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Abstract7

Behaviour of the eigenvalues of random matrices with an underlying linear structure is8
investigated, when the structure is exposed to random noise. The question, how a determ-9
inistic skeleton behind a random matrix can be recognized, is also discussed. Such random10
matrices, as weight matrices of random graphs, adequately describe some large biological and11
communication networks. A range for the power of random power law graphs—for which the12
structure is robust enough—is established.13
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1. Introduction17

Mostly we think of random matrices as completely random Wigner-type matrices18
whose eigenvalues obey the semi-circle law. No matter how important this type19
of a matrix in quantum mechanics was, in case of real-life matrices it is merely a20
random noise added to the underlying linear structure of the matrix (if there is any).
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Although, it is hard to recognize the structure concealed by the noise, in a number of21
models it is possible by means of spectral techniques and large deviations principles.22

Usually, our matrix is the weight matrix of some random weighted graph G =23
(V ,A) with an n-element vertex set V and n × n symmetric weight matrix A, where24
n → ∞. For example, some communication, social or biological networks can be25
adequately described by a random graph model. Performing graph-embedding tech-26
niques, it is a crucial question how many protruding eigenvalues—with correspond-27
ing eigenvectors—to choose for the vertex-representation.28

Also, the classical numerical algorithms for the spectral decomposition of a mat-29
rix with size exceeding a million are not immediately applicable, and some newly30
developed randomized algorithms are to be used instead, see [1]. These algorithms31
exploit the randomness of our matrix, and rely on the fact that a random noise will32
not change the order of magnitude of the relevant eigenvalues with large absolute33
value. Sometimes—instead of depriving our matrix of the noise—a noise is added34
(by digitalizing the entries of or making the underlying matrix sparse by an appro-35
priate randomization) to make the matrix more easily decomposable by means of36
the classical methods. For example, the Lánczos method (see Section 9 of [11]) is37
applicable to large, sparse, symmetric eigenproblems.38

Both the number of eigenvalues to be kept and algorithmic questions can be—39
at least partly—analyzed by means of the results in Sections 2 and 3. For an easy40
discussion, in [6] we introduced the notion of Wigner-noise that is a generalization of41
a random matrix investigated by Wigner [15] and the eigenvalues of which obey the42
semi-circle law (if the order of the matrix tends to infinity). We cite the definitions.43

Definition 1.1. The n × n real matrix W is a Wigner-noise if it is symmetric, its44
entries wij , 1 � i � j � n, are independent random variables, E(wij ) = 0, Var(wij )45
� σ 2 with some 0 < σ < ∞ and either the wij ’s are uniformly bounded (there is a46
constant K > 0 such that |wij | � K) or they are Gaussian distributed.47

For example, mutations in cellular networks as well as random effects in social48
networks can be modelled by a Wigner-noise. By the method of Füredi and Komlós49
[10] it can be proved (see [1]) that for the maximum absolute value eigenvalue of W50

max
1�i�n

|λi(W)| � 2σ
√
n + O(n1/3 log n) (1.1)

holds with probability tending to 1, if n → ∞.51
In the sequel, we put this noise on the following general deterministic structure.52

Definition 1.2. The n × n matrix B is a blown up matrix, if there is a constant k < n,53
a k × k symmetric so-called pattern matrix P with entries 0 � pij � 1, and there are54

positive integers n1, . . . , nk ,
∑k

i=1 ni = n such that B can be divided into k2 blocks,55
the block (i, j) being an ni × nj matrix with entries all equal to pij (1 � i, j � k).56
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In particular, if n1 = . . . = nk = n/k, then B = P ⊗ F, where F is the n/k × n/k57
all 1’s matrix and ⊗ is the Kronecker-product of matrices.58

Now k will be kept fixed, while n1, . . . , nk will tend to infinity in the same order,59
and we put a Wigner-noise on our blown up matrix.60

