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Abstract

Asymptotic behavior of the singular value decom-
position (SVD) of blown up matrices and normal-
ized blown up contingency tables exposed to Wigner-
noise is investigated. It is proved that such an m×n
matrix almost surely has a constant number of large
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√
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singular values are of order
√

m + n, as m, n → ∞.
Concentration results of Alon at al. for the eigenval-
ues of large symmetric random matrices are adapted
to the rectangular case, and on this basis, almost
sure results for the singular values as well as for the
corresponding isotropic subspaces are proved. An al-
gorithm, applicable to two-way classification of mi-
croarrays, is also given that finds the underlying
block structure.
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1. Introduction

The purpose of this paper is to fill the gap between the theory of random matrices
and the challenge of finding linear structure in large real-world data sets like internet
or microarray measurements.

In [5], large symmetric blown up matrices burdened with a so-called symmetric
Wigner-noise were investigated. It was proved that such an n×n matrix has some
protruding eigenvalues (of order n), while the majority of the eigenvalues is at most
of order

√
n with probability tending to 1, as n → ∞. These provide a useful tool to

recognize linear structure in large symmetric real matrices, such as weight matrices
of random graphs on a large number of vertices produced by communication, social,
or cellular networks. Our goal is to generalize these results for the stability of SVD
of large rectangular random matrices and to apply them to the contingency table
matrix formed by categorical variables in order to perform two-way clustering of
these variables.

First we introduce some notation.

Definition 1.1. The m × n real matrix W is a Wigner-noise if its entries wij (1 ≤
i ≤ m, 1 ≤ j ≤ n) are independent random variables, E(wij) = 0, Var (wij) ≤ σ2

with some 0 < σ < ∞ that does not depend on n and m, and the wij ’s are uniformly
bounded (i.e., there is a constant K > 0 such that |wij | ≤ K).

Though, the main results of this paper can be extended to wij ’s with any light-
tail distribution (especially for the case of Gaussian distributed wij ’s), our almost
sure results will be based on the assumptions of Definition 1.1.

According to a generalization of a theorem of Füredi and Komlós [8] to rectan-
gular matrices, the following result is valid for W (see [1]).

Lemma 1.2. The maximum singular value of the Wigner-noise W is at most of
order

√
m + n with probability tending to 1, as n, m → ∞.

Definition 1.3. The m×n real matrix B is a blown up matrix, if there is an a×b so-
called pattern matrix P with entries 0 ≤ pij ≤ 1, further there are positive integers

m1, . . . , ma with
∑a

i=1 mi = m and n1, . . . , nb with
∑b

i=1 ni = n, respectively, such
that the matrix B can be divided into a×b blocks, the block (i, j) being an mi×nj

matrix with entries all equal to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Such schemes are sought for in microarray analysis and they are called chess-
board patterns, cf. [10]. Let us fix the matrix P, blow it up to obtain matrix B, and
let A = B+W, where W is a Wigner-noise of appropriate size. We are interested in
the properties of A when m1, . . . , ma → ∞ and n1, . . . , nb → ∞, roughly speaking,
both at the same rate. More precisely, we make two different constraints on the
growth of the sizes m, n, and the growth rate of their components. The first one is
needed for all our reasonings, while the second one will be used in the case of noisy
correspondence matrices, only.

Definition 1.4.

GC1 (Growth Condition 1). There exists a constant 0 < c < 1 such that mi/m ≥ c
(i = 1, . . . , a) and there exists a constant 0 < d < 1 such that ni/n ≥ d (i =
1, . . . , b).
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GC2 (Growth Condition 2). There exist constants C ≥ 1, D ≥ 1, and C0 > 0, D0 > 0
such that m ≤ C0 · nC and n ≤ D0 · mD hold for sufficiently large m and n.

Remark 1.5.

1. GC1 implies that

c ≤ mk

mi
≤ 1

c
and d ≤ nl

nj
≤ 1

d
(1.1)

hold for any pair of indices k, i ∈ {1, . . . , a} and l, j ∈ {1, . . . , b}.
2. GC2 implies that

(
1

D0
)1/D · n1/D ≤ m ≤ C0 · nC and (

1

C0
)1/C · m1/C ≤ n ≤ D0 · mD

hold for sufficiently large m and n.

Now, let B be a blown up matrix (Definition 1.3) and W be a Wigner-noise of
the corresponding size (Definition 1.1). We want to establish some property Pm,n

that holds for the m × n random matrix A = B + W (briefly, Am×n) with m and
n large enough. In this paper Pm,n is mostly related to the SVD of Am×n. We will
consider two types of convergences.

Definition 1.6.

C1 (Convergence in probability). We say that the property Pm,n holds for Am×n

in probability (with probability tending to 1) if

lim
m,n→∞

P (Am×n has Pm,n) = 1.

C2 (Almost sure convergence). We say that the property Pm,n holds for Am×n

almost surely (with probability 1) if

P (∃ m0, n0 ∈ N such that for m ≥ m0 and n ≥ n0 Am×n has Pm,n) = 1.

Here we may assume GC1 or GC2 for the growth of m and n.

Remark 1.7.

1. C2 always implies C1.

2. Conversely, if in addition to C1,
∑∞

m=1

∑∞
n=1 pmn < ∞ also holds, where pmn =

P (Am×n does not have Pm,n), then, by the Borel–Cantelli Lemma, Am×n has
Pm,n almost surely and so, C2 is true.

In combinatorics literature C1 is frequently called almost sure convergence (this
was also the case in [5]). However, from probabilistic point of view, type C2 conver-
gence is much stronger than C1, and it makes a difference in practice: C2 guarantees
that no matter how Am×n is selected, it must have property Pm,n if m and n are
large enough.

For example, Lemma 1.2 states that the spectral norm of a Wigner-noise Wm×n

is O(
√

m + n) in probability (type C1 convergence). To prove almost sure (type
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C2) convergence, a recent sharp concentration theorem of N. Alon at al. plays a
crucial role. For the completeness we formulate this result (cf. [2]).

Lemma 1.8. Let W̃ be a q × q real symmetric matrix whose entries in and above
the main diagonal are independent random variables with absolute value at most 1.

