ξT . (4.1)
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Proof: Consider a curve X(t) ∈ Vn,k with continuous second
derivative and assume that X(0) = X , X

′
(0) = ξ. Then

d2

dt2
fquad(X(t)) = 2

d

dt

k∑

i=1

xi(t)
TAix

′
i(t)

= 2
k∑

i=1

xi(t)
TAix

′′
i (t) + 2

k∑

i=1

x
′
i(t)

TAix
′
i(t)

= 2tr A(X(t))TX
′′
(t) + tr A(X

′
(t))TX

′
(t)

On the other hand taking the second derivative of the identity

XT (t)X(t) = I

we get that

XT (t)X
′′
(t) + 2X

′
(t)TX

′
(t) + X

′′
(t)TX(t) = 0 ,

i.e.

XT (t)X
′′
(t) + X

′
(t)X

′
(t) is a skew-symmetric matrix.

Evaluating these derivatives at t = 0, using the identity

A(X) = XXTA(X)

we obtain that

d2

dt2
fquad(X(t))|t=0 = 2tr A(X)TXXTX

′′
(0) + 2tr A(ξ)T ξ .

But A(X)TX is a symmetric matrix consequently

tr A(X)TX(XTX
′′
(0) + ξT ξ) = 0

giving that the Hessian at ξ is (4.1) concluding the proof. �

Proposition 4.2. Assume that the pair X,Y ∈ Vn,k is a
critical point of fbilin. Let ξ, η be the derivatives (at X,Y) of
such curves in Vn,k which go through X and Y, respectively.
Then the Hessian of fbilin at X,Y evaluated at ξ, η is given by

tr ξTA(η)− 1

2

[
tr ξXTA(Y)ξT + tr ηYTA(X)ηT

]
.

(4.2)
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Proof: Since the proof is similar to that one of the previous
proposition we only outline it. Let X(t),Y(t) ∈ Vn,k be two
curves with continuous second derivative for which

X(0) = X , Y(0) = Y , X
′
(0) = ξ , Y

′
(0) = η .

Then

d2

dt2
fbilin(X(t),Y(t))|t=0 =

= tr A(X)TY
′′
(0) + tr A(Y)TX

′′
(0) + 2tr ξTA(η) .

Using that

A(X) = YYTA(X) , A(Y) = XXTA(Y)

and
YTA(X) , XTA(Y) are symmetric ,

XTX
′′
(0) + ξT ξ , YTY

′′
(0) + ηTη are skew-symmetric

matrices we obtain that the value of the Hessian at ξ, η is (4.2).
�

If X is a local maximum of fquad then the Hessian is negative
semidefinite, i.e.

tr ξA(X)TXξT ≥ tr ξTA(ξ) (4.3)

Although the inequality (4.3) reflects the local properties of
fquad, it can be proved that

fquad(X) ≥ fquad(Y)

even in the case when Y is not necessarily in the neighbourhood
of X.

Definition 4.1. Consider an orthonormal set of vectors
(x1, . . . ,xk) in Rn. We say that y1, . . . ,yk is an elementary
transform of (x1, . . . ,xk) if one of the following two properties
holds

(i) there exist 1 ≤ i < j ≤ k such that

yi = xj , yj = xi , yl = xl , if l 6= i, j ,

(ii) there exists 1 ≤ i ≤ k such that

yi is a unit vector, orthogonal to(x1, . . . ,xk) , and

yl = xl , if l 6= i .
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Corollary 4.1. Assume that X = (x1, . . . ,xk) defines a
local maximum of fquad. Then

fquad(X) ≥ fquad(Y)

where Y = [y1, . . . ,yk] is an elementary transform of [x1, . . . ,xk].

Proof: First consider the case when yl = xl except for l = i
and yi is orthogonal to (x1, . . . ,xk). Considering the matrix ξ
having zero columns except the ith one which is yi. We can
apply (4.3) because ξTX = 0 which leads to the inequality

tr ξT ξA(X)TX ≥ yTi Aiyi .

But the left hand side is exactly xTi Aixi. So the change xi → yi
does not increase the value of fquad.

Now consider the case when y1, . . . ,yk is defined by inter-
changing the vectors xi and xj. In this case let the ith column
of ξ be xj, the jth one be −xi the others be zero. Then the (i, j)-
th element of ξTX is 1, the (j, i)-th element is −1, the others
are zero, so it is a skew-symmetric matrix, thus inequality (4.3)
should hold. But now

tr ξTA(ξ) = xTj Aixj + xTi Ajxi

and
tr ξT ξA(X)TX = xTi Aixi + xTj Ajxj .