Definition 1.3. Let B be a blown up matrix of Definition 1.2, and W be an n × n61
Wigner-noise of Definition 1.1. We say that the property Tn holds almost surely62
for the n × n random matrix A = B + W, if the probability that A has the property63
Tn tends to 1, if n → ∞ in such a way that ni/n � c with some constant c for64
i = 1, . . . , k.65

Under the above conditions, in [5] we thoroughly investigated a special case of66
a block-matrix perturbed by Wigner-noise. Now similar results will be proved for a67
general blown up matrix B. Under the notation of Definitions 1.1–1.3, in Section 268
we shall prove that B + W will have almost surely k protruding eigenvalues.69

In the random graph setup, in Section 3 it will be shown that the k-dimensional70
Euclidean representation of the vertices—via eigenvectors corresponding to the pro-71
truding eigenvalues—also indicates the block structure. With an appropriate Wigner-72
noise our perturbed graph is a usual random graph with weights 1 or 0 (indicating73
the presence or absence of the corresponding edge with certain probability).74

In summary, the Wigner-noise is sufficiently general to include a lot of random75
matrices as special cases of adding such a noise. However, I do not mean that this76
noise is negligible. In quantum mechanics it played an independent role, but if added77
to a matrix with an effective linear structure it is not able to destroy that structure.78
Probably, the Wigner-noise plays a similar role among random matrices, as the white79
noise (Wiener-process) plays among stochastic processes.80

In Section 4 the reversed question is investigated: how can we find a blown up81
skeleton behind an arbitrary random matrix from everyday life? We shall prove that82
an n × n random matrix under very general conditions has at least one eigenvalue83
greater than

√
n in magnitude. Suppose, there are k eigenvalues of order greater than84 √

n. If the so-called k-variance of the representatives of the vertices—by means of85
the corresponding eigenvectors—is “small enough”, we also give a construction for86
a blown up structure. There are other approaches for clustering large graphs via the87
singular value decomposition, see [9].88

Section 5 is about the existence of a deterministic structure behind a random89
graph, that is guaranteed by the Regularity Lemma of Szemerédi [13] under appro-90
priate density conditions. Other kinds of random graphs are frequently investigated91
nowadays, like random power law graphs. Such so-called scale-free networks—92
developed by preferential attachment—are frequently used to model the graph of93
the internet, social connections, or metabolic networks of cells [3]. Let β > 0 denote94
the power in the distribution of the actual degrees of a random power law graph intro-95
duced in [8]: the probability that a vertex has degree x is proportional to 1/xβ . Here96
the skeleton is a diadic product, and we shall prove that such graphs burdened with97
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a Wigner-noise are robust in the range of 1.5 � β < 2. Cellular networks frequently98
are in this domain (see [2]), and—possibly just because of this—they can tolerate99
random noise (like mutations) very well.100

2. Spectral properties of blown up weighted matrices101

By the notation of Definition 1.2 let B be an n × n blown up matrix of the k × k102
symmetric pattern matrix P. Let V1, . . . , Vk denote the partition of the index set103
{1, . . . , n} with respect to the blow-up, |Vi | = ni (i = 1, . . . , k),

∑k
i=1 ni = n.104

Proposition 2.1. All the non-zero eigenvalues of the n × n blown up matrix B are105
of order n in absolute value.106

This statement is proved in [6]. To be self-contained, we include the proof, as its107
ideas will be applied in the proof of the next proposition.108

Proof. As there are at most k linearly independent rows in B, the zero is an ei-109
genvalue of it with multiplicity at least n − k. It can easily be seen that any eigen-110
vector corresponding to a non-zero eigenvalue of B has equal coordinates within the111
blocks V1, . . . , Vk . Let y be such an eigenvector with n1 coordinates being equal to112
y1, . . . , nk coordinates being equal to yk , and β be the corresponding eigenvalue.113
Then114

k∑
j=1

njpij yj = βyi (i = 1, . . . , k).