Let λ1 ≥ λ2 ≥ · · · ≥ λq be the eigenvalues of W̃. The following estimate holds for
the deviation of the ith largest eigenvalue from its expectation with any positive
real number t:

P (|λi − E(λi)| > t) ≤ exp

(
−(1 − o(1))t2

32i2

)
when i ≤ q

2
,

and the same estimate holds for the probability P (|λq−i+1 − E(λq−i+1)| > t).

Now let W be a Wigner-noise with entries uniformly bounded by K. The
(m + n) × (m + n) symmetric matrix

W̃ =
1

K
·




0 W

WT 0




satisfies the conditions of Lemma 1.8, its largest and smallest eigenvalues being

λi(W̃) = −λn+m−i+1(W̃) =
1

K
· si(W), i = 1, . . . , min{m, n},

the others are zeros, where λi(.) and si(.) denote the ith largest eigenvalue and
singular value of the matrix in the argument, respectively (cf. [3]). Therefore

P (|s1(W) − E(s1(W))| > t) ≤ exp

(
−(1 − o(1))t2

32K2

)
. (1.2)

Lemma 1.2 asserts that W’s spectral norm ‖W‖ = s1(W) = O(
√

m + n) in proba-
bility. This fact together with inequality (1.2) ensures that E(‖W‖) = O(

√
m + n).

Hence, no matter how E(‖W‖) behaves when m → ∞ and n → ∞, the following
rough estimate holds.

Lemma 1.9. There exist two positive constants CK1 and CK2, depending on the
common bound for the entries of W, such that

P
(
‖W‖ > CK1 ·

√
m + n

)
≤ exp[−CK2 · (m + n)]. (1.3)

The exponential decay of the right hand side of (1.3) together with the second
part of Remark 1.7 implies that the spectral norm of a Wigner-noise Wm×n is
O(

√
m + n), almost surely. This observation will provide the base of C2 (almost

sure) results of Sections 2 and 3.

In case of a Wigner noise with Gaussian distributed entries relying upon the
Tracy-Widom distribution [13] of the maximal eigenvalue of the above type ma-
trices, only C1 (convergence in probability) results can be proved. Also, for other
type of distribution of W, the methods of Mehta [11] and Olkin [12] may be used to
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find the joint distribution of its singular values (for the distribution of the ordered
singular values we do not know similar results).

In Section 2 we shall prove that the m × n noisy matrix A = B + W almost
surely has r = rank (P) protruding singular values of order

√
mn. In Section 3 the

distances of the corresponding isotropic subspaces are estimated and this gives rise
to a two-way classification of the row and column items of A with sum of inner
variances O(m+n

mn ), almost surely.

In Definition 1.3 we required that the entries of the pattern matrix P be in the
[0,1] interval. We made this restriction only for the sake of the generalized Erdős–
Rényi hypergraph model to be introduced with the entries of P as probabilities.
In fact, our results are valid for any pattern matrix with fixed sizes and with non-
negative entries. For example, in microarray measurements the rows correspond to
different genes, the columns correspond to different conditions, and the entries are
the expression levels of a specific gene under a specific condition.

Sometimes the pattern matrix P is an a × b contingency table with entries that
are nonnegative integers. Then the blown up matrix B can be regarded as a larger
(m × n) contingency table that contains e.g., counts for two categorical variables
with m and n different categories, respectively. For finding maximally correlated
factors with respect to the marginal distributions of these two discrete variables,
the technique of correspondence analysis is widely used, see [6]. In case of a general
pattern matrix P (with nonnegative real entries), the blown-up matrix B can also
be regarded as a data matrix for two not independent categorical variables. As
the categories may be measured in different units, a normalization is necessary.
This normalization is made by dividing the entries of B by the square roots of the
corresponding row and column sums (cf. [10]). This transformation is identical
to that of the correspondence analysis, and the transformed matrix remains the
same when we multiply the initial matrix by a positive constant. Thus, it does
not matter whether we started with a contingency or frequency table or just with
a matrix with nonnegative entries. The transformed matrix Bcorr, which belongs
to B, has entries in [0,1] and maximum singular value 1. It is proved that there is
a remarkable gap between the rank (B) = rank (P) largest and the other singular
values of Acorr, the matrix obtained from the noisy matrix A = B + W by the
correspondence transformation. This implies well two-way classification properties
of the row and column categories (genes and expression levels) in Section 4.

In Section 5 a construction is given, how a blown up structure behind a real-life
matrix with a few protruding singular values and “well classifiable” corresponding
singular vector pairs can be found. To find SVD of large rectangular matrices
randomized algorithms are favored. They exploit the randomness of our data and
provide good approximations of the underlying clusters only if originally there was
a linear structure in our matrix.
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2. Singular values of a noisy matrix

Proposition 2.1. If GC1 holds, then all the non-zero singular values of the m × n
blown-up matrix B are of order

√
mn.

Proof. As there are at most a and b linearly independent rows and linearly in-
dependent columns in B, respectively, the rank r of the matrix B cannot exceed
min{a, b}.

Let s1 ≥ s2 ≥ · · · ≥ sr > 0 be the positive singular values of B. Let vk ∈ R
m,

uk ∈ R
n be a singular vector pair corresponding to sk, k = 1, . . . , r. Without loss of

generality, v1, . . . ,vr and u1, . . . ,ur can be unit-norm, pairwise orthogonal vectors
in R

m and R
n, respectively [9].

For the subsequent calculations we drop the subscript k, and v, u denotes a sin-
gular vector pair corresponding to the singular value s > 0 of the blown-up matrix
B, ‖v‖ = ‖u‖ = 1. It is easy to see that they have piecewise constant structures:
v has mi coordinates equal to v(i) (i = 1, . . . , a) and u has nj coordinates equal to
u(j) (j = 1, . . . , b). Then, with these coordinates the singular value–singular vector
equation

Bu = s · v (2.1)

has the form
b∑

j=1

njpiju(j) = s · v(i) (i = 1, . . . , a). (2.2)

With the notations

ũ = (u(1), . . . , u(a))
T

, ṽ = (v(1), . . . , v(b))
T

,

Dm = diag (m1, . . . , ma), Dn = diag (n1, . . . , nb)

(2.2) can be written as
PDnũ = s · ṽ.