Consequently, the change xi → xj does not increase the func-
tional fquad. �

Corollary 4.2. Assume that fquad has a local maximum at
X ∈ Vn,k.Then

(i) if k < n then the matrix A(X)TX is positive definite, es-
pecially the vectors (A1x1, . . . ,Akxk) are linearly indepen-
dent,

(ii) if k = n then the matrix A(X)TX can have only one neg-
ative eigenvalue and its trace on the two dimensional sub-
spaces is positive.
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Proof: Consider first the case when k < n. Then there exists
a unit vector z ∈ Rn which is orthogonal to (x1, . . . ,xk). Let
a = [a1, . . . , ak]

T ∈ Rk be an arbitrary nonzero vector. Define
the matrix ξ as follows:

ξ = [a1z, . . . , akz] = zaT .

Obviously XT ξ = 0, so we can apply (4.3). But

tr ξA(X)TXξT = aTA(X)TXa ,

and

tr ξA(ξ) =
k∑

k=1

a2
i z
TAiz > 0 .

This implies that
aTA(X)TXa > 0

if a 6= 0, i.e. A(X)TX is positive definite.
If k = n then the previous method cannot be applied directly.

Since in this case XXT = XTX = In, consequently

tr ξA(X)TXξT = tr ξTXXT ξA(X)TX .

Let us recall [BK84] that any real skew symmetric matrix
B is similar (under real orthogonal transformation) to a block
diagonal matrix, where the block are of order one or two. The
blocks are skew symmetric matrices, so that of order one are
zero matrices. This implies that every nonzero eigenvalue of the
negative semidefinite symmetric matrix B2 is of even multiplic-
ity.

Conversely, if a symmetric matrix C has the representation

C = −
l∑

j=1

λ2
jDjD

T
j , (4.4)

where
Dj = [xj,yj] , j = 1, . . . , l

and the vectors xj,yj, j = 1, . . . l are orthogonal unit vectors,
then the matrix

B = 2
l∑

j=1

λj
(
xjy

T
j − yjx

T
j

)

is skew-symmetric and

C = B2 .
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Returning to the inequality (4.3), tr ξTA(ξ) > 0, if ξ 6= 0,
thus

tr ξTXXT ξA(X)TX > 0 if ξ 6= 0 . (4.5)

Since the left-hand side is linear in ξTXXT ξ, which can be writ-
ten in the form of (4.4) it is enough to check it for each summand
in (4.5) Consequently, (4.5) is equivalent to

tr [x,y] [x,y]T A(X)TX > 0

for any pair of orthonormal unit vectors x,y. Thus

xTA(X)TXx + yTA(X)TXy > 0

proving part (ii) of the corollary. �
Remark. If λ1 ≥ . . . λn denote the eigenvalues of A(X)TX,

then we obtained that λn−1 > 0 and if λn < 0 then λn−1 > |λn|.
Corollary 4.3. Assume that fbilin has a local maximum at

(X,Y), where X,Y ∈ Vn,k. Then

(i) if k < n, then the matrices XTA(Y) and YTA(X) are
positive semidefinite,

(ii) if k = n, then the trace of the matrices XTA(Y) and
YTA(X) on any two dimensional subspace are nonnega-
tive.

Proof: The Hessian at a local maximum must be negative
semidefinite, especially – choosing η = 0 – , we obtain that

tr ξXTA(Y)ξT ≥ 0 ,

if ξTX is skew-symmetric, and similarly – if ξ = 0 – ,

tr ηYTA(X)ηT ≥ 0 ,

if ηTY is skew-symmetric. Consequently, the proof of the pre-
vious Corollary can be repeated here. �

Theorem 4.1. (i) If X ∈ Vn,k is a local maximum of fquad

then (X,X) is a local maximum of fbilin.

(ii) If k < n and (X,Y) (X,Y ∈ Vn,k) is a local maximum of
fbilin then X = Y and X is a local maximum of fquad.
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Proof: We start with (ii). If (X,Y) is a local maximum
of fbilin, then Y is a local maximum of the functional Z →
fbilin(X,Z), where X is fixed. Corollary 3 gives that YTA(X) ≥
0, so according to Remark after Proposition 1 it is a global
maximum. Consequently

tr ZTA(X) ≤ tr YTA(X)

for every n× k matrix Z with orthonormed column vectors. In
particular

tr XTA(X) ≤ tr YTA(X) .