Observe that the same eigenvalue–eigenvector equation belongs to the matrix PD =115
nPD̃, where116

D = diag(n1, . . . , nk) and D̃ = diag
(n1

n
, . . . ,

nk

n

)
. (2.1)

We remark that PD and PD̃ are not symmetric matrices but—due to this coincid-117
ence of spectra—they also have real eigenvalues. Let γ1, . . . , γr denote the non-zero

118
eigenvalues of PD̃, r = rank(PD̃) � k. As their absolute values are also the singular119
values of PD̃,120

0 < min
1�i�r

|γi | � max
1�i�r

|γi | � max
1�i�r

|λi(P)| · max
1�i�r

|λi(D̃)| � max
1�i�r

|λi(P)| � k

holds for γi’s, therefore the absolute values of the non-zero eigenvalues βi’s (βi =121
nγi) of B are of order n, that is122

|βi | = �(n), i = 1, . . . , r. (2.2)

If PD, and hence, PD̃ happens to be singular (r < k), this fact results in additional123
zero eigenvalues of B, but the non-zero eigenvalues are still of order n. �124
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We remark that the symmetric matrix D̃1/2PD̃1/2 has the same eigenvalues—125
γ1, . . . , γk—as PD̃, since D̃1/2PD̃1/2x = γ x is equivalent to PD̃(D̃−1/2x) =126
γ (D̃−1/2x). Though, the corresponding eigenvectors of PD̃ are not pairwise ortho-127
gonal.128

In the following special case we can prove a little bit more:129

Proposition 2.2. Let the entries of the k × k pattern matrix be the following: pii =130
0 (i = 1, . . . , k) and pij = pji = p ∈ [0, 1] (1 � i < j � k). Let B be the blown131

up matrix of P with block sizes n1 � n2 � · · · � nk, n := ∑k
i=1 ni. Then B has132

exactly n − k zero eigenvalues, the negative eigenvalues of B are in the interval133
[−pnk,−pn1], while the positive ones in [p(n − nk), p(n − n1)].134

Proof. It is sufficient to prove for p = 1. In the case 0 < p < 1 the statement of the135
proposition follows from this, as the pattern matrix is multiplied by p, therefore, all136
the eigenvalues of P and consequently, those of B are also multiplied by p. In the137
trivial case p = 0 all the eigenvalues are zeroes.138

For a general blown up matrix we have already seen that its rank is at most k. Now139
it is exactly k, as the rank of the matrix PD is exactly k. So zero is an eigenvalue of140
B with multiplicity n − k and corresponding eigenspace141 

x = (x1, . . . , xn) :
∑
j∈Vi

xj = 0, i = 1, . . . , k; x /= 0


 ⊂ Rn.

Due to the orthogonality, any eigenvector y belonging to an eigenvalue β /= 0 of B142
has n1 coordinates equal to y1, . . . , and nk coordinates equal to yk . The correspond-143
ing eigenvalue–eigenvector equation By = βy gives that144 ∑

l /=i

nlyl = βyi (i = 1, . . . , k), (2.3)

consequently145

k∑
l=1

nlyl = (ni + β)yi (i = 1, . . . , k), (2.4)

that is—with regard to the left-hand side—independent of i.146
If β = −ni for some index i then β is in the desired range, and there is nothing to147

prove. If βi /= −ni (i = 1, . . . , k) then none of the yi’s can be zero (otherwise—due148
to (2.4)—all the yi’s were zeroes, but the zero vector cannot be an eigenvector). Let149
i be an arbitrary integer in {1, . . . , k}. As yi /= 0, y can be scaled such that yi = 1.150
Therefore (2.4) becomes151

k∑
l=1

nlyl = ni + β. (2.5)
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Equating (2.5) with (2.4) applied for the other indices implies that152

yj = ni + β

nj + β
(j /= i).