Further, introducing the transformations

w = D1/2
n ũ, z = D1/2

m ṽ, (2.3)

the equivalent equation
D1/2

m PD1/2
n w = s · z (2.4)

is obtained. It is very important that the transformation (2.3) results in unit-norm
vectors, that is

‖w‖2 =
b∑

j=1

nju
2(j) = ‖u‖2 = 1 and ‖z‖2 =

a∑

i=1

miv
2(i) = ‖v‖2 = 1.

Furthermore, applying the transformation (2.3) for the ũk, ṽk pairs obtained from
the uk,vk pairs (k = 1, . . . , r), the orthogonality is also preserved, since

wk
T · wl =

b∑

j=1

njuk(j)ul(j) = 0 and zk
T · zl =

a∑

i=1

mivk(i)vl(i) = 0 (k 6= l).
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Consequently, zk, wk is a singular vector pair corresponding to the singular value

sk of the a × b matrix D
1/2
m PD

1/2
n (k = 1, . . . , r). With the shrinking

D̃m =
1

m
Dm, D̃n =

1

n
Dn

(2.4) is also equivalent to

D̃1/2
m PD̃1/2

n w =
s√
mn

· z,

that is the a × b matrix D̃
1/2
m PD̃

1/2
n has non-zero singular values sk√

mn
with the

same singular vector pairs zk,wk (k = 1, . . . , r).

If the sk’s are not distinct numbers, the singular vector pairs corresponding to
a multiple singular value are not unique, but still they can be obtained from the

SVD of the shrunken matrix D̃
1/2
m PD̃

1/2
n .

Now we want to establish relations between the singular values of P and

D̃
1/2
m PD̃

1/2
n . Let sk(Q) denote the kth largest singular value of a matrix Q. By

the Courant–Fischer–Weyl minimax principle (cf. [3], p.75)

sk(Q) = max
dim H=k

min
x∈H

‖Qx‖
‖x‖ .

Since we are interested only in the first r singular values, where r = rankB =

rank D̃
1/2
m PD̃

1/2
n , it is sufficient to consider vectors x, for which D̃

1/2
m PD̃

1/2
n x 6= 0.

Therefore with k ∈ {1, . . . , r} and an arbitrary k-dimensional subspace H ⊂ R
b one

can write

min
x∈H

‖D̃1/2
m PD̃

1/2
n x‖

‖x‖ = min
x∈H

‖D̃1/2
m PD̃

1/2
n x‖

‖PD̃
1/2
n x‖

· ‖PD̃
1/2
n x‖

‖D̃1/2
n x‖

· ‖D̃
1/2
n x‖
‖x‖

≥ sa(D̃
1/2
m ) · min

x∈H

‖PD̃
1/2
n x‖

‖D̃1/2
n x‖

· sb(D̃
1/2
n ) ≥

√
cd · min

x∈H

‖PD̃
1/2
n x‖

‖D̃1/2
n x‖

,

with c, d of GC1. Now taking the maximum for all possible k-dimensional subspace

H we obtain that sk(D̃
1/2
m PD̃

1/2
n ) ≥

√
cd · sk(P) > 0. On the other hand,

sk(D̃1/2
m PD̃1/2

n ) ≤ ‖D̃1/2
m PD̃1/2

n ‖ ≤ ‖D̃1/2
m ‖ · ‖P‖ · ‖D̃1/2

n ‖ ≤ ‖P‖ ≤
√

ab.

These imply that sk(D̃
1/2
m PD̃

1/2
n ) is a nonzero constant, and because of

sk(D̃
1/2
m PD̃

1/2
n ) = sk√

mn
we obtain that s1, . . . , sr = Θ(

√
mn). �

Theorem 2.2. Let A = B+W be an m×n random matrix, where B is a blown up
matrix with positive singular values s1, . . . , sr and W is a Wigner-noise of the same
size. Then under GC1 the matrix A almost surely has r singular values z1, . . . , zr

with

|zi − si| = O(
√

m + n), i = 1, . . . , r
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and for the other singular values

zj = O(
√

m + n), j = r + 1, . . . , min{m, n}

hold almost surely.

Proof. The statement follows from the analog of the Weyl’s perturbation theorem
for singular values of rectangular matrices (see [3], p.99) and from Lemma 1.9. If
si(A) and si(B) denote the ith singular values of the matrix in the argument in
decreasing order then for the difference of the corresponding pairs

|si(A) − si(B)| ≤ max
i

si(W) = ‖W‖, i = 1, . . . , min{m, n}.

By Lemma 1.9,

P
(
|si(A) − si(B)| > CK1 ·

√
m + n

)

≤P
(
‖W‖ > CK1 ·

√
m + n

)
≤ exp[−CK2 · (m + n)].

The right hand side of the last inequality is the general term of a convergent series
(defined as a double summation), thus the second part of Remark 1.7 implies the
almost sure statement of the theorem. �

Remark 2.3. A more precise estimation of the individual differences can be obtained
in the following way. With any positive constant C

P
(
|zi − si| > C

√
m + n

)
≤ P

(
|zi − E(zi)| + |E(zi) − si| > C

√
m + n

)

= P
(
|zi − E(zi)| > C

√
m + n − |E(zi) − si|

)
≤ P

(
|zi − E(zi)| > C1(

√
m + n

)

≤ exp

[
(1 − o(1))C2

1(m + n)

32i2(K + 1)2

]
=: pmn, i = 1, . . . , r

with some constant C1 ≤ C. We used Lemma 1.8 and the fact that the difference
between the constants E(zi) and si is O(

√
m + n). As

∑∞
m=1

∑∞
n=1 pmn < ∞, the

Borel–Cantelli Lemma implies that |zi − si| = O(
√

m + n) holds almost surely for
i = 1, . . . , r.