Similarly,
tr YTA(Y) ≤ tr YTA(X) .

Comparing this to (3.17) we obtain that X = Y.
(i) Let X ∈ Vn,k be a local maximum of fquad. If Y and Z

are in small neighbourhood of X then

fquad(X) ≥ max(fquad(Y), fquad(Z)) .

Inequality (3.16) gives that

fquad(X) ≥ fbilin(Z,Y)

proving part (i). �
Now we study the set of critical point of fquad. Denote

C = {X ∈ Vn,k | X is a critical point of fquad} .
We have proved that the equations

A(X)TX = XTA(X)

A(X) = XXTA(X)

characterize the critical points. Since these are polynomials in
the elements of X the set C can be written as

C = ∪Nj=1Cj ,
where Cj ⊂ Vn,k, j = 1, . . . , N are connected submanifolds.

Proposition 4.3. Let X ∈ C be a critical point. Denote by
HX the Hessian of fquad at X. Then the n × k matrix ξ is an
eigenvector of HX if and only if there exists a λ ∈ R such that

A(ξ)− ξA(X)TX−XA(ξ)TX−XA(X)T ξ = λ(I + XXT )ξ
(4.6)

and XT ξ is skew-symmetric.
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Proof: According to Proposition 1 the quadratic form deter-
mined by HX at ξ is given by (4.1). Consequently the bilinear
form determined by this quadratic form is

HX(ξ, η) = tr ηTA(ξ)− tr ηXTA(X)ξT

= tr ηT (I−XXT )A(ξ) + tr ηTXXTA(ξ)

− tr (I−XXT )ηXTA(X)ξT − tr XXTηXTA(X)ξT .

Using that ηTX and ξTX are skew-symmetric and

XTA(X)XT = A(X)T

we obtain that

HX(ξ, η) = tr ηT (I−XXT )
[
A(ξ)− ξA(X)TX

]

+
1

2
tr ηTX(XTA(ξ)−A(ξ)TX

−XT ξA(X)TX−XTA(X)XT ξ)

If ξ is an eigenvector with the eigenvalue λ then

HX(ξ, η) = λtr ηT ξ = λtr ηTXXT ξ + λtr ηT (I−XXT )ξ .

This implies that ξ is characterized by the equations

(I−XXT )(A(ξ)− ξA(X)TX) = λ(I−XXT )ξ ,

XT (A(ξ)−XA(ξ)TX− ξA(X)TX−XA(X)T ξ) = 2λXT ξ .

Multiplying the second equation by X and adding them together
we obtain that

A(ξ)− ξA(X)TX−XA(ξ)TX−XA(X)T ξ = λ(I + XXT )ξ

which is obviously equivalent to the pair of equation above. �.

Proposition 4.4. Let X ∈ Cj be a critical point. Then ξ
belongs to KerHX if and only if ξ is a tangent vector of the
manifold Cj.

Proof: Obviously any tangent vector of Cj at X lies in
KerHX. Conversely, in view of Theorem 1 the tangent vectors
of Cj at X are characterized by the equations

ξTX + XT ξ = 0 , (4.7)

ξTA(X) = −XTA(ξ) + A(ξ)TX + A(X)T ξ , (4.8)

A(ξ) = ξA(X)TX + XA(ξ)TX + XA(X)T ξ .(4.9)
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Now if ξ ∈ KerHX then ξTX is skew-symmetric and (4.8) holds.
Multiplying (4.8) by XT and using that

XT ξ = −ξTX , XA(X)TX = A(X),

we get that (4.9) holds, as well. I.e. ξ is a tangent vector of Cj.
�

Remark: Without going into the details we remark that this
Proposition implies that over Z2 the function fquad is a so-called
Morse-Bott function, so the Morse-Bott inequalities hold con-
necting the Betti-numbers of the Stiefel-manifold Vn,k with the
indices of the functional fquad. (cf. Byrnes - Willems [BW86].)

5. The critical points of the quadratic functional in some spe-
cial cases

In this section we study the structure of fquad assuming some
relations between the matrices A1, . . . ,Ak.