Summing up for j = 1, . . . , k153
k∑

j=1

njyj = (ni + β)

k∑
j=1

nj

nj + β

follows, and by (2.5) it is also equal to ni + β, therefore154
k∑

j=1

nj

nj + β
= 1. (2.6)

As tr B = 0, there must be both negative and positive eigenvalues of B. Let us155
suppose that there is an eigenvalue β < −nk . Then on the left-hand side of (2.6) all156
the terms were negative, and their sum could not be 1. Consequently, all the eigen-157
values must be at least −nk . Now let us suppose that there is a negative eigenvalue158
with −n1 < β < 0. Then for all the terms on the left-hand side of (2.6)159

nj

nj + β
> 1 (j = 1, . . . , k)

holds, therefore their sum cannot be 1. So, for the negative eigenvalues160

−nk � β � −n1

is proved.161
For the positive eigenvalues we shall use that162

0 < n1 + β � nj + β � nk + β (j = 1, . . . , k).

Taking the reciprocals, multiplying by nj , and summing up for j = 1, . . . , k we163
obtain that164

k∑
j=1

nj

n1 + β
�

k∑
j=1

nj

nj + β
�

k∑
j=1

nj

nk + β
,

that is, in view of (2.6),165
n

n1 + β
� 1 � n

nk + β
,

which implies166

n − nk � β � n − n1,

that was to be proved for the positive eigenvalues in the case of p = 1. �167
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Remarks
168

1. In the special case n1 = . . . = nk = n/k all the negative eigenvalues of B are169
equal to −pn/k, and all the positive ones to p(n − n/k). As the sum of the170
eigenvalues of B is zero, −pn/k is an eigenvalue with multiplicity k − 1, while171
p(n − n/k) is a single eigenvalue.172

2. If ni is a block-size with multiplicity ki (
∑k

i=1 ki = k) then −pni is an eigenvalue173
of B with multiplicity ki − 1. Accordingly, if ni is a single block-size then −pni174
cannot be an eigenvalue of B. If especially k1 = k then −pn/k is an eigenvalue175
with multiplicity k − 1, in accordance with the previous remark.176

3. In the case p = 1 our matrix B is the adjacency matrix of Kn1,...,nk
, the complete177

k-partite graph on disjoint, edge-free vertex sets V1, . . . , Vk with |Vi | = ni (i =178
1, . . . , k).179

Theorem 2.3. Let B be a blown up matrix of Definition 1.2 with non-zero eigen-180
values β1, . . . , βr (r � k), and W be an n × n Wigner-noise. Then there are r181
eigenvalues λ1, . . . , λr of the noisy random matrix A = B + W such that182

|λi − βi | � 2σ
√
n + O(n1/3 log n), i = 1, . . . , r (2.7)

and for the other n − r eigenvalues183

|λj | � 2σ
√
n + O(n1/3 log n), j = r + 1, . . . , n (2.8)

holds almost surely.184

Proof. The statement immediately follows by applying the Weyl’s perturbation the-185
orem [16] for the spectrum of B characterized in Proposition 2.1, where the spectral186
norm of the perturbation W is estimated by (1.1). �187

Consequently, taking into account the order �(n) of the non-zero eigenvalues188
of B, there is a spectral gap between the r largest absolute value and the other189
eigenvalues of A, this is of order � − 2ε, where190

ε :=2σ
√
n + O(n1/3 log n) and � := min

1�i�r
|βi |. (2.9)

In general, r = rank B = k, and Theorem 2.3 guarantees the existence of k pro-191
truding eigenvalues of A.192

3. Euclidean representation of blown up weighted graphs193

Suppose that rank B = k. With the help of Theorem 2.3 we can also estimate the194
distances between the corresponding eigenspaces of the matrices B and A = B + W.195
Let us denote the unit norm eigenvectors belonging to the eigenvalues β1, . . . , βk of196
B by y1, . . . , yk and those belonging to the eigenvalues λ1, . . . , λk of A by x1, . . . , xk .197
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Let F :=Span {y1, . . . , yk} ⊂ Rn be k-dimensional subset, and let dist(x, F ) denote198
the Euclidean distance between the vector x ∈ Rn and the subspace F .199