Corollary 2.4. With notations

ε := ‖W‖ = O(
√

m + n) and ∆ := min
1≤i≤r

si(B) = min
1≤i≤r

si = Θ(
√

mn) (2.5)

there is a spectral gap of size ∆ − 2ε between the r largest and the other singular
values of the perturbed matrix A, and this gap is significantly larger than ε.
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3. Classification via singular vector pairs

With the help of Theorem 2.2 we can estimate the distances between the corre-
sponding right- and left-hand side eigenspaces (isotropic subspaces) of the matrices
B and A = B + W. Let v1, . . . ,vm ∈ R

m and u1, . . . ,un ∈ R
n be orthonormal

left- and right-hand side singular vectors of B,

Bui = si · vi (i = 1, . . . , r) and Buj = 0 (j = r + 1, . . . , n).

Let us also denote the unit-norm, pairwise orthogonal left- and right-hand side
singular vectors corresponding to the r protruding singular values z1, . . . , zr of A

by y1, . . . ,yr ∈ R
m and x1, . . . ,xr ∈ R

n, respectively. For them

Axi = zi · yi (i = 1, . . . , r)

holds true. Let

F := Span {v1, . . . ,vr} and G := Span {u1, . . . ,ur}

denote the generated linear subspaces in R
m and R

n, respectively; further, let
dist(y, F ) denote the Euclidean distance between the vector y and the subspace F .

Proposition 3.1. With the above notation, under GC1 the following estimate holds
almost surely for the sum of the squared distances between y1, . . . ,yr and F :

r∑

i=1

dist2(yi, F ) ≤ r
ε2

(∆ − ε)2
= O

(
m + n

mn

)
, (3.1)

and analogously, for the sum of the squared distances between x1, . . . ,xr and G:

r∑

i=1

dist2(xi, G) ≤ r
ε2

(∆ − ε)2
= O

(
m + n

mn

)
. (3.2)

Proof. Let us choose one of the right-hand side singular vectors x1, . . . ,xr of A =
B + W and denote it simply by x with corresponding singular value z. We shall
estimate the distance between x and G, similarly between y = Ax/z and F . For
this purpose we expand x and y in the orthonormal bases u1, . . . ,un and v1, . . . ,vm,
respectively:

x =

n∑

i=1

tiui and y =

m∑

i=1

livi.

Then

Ax = (B + W)x =

r∑

i=1

tisivi + Wx, (3.3)

and on the other hand,

Ax = zy =

m∑

i=1

zlivi. (3.4)
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Equating the right-hand sides of (3.3) and (3.4) we obtain

r∑

i=1

(zli − tisi)vi +

m∑

i=r+1

zlivi = Wx.

Applying the Pythagorean Theorem

r∑

i=1

(zli − tisi)
2 + z2

m∑

i=r+1

l2i = ‖Wx‖2 ≤ ε2, (3.5)

because ‖x‖ = 1 and ‖W‖ = ε.

As z ≥ ∆ − ε holds almost surely by Theorem 2.2,

dist2(y, F ) =

m∑

i=r+1

l2i ≤ ε2

z2
≤ ε2

(∆ − ε)2
.

The order of the above estimate follows from the order of ε and ∆ of (2.5):

dist2(y, F ) = O(
m + n

mn
) (3.6)

almost surely.

Applying (3.6) for the left-hand side singular vectors y1, . . . ,yr, by the definition
of C2

P {∃m0i, n0i ∈ N such that for m ≥ m0i and n ≥ n0i:

dist2(yi, F ) ≤ ε2/(∆ − ε)2
}

= 1

for i = 1, . . . , r. Hence,

P {∃m0, n0 ∈ N such that for m ≥ m0 and n ≥ n0:

dist2(yi, F ) ≤ ε2/(∆ − ε)2, i = 1, . . . , r
}

= 1,

consequently,

P {∃m0, n0 ∈ N such that for m ≥ m0 and n ≥ n0:
r∑

i=1

dist2(yi, F ) ≤ rε2/(∆ − ε)2 } = 1

also holds, and this finishes the proof of the first statement.

The estimate for the squared distance between G and a right-hand side singular
vector x of A follows in the same way starting with

ATy = z · x

and using the fact that AT has the same singular values as A. �

Proposition 3.1 implies that the individual distances between the original and
the perturbed subspaces and also the sum of these distances tend to zero almost
surely, as m, n → ∞.
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Now let A be a microarray on m genes and n conditions, with aij denoting the
expression level of gene i under condition j. We suppose that A is a noisy random
matrix obtained by adding a Wigner-noise W to the blown up matrix B. Let us
denote by A1, . . . , Aa the partition of the genes and by B1, . . . , Bb the partition of
the conditions with respect to the blow-up (they can also be thought of as clusters
of genes and conditions).

Proposition 3.1 implies the well-clustering property of the representatives of the
genes and conditions in the following representation. Let Y be the m × r matrix
containing the left-hand side singular vectors y1, . . . ,yr of A in its columns. Sim-
ilarly, let X be the n × r matrix containing the right-hand side singular vectors
x1, . . . ,xr of A in its columns. Let the r-dimensional representatives of the genes
be the row vectors of Y: y1, . . . ,ym ∈ R

r, while the r-dimensional representatives
of the conditions be the row vectors of X: x1, . . . ,xn ∈ R

r. Let S2
a(Y) denote

the a-variance, introduced in [4], of the genes’ representatives in the clustering
A1, . . . , Aa:

S2
a(Y) =

a∑

i=1

∑

j∈Ai

‖yj − ȳi‖2, where ȳi =
1

mi

∑

j∈Ai

yj , (3.7)

while S2
b (X) denotes the b-variance of the conditions’ representatives in the clus-

tering B1, . . . , Bb:

S2
b (X) =

b∑

i=1

∑

j∈Bi

‖xj − x̄i‖2, where x̄i =
1

ni

∑

j∈Bi

xj . (3.8)

Theorem 3.2. With the above notation, under GC1 for the a- and b-variances of
the representation of the microarray A the relations

S2
a(Y) = O

(
m + n

mn

)
and S2

b (X) = O
(

m + n

mn

)

hold almost surely.

Proof. By the proof of Theorem 3 of [4] it can be easily seen that S2
a(Y) and S2

b (X)
is equal to the left-hand side of (3.1) and (3.2), respectively, therefore they are also
of order O(m+n

mn
). �

Hence, the addition of any kind of a Wigner-noise to a rectangular matrix that
has a blown up structure B will not change the order of the protruding singular
values, and the block structure of B can be reconstructed from the representatives
of the row and column items of the noisy matrix A.