I. Assume that A1 = · · · = Ak = A > 0. Then

fquad(X) = tr XXTA ,

and XXT is a projection, dimRange(XXT ) = k. This func-
tional arises also in the so-called total least squares problem
and it was analyzed in details in Byrnes and Willems. In this
case the value of this functional depends only on the subspace
generated by the column vectors of X. This is an element of
the Grassmannian manifold Gn,k. It was proved that there is a
unique global maximum (in Gn,k) if and only if λk > λk+1, where
λ1 ≥ λ2 > · · · ≥ λn > 0 are the eigenvalues of A. Also fquad

over Z2 is a perfect Morse-Bott function, i.e. there are equali-
ties in the Morse-Bott inequalities. An immediate consequence
of this statement that every local maxima is also global maxima
and the set of global maxima is a connected submanifold. It is
a so-called Schubert subvariety of Gn,k.

II. The matrices A1, . . . ,Ak commute, so there exists a com-
mon eigenvector system. In this case we may assume that they
are diagonal matrices

Aj = diag(λj1, . . . , λ
j
k) . (5.1)

It is natural to look for a global maximum in the set of matrices
X having eigenvectors as their columns. Under the previous
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condition the functional fquad has the form

fquad(X) =
k∑

j=1

n∑

i=1

λjix
2
ij . (5.2)

Let us remark that the special case k = n was analyzed by
Brockett [Br89]. To see this let let us mention that he considered
the problem of minimizing

k∑

j=1

tr XTQjXRj , (5.3)

where Qj,Rj are diagonal matrices. Denote

Qj = diag(qj1, . . . , q
j
n),

Rj = diag(rj1, . . . , r
j
n).

This function can also be written as
n∑

j=1

n∑

i=1

λjix
2
ij ,

where λji =
∑k
l=1 q

l
ir
l
j. This latter identity is nothing else than a

diad-decomposition of a matrix with elements
[
λji
]n
i,j=1

.

Since every matrix can be written in this form we see that any
functional of the form (5.1) can be written as (5.3). Brockett
analyzed this problem in connection with matching two sets of
vectors in the n-dimensional space by permuting the coordinate
axis.

(The special case of (5.3) when k = 1 was analyzed by von
Neumann [Ne37].)

Returning to the functional (5.1) first we show using linear
programming methods that the global maximum is taken on a
subset of the common eigenvectors of the matrices A1, . . .Ak.

Definition 5.1. An n×k matrix Π = [bij] is called permu-
tation matrix if there exists an injection

π : {1, . . . , k} → {1, . . . , n}
such that

bij =

{
1 if i = π(j)
0 otherwise



20

Theorem 5.1. Assume that the matrices A1, . . . ,Ak com-
mute. Then the global maximum of fquad is attained on a subset
of the common eigenvectors.

Proof: Diagonalizing the matrices A1, . . . ,Ak we can write

fquad(X) =
k∑

j=1

n∑

i=1

λjix
2
ij .

After this transformation the common eigenvectors of the ma-
trices A1, . . . ,Ak are just the unit vectors e1, . . . , en.

Introducing the new variables

zij = x2
ij

we see that fquad is linear in zij, i = 1, . . . , n, j = 1, . . . , k. In-
stead of using that the vectors x1, . . . ,xk are orthogonal we relax
the conditions by maximizing

k∑

j=1

n∑

i=1

λjizij

under the conditions

n∑

i=1

zij = 1 ,
k∑

i=1

zij ≤ 1 , zij ≥ 0 .

This is a special form of the linear programming problems – the
so-called transportation problem.

Since the extremal points of the condition set are given by
permutation matrices the global maximum is attained on a per-
mutation matrix Π. Although we have maximized the functional
over a larger (convex) set, if the matrix [zij]i,j is a permutation
matrix its square root taken element wise

X = ΠD

(D = diag(α1, . . . , αk) , αi = ±1) is a matrix with orthonormal
column vectors. In other words

X =
[
α1eπ(1), . . . , αkeπ(k)

]
,

proving the theorem. �
The next proposition describes the Hessian matrix HX when

X = ΠD, Π is a permutation matrix, D is diagonal with ±1
diagonal entries. As we have seen these are the elementwise
square roots of the extremal points of the larger set considered
in the LP problem.
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Proposition 5.1. Assume that A1, . . . ,Ak are diagonal ma-
trices, X = ΠD, where Π is a permutation matrix determined
by the injection

π : {1, . . . , k} → {1, . . . , n},

D = diag(α1, . . . , αk), αi = ±1 .