Proposition 3.1. With the above notation the following estimate holds almost surely200
for the sum of the squared distances between x1, . . . , xk and F :201

k∑
i=1

dist2(xi , F ) � k
ε2

(� − ε)2
= O

(
1

n

)
, (3.1)

where the order of the estimate follows from the order of ε and � of (2.9).202

Proof. Let us choose one of the eigenvectors x1, . . . , xk of A = B + W and de-203
note it simply by x with corresponding eigenvalue λ. We shall estimate the dis-204
tance between x and F . For this purpose we expand x in the basis y1, . . . , yn with205
coefficients t1, . . . , tn ∈ R:206

x =
n∑

i=1

tiyi .

The eigenvalues of the matrix B corresponding to y1, . . . , yn are denoted by β1, . . . ,207
βn, where the k largest eigenvalues β1, . . . , βk are those defined in the proof of208
Proposition 2.1 (we can assume that they are in non-increasing order with the proper209
reordering of the blocks), and there is a sudden drop following these eigenvalues in210
the spectrum of B, as βk+1 = · · · = βn = 0. Then, on the one hand211

Ax = (B + W)x =
n∑

i=1

tiβiyi + Wx, (3.2)

and on the other hand212

Ax = λx =
n∑

i=1

tiλyi . (3.3)

Equating the right-hand sides of (3.2) and (3.3) we get that213

k∑
i=1

ti (λ − βi)yi +
n∑

i=k+1

tiλyi = Wx.

Applying the Pythagorean Theorem214

k∑
i=1

t2
i (λ − βi)

2 +
n∑

i=k+1

t2
i λ

2 = ‖Wx‖2 = xTWTWx � ε2, (3.4)

as ‖x‖ = 1 and the largest eigenvalue of WTW is ε2.215
The squared distance between x and F is dist2(x, F ) = ∑n

i=k+1 t2
i . As |λ| � � −216

ε,217
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(� − ε)2dist2(x, F ) = (� − ε)2
n∑

i=k+1

t2
i �

n∑
i=k+1

t2
i λ

2

�
k∑

i=1

t2
i (λ − βi)

2 +
n∑

i=k+1

t2
i λ

2 � ε2,

where in the last inequality we used (3.4). From here218

dist2(x, F ) � ε2

(� − ε)2
= O

(
1

n

)
(3.5)

follows.219
Applying (3.5) for the eigenvectors x1, . . . , xk of A and adding the k inequal-220

ities together we obtain the same order of magnitude for the sum of the squared221
distances. �222

Now let G = (V ,A) be a random weighted graph on an n-element vertex set V223
and with n × n symmetric weight matrix A that is a noisy random matrix obtained by224
adding a Wigner-noise W to the blown up matrix B. Let us denote by V1, . . . , Vk the225
partition of V with respect to the blow-up (it also defines a clustering of the vertices).226
Proposition 3.1 implies the well-clustering property of the representatives of the227
vertices of G in the following representation. Let X be the n × k matrix containing228
the eigenvectors x1, . . . , xk in its columns. Let the k-dimensional representatives229
of the vertices be the row vectors of X: x(1), . . . , x(n) ∈ Rk . Let S2

k (X) denote the230
k-variance—introduced in [4]—of these representatives in the clustering V1, . . . , Vk:231

S2
k (X) =

k∑
i=1

∑
j∈Vi

‖x(j) − x̄(i)‖2, where x̄(i) = 1

ni

∑
j∈Vi

x(j). (3.6)

Theorem 3.2. With the above notation for the k-variance of the representation of232
the noisy weighted graph G = (V ,A) the relation233