With an appropriate Wigner-noise, we can achieve that the matrix B + W in
its (i, j)-th block contains 1’s with probability pij , and 0’s otherwise. That is, for
i = 1, . . . , a, j = 1, . . . , b, l ∈ Ai, k ∈ Bj, let

wlk :=

{
1 − pij with probability pij

−pij with probability 1 − pij

(3.9)
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be independent random variables. This W satisfies the conditions of Definition 1.1
with entries uniformly bounded by 1, zero expectation and variance

σ2 = max
1≤i≤a; 1≤j≤b

pij(1 − pij) ≤
1

4
.

The noisy matrix A becomes a 0-1 matrix that can be regarded as the incidence
matrix of a hypergraph on m vertices and n edges. (Vertices correspond to the
genes and edges correspond to the conditions. The incidence relation depends on
whether a specific gene is expressed or not under a specific condition).

By the choice (3.9) of W, the vertices of Ai are contained in edges of Bj with
probability pij (set i of genes equally influences set j of conditions, like the chess-
board pattern of [10]). It is a generalization of the classical Erdős–Rényi model
for random hypergraphs and for several blocks, see [7]. The question, how such a
chess-board pattern behind a random (especially 0-1) matrix can be found under
specific conditions, is discussed in Section 5.

4. Perturbation results for correspondence matrices

Now the pattern matrix P contains arbitrary non-negative entries, so does the
blown up matrix B. Let us suppose that there are no identically zero rows or
columns. We perform the correspondence transformation described below on B.
We are interested in the order of singular values of matrix A = B + W when the
same correspondence transformation is applied to it. To this end, we introduce the
following notations:

DBrow = diag (dBrow 1, . . . , dBrow m) := diag




n∑

j=1

b1j, . . . ,

n∑

j=1

bmj




DBcol = diag (dBcol 1, . . . , dBcol n) := diag

(
m∑

i=1

bi1, . . . ,

m∑

i=1

bin

)

DArow = diag (dArow 1, . . . , dArow m) := diag




n∑

j=1

a1j, . . . ,
n∑

j=1

amj




DAcol = diag (dAcol 1, . . . , dAcol n) := diag

(
m∑

i=1

ai1, . . . ,

m∑

i=1

ain

)
.

Further, set

Bcorr := D
−1/2
BrowBD

−1/2
Bcol and Acorr := D

−1/2
ArowAD

−1/2
Acol (4.1)

for the transformed matrices obtained from B and A while carrying out correspon-
dence analysis on B and the same correspondence transformation on A.

It is well known [6] that the leading singular value of Bcorr is equal to 1 and the
multiplicity of 1 as a singular value coincides with the number of irreducible blocks
in B. Let si denote a non-zero singular value of Bcorr with unit-norm singular
vector pair vi, ui. With the transformations

vcorr i := D
−1/2
Browvi and ucorr i := D

−1/2
Bcol ui (4.2)
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the so-called correspondence vector pairs are obtained. If the coordinates ucorr i(j),
vcorr i(j) of such a pair are regarded as possible values of two discrete random vari-
ables βi and αi (often called the ith correspondence factor pair) with the prescribed
marginals, then, as in canonical analysis, their correlation is si, and this is the
largest possible correlation under the condition that they are uncorrelated with the
previous random variables β1, . . . , βi−1 and α1, . . . , αi−1, respectively (i > 1).

If s1 = 1 is a simple singular value, then vcorr 1 and ucorr 1 are the all 1 vectors
and the corresponding β1, α1 pair is regarded as a trivial correspondence factor
pair. This corresponds to the general case. Keeping k ≤ rankBcorr = rankB =
rankP singular values with the coordinates of the corresponding k − 1 non-trivial
correspondence factor pairs, the following (k−1) dimensional representation of the
jth and lth categories of the underlying two discrete variables is obtained:

vj
corr := (vcorr 2(j), . . . , vcorr k(j)) and ul

corr := (ucorr 2(l), . . . , ucorr k(l)) .

This representation has the following optimality properties: the closeness of cat-
egories of the same variable reflects the similarity between them, while the closeness
of categories of different variables reflects their frequent simultaneous occurrence.
For example, B being a microarray, the representatives of similar function genes,
as well as representatives of similar conditions are close to each other; also, rep-
resentatives of genes that are responsible for a given condition, are close to the
representatives of those conditions. Now we prove the following.

Proposition 4.1. Given the blown up matrix B, under GC1 there exists a constant
δ ∈ (0, 1), independent of m and n, such that all the r non-zero singular values of
Bcorr are in the interval [δ, 1], where r = rankB = rankP.

Proof. It is easy to see that Bcorr is the blown up matrix of the a×b pattern matrix
P̃ with entries

p̃ij =
pij√

(
∑b

l=1 pilnl)(
∑a

k=1 pkjmk)
.

Following the considerations of the proof of Proposition 2.1, the blown up ma-
trix Bcorr has exactly r = rankP = rank P̃ non-zero singular values that are the

singular values of the a × b matrix P′ = D
1/2
m P̃D

1/2
n with entries

p′ij =
pij

√
mi

√
nj√

(
∑b

l=1 pilnl)(
∑a

k=1 pkjmk)
=

pij√
(
∑b

l=1 pil
nl

nj
)(
∑a

k=1 pkj
mk

mi
)
.