Denote J = Range(Π). Consider the following matrices

• if 1 ≤ l ≤ k, j /∈ J , then let the (j, l)th element of the
matrix ξj,l be equal to 1, the others be zero,

• if 1 ≤ j < l ≤ k, then let the (π(j), l)th element of ηj,l be
equal to 1, the (π(l), j)th element be equal to −1, the others
be zero.

Then the matrices ξj,l , 1 ≤ l ≤ k, j /∈ J , ηj,l, 1 ≤ j < l ≤ k
form a complete system of orthogonal eigenvectors of HX with
the eigenvalues

λlj − λlπ(l) ,

and
(λlπ(j) + λjπ(l))− (λlπ(l) + λjπ(j)) ,

respectively.

Proof: It is an elementary calculation to show that the ma-
trices ξj,l, ηj,l satisfy the eigenvector equation. Since they are
orthogonal and their number (n−k)k+ k(k−1)

2
coincides with the

size of HX they form a complete orthogonal eigenvector system,
concluding the proof. �

Corollary 5.1. Assume that A1, . . . ,Ak are commuting
matrices, and let (x1, . . . ,xn) be their common eigenvector sys-
tem. Consider a subset of these eigenvectors xπ(1), . . . ,xπ(k)

where π : {1, . . . , k} → {1, . . . , n} is an injection. Then X =
[xπ(1), . . . ,xπ(k)] determines a local maximum of fquad if the ele-
mentary transforms of xπ(1), . . . ,xπ(k) decrease the value of this
functional.

Proof: First diagonalize the matrices A1, . . . ,Ak. Now ob-
serve that an elementary transformation xπ(j) → xπ(l) changes
the value of fquad by

(λlπ(j) + λjπ(l))− (λlπ(l) + λjπ(j)) ,
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and the change xπ(l) → xj, j /∈ J changes fquad by

λlj − λlπ(l) .

According to our assumption these are negative, thus the Hessian
at X, HX is negative definite proving that X is a strict local
maximum. �

Example. Let n = k = 3 and define

A1 = diag(9, 7, 0) , A2 = diag(0, 5, 4) , A3 = diag(3, 0, 1) .

The previous Proposition and Corollary gives that the set

e1, e2, e3

determines a global maximum of fquad while

e2, e3, e1

provides a strict local maximum of fquad, because the elementary
transformations always decrease the value of fquad.

fquad(e1, e2, e3) = 15 ,

fquad(e2, e3, e1) = 14 .

Example. Let n = k = 3 and define

A1 = diag(9, 7, 0) , A2 = diag(0, 5, 5.5) , A3 = diag(2.5, 0, 1) .

Then e1, e2, e3 and e2, e3, e1 are strict global maxima of fquad,
so in this case the maximum is attained on two different isolated
points.

6. The behaviour of the algorithm

Let us return to the algorithm defined in (3.10). Choose an

arbitrary initial point X(0) = (x
(0)
1 , . . . ,x

(0)
k ).

Theorem 6.1. Define the sequence X(m), m ≥ 0, using the
polar decomposition

A(X(m)) = X(m+1)S(m+1) .

Then fquad(X(m)) is a nondecreasing sequence and

dist(X(m), C)→ 0 , as m→∞ .
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Proof: As we pointed out X(m+1) is obtained maximizing
fbilin(X(m),Y) in Y. In particular

fbilin(X(m),X(m+1)) ≥ fquad(X(m)) .

Inequality (3.16) implies that

fquad(X(m+1)) ≥ fbilin(X(m),X(m+1))

proving that fquad(X(m)) is nondecreasing. Since Vn,k is a com-
pact set, this sequence is bounded thus it is a convergent se-
quence.

Since the matrices A1, . . .Ak are positive definite there exists
a constant c such that

‖X−Y‖ ≤ c
k∑

i=1

(yi − xi)
TAi(yi − xi)

for any systems of orthonormal vectors x1, . . . ,xk and y1, . . .yk.
The previous inequalities show that

fquad(X(m+1) −X(m))→ 0 ,

thus ‖X(m+1) −X(m)‖ → 0 . Furthermore, since

fquad(X(m+1) −X(m)) = fquad(X(m+1)) + fquad(X(m))

−2fbilin(X(m+1),X(m))

≤ fquad(X(m+1))− fquad(X(m))

we obtain that
∞∑

m=0

‖X(m+1) −X(m)‖2 <∞ .