S2
k (X) = O

(
1

n

)
holds true almost surely.234

Proof. By Theorem 3 of [5] it can easily be seen that S2
k (X) is equal to the left-hand235

side of (3.1), therefore it is also of order O(1/n). �236

Hence, the addition of any kind of a Wigner-noise to a weight matrix that has237
a blown up structure B will not change the order of the protruding eigenvalues of238
the noisy weight matrix, and the block structure of B can be concluded from the239
representatives of the vertices (where the representation is performed by means of240
the corresponding eigenvectors).241
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With an appropriate Wigner-noise we can also reach that our matrix B + W con-242
tains 1’s in the (i, j)th block with probability pij , and 0’s otherwise. That is, for243
indices 1 � i < j � k and l ∈ Vi , m ∈ Vj let244

wlm :=
{

1 − pij with probability pij

−pij with probability 1 − pij

be independent random variables, and for i = 1, . . . , k and l, m ∈ Vi (l � m) let245

wlm :=
{

1 − pii with probability pii

−pii with probability 1 − pii

be also independent, otherwise W is symmetric. This W satisfies the conditions of246
Definition 1.1 with entries of zero expectation and bounded variance247

σ 2 = max
1�i�j�k

pij (1 − pij ) � 1

4
.

So, the noisy weighted graph G = (V ,B + W) becomes a usual random graph that248
has an edge between vertices of Vi and Vj with probability pij , 1 � i � j � k. In249
particular, the noisy graph with underlying structure B of Proposition 2.2 has no250
edges within Vi (i = 1, . . . , k), and it has an edge between vertices of Vi and Vj with251
the same probability p = pij (i /= j). In this case Theorems 2.3 and 3.2 guarantee252
the existence of k protruding eigenvalues of the incidence matrix of this random253
graph, while the corresponding eigenvectors give rise to a Euclidean representation254
of the vertices revealing the vertex sets V1, . . . , Vk .255

4. Can the skeleton be recognized?256

At the end of the previous section we saw that a seemingly completely random257
0–1 matrix can have an easily describable linear structure behind it. The question258
naturally arises: what kind of random matrices have a blown up matrix as a skeleton259
with a “small” perturbation? The following theorem proves that under very general260
conditions a random matrix has at least one eigenvalue greater than of order

√
n.261

Theorem 4.1. Let A be an n × n random symmetric matrix such that 0 � aij �262
1 and the entries are independent for i � j. Further let us suppose that there are263
positive constants c1 and c2 and 0 < δ ≤ � � 1/2 such that with the notation Xi =264 ∑n

j=1 aij265

E(Xi) � c1n
1
2 +δ, Var (Xi) � c2n

1
2 +� (i = 1, . . . , n).

Then for any 0 < ε < δ :266

lim
n→∞ P

(
λmax(A) � c1n

1
2 +ε

)
= 1,

where the constants δ and � are only responsible for the speed of the convergence.267
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Remark that the above conditions automatically hold true if there is a constant268
0 < µ0 < 1 such that E(aij ) � µ0 for all i, j pairs. This is the case in the theorems269
of Juhász [12] and Füredi–Komlós [10]. In our case there can be a lot of zero entries,270
we require only that in each row there are at least c1n

1/2+δ entries with expectation271
greater than or equal to any small fixed positive constant µ0. As the matrix is sym-272
metric it also holds for the columns. Therefore among the n2 entries there must be at273
least �(n1+2δ) ones (but not anyhow) with expectation at least a fixed 0 < µ0 < 1,274
all the others can be zeroes.275

To prove the theorem we will need the following lemma.276

Lemma 4.2 (Chernoff inequality for large deviations). Let X1, . . . , Xn be independ-277
ent random variables, |Xi | � K, X := ∑n

i=1 Xi. Then for any a > 0 :278

P (|X − E(X)| > a) � e− a2
2(Var (X)+Ka/3) .

Proof of Theorem 4.1. As a consequence of the Perron–Frobenius theorem279
λmax(A) � mini Xi , hence280

P
(
λmax(A) � c1n

1
2 +ε

)
� P

(
min
i

Xi � c1n
1
2 +ε

)
,

and it is enough to prove that the latter probability tends to 1 (n → ∞). We shall281
prove that the probability of the complement event tends to 0:282

P
(

for at least one i : Xi < c1n
1
2 +ε

)
� nP

(
for a general i : Xi < c1n

1
2 +ε

)
.