Since the matrix P contains no identically zero rows or columns, the matrix P′

varies on a compact set of a×b matrices determined by the inequalities (1.1). (Here
the compactness is understood in the topology induced by the spectral norm.) The
range of the non-zero singular values depends continuously on the matrix that does
not depend on m and n. Therefore, the minimum non-zero singular value does not
depend on m or n. The largest singular value being 1, this finishes the proof. �

Theorem 4.2. Under GC1 and GC2 there exists a positive number δ (inde-
pendent of m and n) such that for every 0 < τ < 1/2 the following state-
ment holds almost surely: the r largest singular values of Acorr are in the in-
terval [δ − max{n−τ , m−τ}, 1 + max{n−τ , m−τ}], while all the others are at most
max{n−τ , m−τ}.
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Proof. First notice that

Acorr = D
−1/2
ArowAD

−1/2
Acol = D

−1/2
ArowBD

−1/2
Acol + D

−1/2
ArowWD

−1/2
Acol . (4.3)

Observe, that the entries of DBrow and those of DBcol are of order Θ(n) and
Θ(m), respectively. Now we prove that for every i = 1, . . . , m and j = 1, . . . , n
|dArow i −dBrow i| < n ·n−τ and |dAcol j −dBcol j | < m ·m−τ hold almost surely. To
this end we use Chernoff’s inequality for large deviations (cf. [5], Lemma 4.2):

P
(
|dArow i − dBrow i| > n · n−τ

)
= P



∣∣∣∣∣∣

n∑

j=1

wij

∣∣∣∣∣∣
> n1−τ




< exp

{
− n2−2τ

2(Var (
∑n

j=1 wij) + Kn1−τ/3)

}

≤ exp

{
− n2−2τ

2(nσ2 + Kn1−τ/3)

}

= exp

{
− n1−2τ

2(σ2 + Kn−τ/3)

}
(i = 1, . . . , m),

where the constant K is the uniform bound for |wij |’s and σ2 is the bound for their
variances. In virtue of GC2 the following estimate holds with some C0 > 0 and
C ≥ 1 (constants of GC2) and large enough n:

P
(
|dArow i − dBrow i| > n1−τ for all i ∈ {1, . . . , m}

)

≤ m · exp

{
− n1−2τ

2(σ2 + Kn−τ/3)

}

≤ C0 · nC · exp

{
− n1−2τ

2(σ2 + Kn−τ/3)

}

= exp

{
lnC0 + C lnn − n1−2τ

2(σ2 + Kn−τ/3)

}
.

(4.4)

The estimation of probability

P
(
|dAcol j − dBcol j | > m1−τ for all j ∈ {1, . . . , n}

)

can be treated analogously (with D0 > 0 and D ≥ 1 of GC2). Now the second part
of Remark 1.7 can be applied since the right-hand side of (4.4) forms a convergent
series. Therefore

min
i∈{1,...,m}

|dArow i| = Θ(n),

min
j∈{1,...,n}

|dAcol j | = Θ(m)
(4.5)

hold almost surely.

Now it is straightforward to bound the norm of the second term of (4.3) by

‖D−1/2
Arow‖ · ‖W‖ · ‖D−1/2

Acol ‖. (4.6)
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As by Lemma 1.9 ‖W‖ = O(
√

m + n) holds almost surely, the quantity (4.6)

is at most of order
√

m+n
mn almost surely. Hence, it is almost surely less than

max{n−τ , m−τ}.
In order to estimate the norm of the first term of (4.3) let us write it in the form

D
−1/2
ArowBD

−1/2
Acol = D

−1/2
BrowBD

−1/2
Bcol +

+
[
D

−1/2
Arow − D

−1/2
Brow

]
BD

−1/2
Bcol +

+ D
−1/2
ArowB

[
D

−1/2
Acol −D

−1/2
Bcol

]
.

(4.7)

The first term is just Bcorr, so – due to Proposition 4.1 – we should prove only
that the norms of both remainder terms are almost surely less than max{n−τ , m−τ}.
These two terms have a similar appearance, therefore it is enough to estimate one
of them. For example, the second term can be bounded by

‖D−1/2
Arow −D

−1/2
Brow‖ · ‖B‖ · ‖D−1/2

Bcol ‖. (4.8)

The estimation of the first factor in (4.8) is as follows:

‖D−1/2
Arow − D

−1/2
Brow‖ = max

i∈{1,...,m}

(
1√

dArow i

− 1√
dBrow i

)

= max
i∈{1,...,m}

|dArow i − dBrow i|√
dArow i · dBrow i(

√
dArow i +

√
dBrow i)

≤ max
i∈{1,...,m}

|dArow i − dBrow i|√
dArow i · dBrow i

· max
i∈{1,...,m}

1

(
√

dArow i +
√

dBrow i)
.

(4.9)

By relations (4.5),
√

dArow i · dBrowi = Θ(n) for any i = 1, . . . , m almost surely, and
hence,

|dArow i − dBrow i|√
dArow i · dBrow i

≤ n−τ

holds almost surely, further maxi∈{1,...,m}
1√

dArowi+
√

dBrowi
= Θ( 1√

n
) almost surely.

Therefore the left hand side of (4.9) can be estimated by n−τ−1/2 from above
almost surely. For the further factors in (4.8) we obtain ‖B‖ = Θ(

√
mn) (see

Proposition 2.1), while ‖D−1/2
Bcol ‖ = Θ( 1√

m
) almost surely. These together imply,

that
n−τ−1/2 · n1/2m1/2 · m−1/2 ≤ n−τ ≤ max{n−τ , m−τ}.

This finishes the estimation of the first term in (4.3), and by he Weyl’s perturbation
theorem the proof, too. �

Remark 4.3. In the Gaussian case the large deviation principle can be replaced by
the simple estimation of the Gaussian probabilities with any κ > 0:

P



∣∣∣∣∣∣
1

n

n∑

j=1

wij

∣∣∣∣∣∣
> κ


 < min

(
1,

4σ

κ
√

2πn
exp

{
− n

2σ2
κ2
})

. (4.10)
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Setting κ = n−τ we get an estimate, analogous to (4.4).

Suppose that the blown up matrix B is irreducible and its non-negative entries
sum up to 1. This restriction does not effect the result of the correspondence
analysis, that is the SVD of the matrix Bcorr. By the theory of correspondence
analysis, the non-zero singular values of Bcorr are the numbers 1 = s1 > s2 ≥
· · · ≥ sr > 0 with unit-norm singular vector pairs vi, ui having piecewise constant
structure (i = 1, . . . , r). Set

F := Span {v1, . . . ,vr} and G := Span {u1, . . . ,ur}.