At the same time, if X is a limit point of the sequence X(m), m ≥
0, then obviously

A(X) = XS, XTX = Ik, S ≥ 0 ,

thus X is a critical point. The compactness of C implies that

dist(X(m), C)→ 0

�
Remark. In the case when fquad has isolated critical points

the previous Theorem shows that the algorithm converges to one
of the critical points. But, in general, when the decomposition
C = ∪ Cj, the submanifolds Cj are not zero dimensional, a more
sophisticated analysis is required.
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Theorem 6.2. Assume that k < n. If there exists a global
maximum X among the limit points of the sequence X(m), m ≥
0, then

X(m) → X , as m→∞ .

Proof: The proof is based on the second order approxima-
tion of the algorithm (3.10). Let X be such a critical point
of fquad for which the vectors A1x1, . . . ,Akxk are linearly in-
dependent. Consider two - three times differentiable - curves
X(t), Z(t) ∈ Vn,k defined in a neighbourhood of zero such that
X(0) = Z(0) = X. Denote X

′
(0) = ξ, Z

′
(0) = η. Apply one

step of the algorithm to each points on the curves X(t), Z(t).

In this way we obtain the curves X̂(t), Ẑ(t), i.e.

A(X(t)) = X̂(t)A(X(t))T X̂(t) and A(X(t))T X̂(t) > 0 ,

A(Z(t)) = Ẑ(t)A(Z(t))T Ẑ(t) and A(Z(t))T Ẑ(t) > 0 .

Denote the derivatives of these curves at zero by

h(ξ) = X̂(0)′ ,

h(η) = Ẑ(0)′ .

We show that

trh(ξ)TA(η) = trh(η)TA(ξ) , (6.1)

and

tr ξTA(η) = trh(ξ)A(X)TXηT = tr ξA(X)TXh(η)T .
(6.2)

To this observe that differentiating the matrix A(Z(t))T Ẑ(t) at
zero we obtain that

A(η)TX + A(X)Th(η) = XTA(η) + h(η)TA(X) .

Since ξTX is skew-symmetric, we get that

tr ξTX
[
A(η)T + A(X)Th(η)

]
= 0 . (6.3)

Differentiating the identity

A(X(t)) = X̂(t)A(X(t))T X̂(t)

at zero we obtain that

A(ξ) = h(ξ)A(X)TX + XA(ξ)TX + XA(X)Th(ξ) .
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Similarly

A(η) = h(η)A(X)TX + XA(η)TX + XA(X)Th(η) .

This gives that

XA(η)TX + XA(X)Th(η) = A(η)− h(η)A(X)TX .

Substituting this into (6.3) we get that

tr ξTA(η) = trh(η)A(X)TXξT = tr ξA(X)TXh(η)T

using that A(X)TX is symmetric. This proves (6.1). Instead of
ξ using h(ξ) in this identity we conclude that

trh(ξ)TA(η) = trh(η)A(X)TXh(ξ)T (6.4)

must hold, proving (6.2) by symmetry. Now, if ξ ∈ KerHX

then there exists a curve X(t), X(0) = 0, X
′
(0) = ξ such that

every element X(t) is a critical point of fquad. Consequently,

X̂(t) = X(t), i.e. h(ξ) = ξ. This implies that

tr ηTA(ξ) = trh(ξ)TA(η) = trh(η)TA(ξ) .

In particular, if η is orthogonal to KerHX with respect to the
scalar product defined by < ξ, η >= tr ηTA(ξ), then h(η) will
be also orthogonal to KerHX. Consider now a second order
approximation of the functionals

fquad(X(t)), fbilin(X(t), X̂(t)), fquad(X̂(t)) .

X(t) = X + ξt+
1

2
X
′′
(0)t2 + o(t3) ,

X̂(t) = X + h(ξ)t+
1

2
X̂′′(0)t2 + o(t3) ,

fquad(X(t)) = fquad(X) + t
[
tr ξTA(X) + tr XTA(ξ)

]

+
t2

2

[
tr X

′′
(0)TA(X) + tr XTA(X

′′
(0)) + 2tr ξTA(ξ)

]
+o(t3) .

Since X ∈ C we have that tr ξTA(X) = 0 and

A(X) = XA(X)TX .
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Using that X
′′
(0)X + ξT ξ is skew-symmetric we obtain that

fquad(X(t)) = fquad(X)+t2
[
tr ξTA(ξ)− tr ξA(X)TXξT

]
+o(t3) .

Similarly

fbilin(X̂(t), X(t)) = fquad(X) + t2[trh(ξ)TA(ξ)

− 1

2

(
tr ξA(X)TXξT + trh(ξ)A(X)TXh(ξ)T

)
] + o(t3) ,

and

fquad(X̂(t)) = fquad(X)

+ t2
[
trh(ξ)TA(h(ξ))− trh(ξ)A(X)TXh(ξ)T

]
+ o(t3) .

But the construction gives that

fquad(X̂(t)) ≥ fbilin(X(t), X̂(t)) ≥ fquad(X(t))

so the same inequalities hold for the second derivatives, i.e.

tr ξTA(ξ)− tr ξA(X)TXξT

≤ 1

2

[
trh(ξ)A(X)TXh(ξ)T − tr ξA(X)TXξT

]

≤ trh(ξ)TA(h(ξ))− trh(ξ)A(X)TXh(ξ)T

where in the second term we have applied (6.2).
If X is a global maximum point then according to Corollary

2 the vectors A1x1, . . . ,Akxk are linearly independent so the
previous considerations can be applied. But now

fquad(X̂(t)) ≤ fquad(X) ,

so

trh(ξ)TA(h(ξ)) ≤ trh(ξ)A(X)TXh(ξ)T = trh(ξ)TA(ξ)

must hold. Inequality (3.16) gives that

trh(ξ)TA(h(ξ)) ≤ tr ξTA(ξ) = tr ξA(X)TXh(ξ)T .

Moreover

trh(ξ)TA(h(ξ)) + tr ξTA(ξ) ≥ 2trh(ξ)TA(ξ)
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implying that

0 ≥ trh(ξ)TA(h(ξ))− trh(ξ)A(X)TXh(ξ)T

≥ 1

2

(
trh(ξ)TAh(ξ))− tr ξTA(ξ)

)
.

Now, if ξ is orthogonal to KerHX in the scalar product intro-
duced above then h(ξ) is also orthogonal, thus

trh(ξ)TA(h(ξ)) < tr ξTA(ξ) , if ξ ⊥ KerHX .

Using the compactness of C we obtain that

c0 := sup
X∈C

sup
ξ

trh(ξ)TA(h(ξ))

tr ξTA(ξ)
< 1 , (6.5)

where the second sup is taken over the n×k matrices ξ for which

ξTX is skew-symmetric

and
tr ξTA(η) = 0 for every η ∈ KerHX .

Now, let us convert Vn,k into a Riemannian manifold introducing
the quadratic forms of the tangent spaces TX of Vn,k at X defined
by

tr ξTA(ξ)

where ξTX is skew-symmetric.
Consider the sequence of k-tuples of orthonormal vectors

X(0),X(1), . . . produced by the algorithm. Let X be a limit
point of this sequence and assume that X is a global maximum
of fquad. Denote by Ĉ the connected submanifold of C containing
X. Eject a geodesic curve from every element of the sequence
X(0),X(1), . . . to Ĉ. Assume that the curves are arclength para-
meterized, their value at zero is Z(m). Denote their derivatives
at zero by ξ(0). Then

X(m) = Z(m) + ξ(m)dR(X(m),Z(m)) + o(dr(X
(m),Z(m))2)

where dr(X
(m),Z(m))is the Riemannian distance between X(m)

and Z(m), the remainder term is uniform over Ĉ. Because of the
parameterization of these geodesic curves

tr ξ(m)A(ξ(m)) = 1 .
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Applying one step of the algorithm to the points on this geodesic
we get that

X(m+1) = Z(m) + h(ξ(m))dR(X(m),Z(m)) + o(dr(X
(m),Z(m))2) ,

implying that

dr(X
(m+1),Z(m)) ≤ c0dr(X

(m),Z(m)) +Kdr(X
(m),Z(m))2 ,

where K does not depend on the sequence X(0),X(1), . . . . This
gives that there exists a c < 1 such that if m is large enough
then

dr(X
(m+1),Z(m+1)) ≤ dr(X

(m+1),Z(m)) ≤ cdr(X
(m),Z(m)) .