The correspondence vector pairs obtained by the transformations

vcorr i := D
−1/2
Browvi and ucorr i := D

−1/2
Bcol ui

contain coordinates of the discrete random variables βi and αi, respectively. Apart
from the first (trivial) pair – with all 1 coordinates – they are of zero expectation
and unit variance with respect to the marginal distributions

dBrow 1, . . . , dBrow m and dBcol 1, . . . , dBcol n,

respectively. Further, the different αi’s and βi’s are uncorrelated with respect to
the joint discrete distribution embodied by the entries of B.

Let 0 < τ < 1/2 be arbitrary and ǫ := max{n−τ , m−τ}. Let us also denote
the unit-norm, pairwise orthogonal left- and right-hand side singular vectors corre-
sponding to the r singular values z1, . . . , zr ∈ [δ− ǫ, 1+ ǫ] of Acorr – guaranteed by
Theorem 4.2 under GC2 – by y1, . . . ,yr ∈ R

m and x1, . . . ,xr ∈ R
n, respectively.

Proposition 4.4. With the above notation, under GC1 and GC2 the following esti-
mate holds almost surely for the distance between yi and F :

dist(yi, F ) ≤ ǫ

(δ − ǫ)
=

1

( δ
ǫ − 1)

(i = 1, . . . , r) (4.11)

and analogously, for the distance between xi and G:

dist(xi, G) ≤ ǫ

(δ − ǫ)
=

1

( δ
ǫ
− 1)

(i = 1, . . . , r). (4.12)

Proof. Follow the method of proving Proposition 3.1 – under GC1 – with δ instead
of ∆ and ǫ instead of ε! Here GC2 is necessary only for Acorr to have r protruding
singular values. �

Remark 4.5. The left-hand sides of (4.11) and (4.12) are almost surely of order
max{n−τ , m−τ} that tend to zero, as m, n → ∞ under GC1 and GC2.

Proposition 4.4 implies the well-clustering property of the representatives of the
two discrete variables by means of the noisy correspondence vector pairs

ycorr i := D
−1/2
Arowyi, xcorr i := D

−1/2
Acol xi (i = 1, . . . , r).
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Let Ycorr be the m × r matrix containing the left-hand side vectors
ycorr 1, . . . ,ycorr r in its columns. Similarly, let Xcorr be the n×r matrix containing
the right-hand side vectors xcorr 1, . . . ,xcorr r in its columns. Let the r-dimensional
representatives of α be the row vectors of Ycorr: y1

corr, . . . ,y
m
corr ∈ R

r, while the r-
dimensional representatives of β be the row vectors of Xcorr: x1

corr, . . . ,x
n
corr ∈ R

r.
With respect to the marginal distributions, let the a- and b-variances of these rep-
resentatives be defined by

S2
a(Ycorr) =

a∑

i=1

∑

j∈Ai

dArow j‖yj
corr − ȳi

corr‖2, where ȳi
corr =

∑

j∈Ai

dArow jy
j
corr,

while

S2
b (Xcorr) =

b∑

i=1

∑

j∈Bi

dAcol j‖x(j)
corr − x̄i

corr‖2, where x̄i
corr =

∑

j∈Bi

dAcol jx
j
corr.

Theorem 4.6. With the above notation, under GC1 and GC2

S2
a(Ycorr) ≤

r

( δ
ǫ − 1)2

and S2
b (Xcorr) ≤

r

( δ
ǫ − 1)2

hold almost surely, where ǫ = max{n−τ , m−τ} with every 0 < τ < 1/2.

Proof. An easy calculation shows that

S2
a(Ycorr) =

r∑

i=1

dist2(yi, F ) and S2
b (Xcorr) =

r∑

i=1

dist2(xi, G),

hence the result of Proposition 4.4 can be used. �

Under GC1 and GC2 with m, n large enough, Theorem 4.6 implies that after per-
forming correspondence analysis on the noisy matrix A, the representation through
the correspondence vectors belonging to Acorr will also reveal the block structure
behind A.
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5. Recognizing the structure

One might wonder where the singular values of an m × n matrix A = (aij) are
located if a := maxi,j |aij | is independent of m and n. On one hand, the maximum

singular value cannot exceed O(
√

mn), as it is at most
√∑m

i=1

∑n
j=1 a2

ij. On the

other hand, let Q be an m×n random matrix with entries a or −a (independently of
each other). Consider the spectral norm of all such matrices and take the minimum
of them:

min
Q∈{−a,+a}m×n

‖Q‖.

This quantity measures the minimum linear structure that a matrix of the same size
and magnitude as A can possess. As the Frobenius norm of Q is a

√
mn, in virtue of

inequalities between spectral and Frobenius norms, the above minimum is at least
a√
2

√
m + n, which is exactly the order of the spectral norm of a Wigner-noise.

So an m × n random matrix (whose entries are independent and uniformly
bounded) under very general conditions has at least one singular value of order
greater than

√
m + n. Suppose there are k such singular values and the represen-

tatives by means of the corresponding singular vector pairs can be well classified
in the sense of Theorem 3.2 (cf. the introduction to this theorem). Under these
conditions we can reconstruct a blown up structure behind our matrix.

Theorem 5.1. Let Am×n be a sequence of m × n matrices, where m and n tend
to infinity. Assume, that Am×n has exactly k singular values of order greater than√

m + n (k is fixed). If there are integers a ≥ k and b ≥ k such that the a- and b-
variances of the row- and column-representatives are O(m+n

mn
), then there is a blown

up matrix Bm×n such that Am×n = Bm×n + Em×n, with ‖Em×n‖ = O(
√

m + n).

Proof. The proof gives an explicit construction for Bm×n. In the sequel the sub-
scripts m and n will be dropped. We shall speak in terms of microarrays (genes
and conditions).