Thus
dr(X

(m+1),Z(m)) and dr(X
(m+1),Z(m+1))

tend to zero exponentially fast, so Z(m) and together with this
X(m) is convergent exponentially fast, as well, proving our The-
orem. �

7. Possible generalizations to convex functions restricted to the
Stiefel-manifold

Instead of sums of quadratic functions we might consider
convex functions f1, . . . fk defined on Rn and study the problem

f(X) =
k∑

i=1

fi(xi)→ max

under the condition that (x1, . . . ,xk) form an orthonormal sys-
tem. Let us observe that a step of the algorithm considered in
Section 3 can be formulated as maximizing the linear approxi-
mation of fquad at X(m) over the Stiefel manifold Vn,k, i.e.

tr YTA(X)→ max
(Y∈Vn,k)

.

This idea can be applied to general convex functions, as well.
Starting with the element X(0) ∈ Vn,k this produces a sequence
X(1),X(2), · · · ∈ Vn,k . Since the supporting hyperplane of a con-
vex function is always below the graph of the function we obtain
that

f(X(m)) ≤ f(X(m+1)) .
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The compactness of Vn,k implies again that this nondecreasing
sequence is convergent.

Now we construct an example showing that in general it may
happen that the sequence X(m) is not convergent although its
limit points are global maxima of the functional f . Let n =
3, k = 1, i.e. we would like to maximize a convex function
f(x) on the 3-dimensional sphere S2. Every element on this
surface can be given by its polar coordinates. If y ∈ S2, then
α(y) denotes its longitude, β(Y) denotes its latitude. We define
the convex function f as the supremum of linear functions in
the way that the equator – the set of points with zero latitude
– will be the set of global maxima. To this aim first choose
an increasing sequence of integers kj ≥ 8, j ≥ 1 for which∑∞
j=1

1√
kj
< ∞. Let ln =

∑∞
j=n

4π√
kj

, mn =
∑n−1
j=1 kj. Define the

sequence x0,x1,x2, · · · ∈ S2 as follows

α(xj) = (j −mn)
2π

kn
if mn ≤ j < mn+1

β(xj) = ln − j −mn

kn

4π√
kn

if mn ≤ j < mn+1 .

This sequence lies on a ”spiral curve” converging to the equator.
Consider the function

f(x) = sup
j
cjx

T
j+1x ,

where cj ≥ 0 is an appropriate sequence. We are going to show
that this sequence can be chosen in such a way that the equator
is the set of global maxima of f and if the algorithm starts at
x0 then the sequence produced by the algorithm is exactly the
sequence xj, j ≥ 0. Since the linear function cjx

T
j+1x has a

unique global maximum on S2 at xj+1 to the last statement it
is enough to check that the linear approximation at xj is equal
to cjx

T
j+1x in other words this is the supporting hyperplane at

xj. To this aim the inequalities

cjx
T
j+1xj > clx

T
l+1xj l 6= j (7.1)

should be fulfilled. Taking first l = j − 1 we get

cj > cj−1
1

xTj+1xj
.
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But, if mn ≤ j < mn+1 then xTj+1xj = cos2π
kn
> 1− 1

2

(
2π
kn

)2
so it

is enough to assume that

cj
cj−1

=
1

1− 1
2

(
2π
kn

)2 .

Now comparing the points xmn ,xmn+1 we have to check the in-
equality

cmnx
T
mn+1xmn > cmn+1x

T
mn+1+1xmn . (7.2)

But xTmn+1xmn = cos2π
kn

, xTmn+1+1xmn < xTmn+1
xmn = cos 4π√

kj
.

Since

cmn
cmn+1

cos
2π

kn
>

[
1− 1

2

(
2π

kn

)2
]kn [

1− 1

2

(
2π

kn

)2
]

> exp

[
−
(

2π

kn

)2

(1 + kn)

]
> 1− (2π)2

kn
− (2π)2

k2
n

> 1− 1

2

(
4π√
kn

)2

+
1

4!

(
4π√
kn

)4

> cos
4π√
kn

,

we see that (7.2) holds true. Similar calculations show that (7.1)
is fulfilled for every l 6= j. Observe that the previous calculation
gives that cn is an increasing bounded sequence. Obviously

f(x) < sup
n
cn

for any x ∈ S2. On the other hand if β(x) = 0 then there exists
a subsequence xnk converging to x, consequently

cnkxnk+1x→ lim
n→∞ cn

thus x is a global maximum point.
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