Let y1, . . . ,yk ∈ R
m and x1, . . . ,xk ∈ R

n denote the left- and right-hand side
unit-norm singular vectors corresponding to z1, . . . , zk, the singular values of A of
order larger than

√
m + n. The k-dimensional representatives of the genes and con-

ditions – that are row vectors of the m×k matrix Y = (y1, . . . ,yk) and those of the
n×k matrix X = (x1, . . . ,xk), respectively – by the condition of the theorem form
a and b clusters, respectively in R

k with sum of inner variances O(m+n
mn

). Reorder

the rows and columns of A according to the clusters. Denote by y1, . . . ,ym ∈ R
k

and x1, . . . ,xn ∈ R
k the Euclidean representatives of the genes and conditions (the

rows of the reordered Y and X), and let ȳ1, . . . , ȳa ∈ R
k and x̄1, . . . , x̄b ∈ R

k

denote the cluster centers, respectively. Now let us choose the following new rep-
resentation of the genes and conditions. The genes’ representatives be row vectors

of the m × k matrix Ỹ such that the first m1 rows of Ỹ be equal to ȳ1, the next

m2 rows to ȳ2, and so on, the last ma rows of Ỹ be equal to ȳa; similarly, the

conditions’ representatives be row vectors of the n× k matrix X̃ such that the first

n1 rows of X̃ be equal to x̄1, and so on, the last nb rows of X̃ be equal to x̄b.
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By the considerations of Theorem 3.2 and the assumption for the clusters

k∑

i=1

dist2(yi, F ) = S2
a(Y) = O(

m + n

mn
) (5.1)

and
k∑

i=1

dist2(xi, G) = S2
b (X) = O(

m + n

mn
) (5.2)

hold respectively, where the k-dimensional subspace F ⊂ R
m is spanned by the

column vectors of Ỹ, while the k-dimensional subspace G ⊂ R
n is spanned by the

column vectors of X̃. We follow the construction given in [4] (see Proposition 2)
of a set v1, . . . ,vk of orthonormal vectors within F and another set u1, . . . ,uk of
orthonormal vectors within G such that

k∑

i=1

‖yi − vi‖2 = min
v′

1
,...,v′

k

v′T
i v′

j=δij

k∑

i=1

‖yi − v′
i‖2 ≤ 2

k∑

i=1

dist2(yi, F ) (5.3)

and
k∑

i=1

‖xi − ui‖2 = min
u′

1
,...,u′

k

u′T
i u′

j=δij

k∑

i=1

‖xi − u′
i‖2 ≤ 2

k∑

i=1

dist2(xi, G) (5.4)

hold. The construction of vi’s is as follows (ui’s can be constructed in the same
way). Let v′

1, . . . ,v
′
k ∈ F an arbitrary orthonormal system (obtained e.g., by the

Schmidt orthogonalization method). Let V′ = (v′
1, . . . ,v

′
k) be m × k matrix and

YT V′ = QSZT

be SVD, where the matrix S contains the singular values of the k×k matrix YTV′ in
its main diagonal and zeros otherwise, while Q and Z are k×k orthogonal matrices
(containing the corresponding unit norm singular vector pairs in their columns).
The orthogonal matrix R = ZQT will give the convenient orthogonal rotation of
the vectors v′

1, . . . ,v
′
k. That is, the column vectors of the matrix V = V′R form

also an orthonormal set that is the desired set v1, . . . ,vk.

Define the error terms ri and qi, respectively:

ri = yi − vi and qi = xi − ui (i = 1, . . . , k).

In view of (5.1) – (5.4)

k∑

i=1

‖ri‖2 = O(
m + n

mn
) and

k∑

i=1

‖qi‖2 = O(
m + n

mn
) (5.5)

hold.

Consider the following decomposition:

A =
k∑

i=1

ziyix
T
i +

min{m,n}∑

i=k+1

ziyix
T
i .
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The spectral norm of the second term is at most of order
√

m + n. Now consider
the first term,

k∑

i=1

ziyix
T
i =

k∑

i=1

zi(vi + ri)(u
T
i + qT

i ) =

=
k∑

i=1

ziviu
T
i +

k∑

i=1

ziviq
T
i +

+
k∑

i=1

ziriu
T
i +

k∑

i=1

ziriq
T
i .

(5.6)

Since v1, . . . ,vk and u1, . . . ,uk are unit vectors, the last three terms in (5.6) can
be estimated by means of the relations

‖viu
T
i ‖ =

√
‖viu

T
i uiv

T
i ‖ = 1 (i = 1, . . . , k),

‖viq
T
i ‖ =

√
‖qiv

T
i viq

T
i ‖ = ‖qi‖ (i = 1, . . . , k),

‖riu
T
i ‖ =

√
‖riu

T
i uir

T
i ‖ = ‖ri‖ (i = 1, . . . , k),

‖riq
T
i ‖ =

√
‖riq

T
i qir

T
i ‖ = ‖qi‖ · ‖ri‖ (i = 1, . . . , k).

Taking into account that zi cannot exceed Θ(
√

mn) and k is fixed, due to (5.5) we
get that the spectral norms of the last three terms in (5.6) – for their finitely many
subterms the triangle inequality is applicable – are at most of order

√
m + n. Let

B be the first term, i.e.,

B =
k∑

i=1

ziviu
T
i ,

then ‖A− B‖ = O(
√

m + n).

By definition, the vectors v1, . . . ,vk and the vectors u1, . . . ,uk are in the sub-
spaces F and G, respectively. Both spaces consist of piecewise constant vectors,
thus the matrix B is a blown up matrix containing a× b blocks. The ’noise’ matrix
is

E =
k∑

i=1

ziviq
T
i +

k∑

i=1

ziriu
T
i +

k∑

i=1

ziriq
T
j +

min{m,n}∑

i=k+1

ziyix
T
i

that finishes the proof. �

Then, provided the conditions of Theorem 5.1 hold, by the construction given in
the proof above, an algorithm can be written that uses several SVD’s and produces
the blown up matrix B. This B can be regarded as the best blown up approxi-
mation of microarray A. At the same time clusters of the genes and conditions
are also obtained. More precisely, first we conclude the clusters from the SVD of
A, rearrange the rows and columns of A accordingly, and after we use the above
construction. If we decide to perform correspondence analysis on A then by (4.3)
and (4.7), Bcorr will give a good approximation to Acorr and similarly, the corre-
spondence vectors obtained by the SVD of Bcorr will give representatives of the
genes and conditions.
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To obtain SVD of large matrices, randomized algorithms are at our disposal,
e.g., [1]. There is nothing to loose when applying these algorithms because they
give the required results only if our matrix had a primary linear structure.
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