(4.1)

From now on we shall drop the suffix i and X denotes the sum of the entries in an283
arbitrary row of A. As X is the sum of n independent random variables satisfying the284
conditions of Lemma 4.2 with K = 1,285

P
(
X < c1n

1
2 +ε

)
= P

(
E(X) − X > E(X) − c1n

1
2 +ε

)
� P

(
|X − E(X)| > E(X) − c1n

1
2 +ε

)
� P

(
|X − E(X| > c1n

1
2 (nδ − nε)

)

� e
− c2

1n(nδ−nε)2

2(c2n
1
2 +�+n

1
2 (nδ−nε)/3)

� e−c3n
1
2 (nδ−nε)2

n�

= e−c3n
1
2 −�

(nδ−nε)2

with some positive constant c3, in view of the inequalities 0 < ε < δ � � � 1/2.286
Thus the right-hand side of (4.1) can be estimated from above by287
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n

ec3n
1
2 −�

(nδ−nε)2
� n

ec4n
γ

with some c4 > 0 and γ > 0 because of the previous inequalities for ε, δ,�. The last288
term above tends to 0 (n → ∞) that finishes the proof. �289

Theorem 4.3. If the n × n random weight matrix A—with properties in Theorem290
4.1—of the random graph G = (V ,A) has exactly k eigenvalues of order greater291
than

√
n, and there is a k-partition of the vertices such that the k-variance of the rep-292

resentatives is O(1/n)—in the representation with the corresponding eigenvectors—293
then almost surely there is a blown up matrix B such that A = B + E with ‖E‖ =294
O(

√
n).295

Proof. Let x1, . . . , xk denote the eigenvectors corresponding to λ1, . . . , λk , the k296
largest (of order larger than

√
n) eigenvalues of A. The representatives—that are297

row vectors of the n × k matrix X = (x1, . . . , xk)— by the supposition of the the-298
orem form k clusters in Rk with k-variance less than c/n with some constant c. Let299
V1, . . . , Vk denote the clusters (properly reordering the rows of X, together they give300
the index set {1, . . . , n}). Let x(1), . . . , x(n) ∈ Rk be the Euclidean representatives of301
the vertices (the rows of X), and let x̄(1), . . . , x̄(k) denote the cluster centers, see (3.6).302
Now let us choose the following representation of the vertices. The representatives303
are row vectors of the n × k matrix X̃ such that the first n1 rows of X̃ be equal to304
x̄(1), . . . , and the last nk rows of X̃ be equal to x̄(k). Finally, let y1, . . . , yk ∈ Rn be305
the column vectors of X̃. By the considerations of Theorem 3.2306

S2
k (X) =

k∑
i=1

dist2(xi , F ) < c/n,

where the k-dimensional subspace F is spanned by the vectors y1, . . . , yk .307
Then a set v1, . . . , vk of orthonormal vectors within F can be found such that308

k∑
i=1

‖xi − vi‖2 � 2
c

n

holds almost surely, see Proposition 2 of [5]. (We shall use that vi’s also have equal309
coordinates within the blocks.) For them310

xi =
k∑

j=1

tijvj + ri ,

‖xi − vi‖2 = ‖xi‖2 + ‖vi‖2 − 2xT
i vi = 2(1 − tii ) = O(1/n),

therefore311

‖xi − tiivi‖2 = 1 − t2
ii = O(1/n),

that implies |tij | = O(1/
√
n), j /= i and ‖ri‖2 = O(1/n).312
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Hence313

k∑
i=1

λixixT
i =

k∑
i=1

λi


 k∑

j=1

tijvj + ri





 k∑

j=1

tijvT
j + rT

i




=
k∑

i=1

λivivT
i −

k∑
i=1

λi(1 − t2
ii )vivT

i +
k∑

i=1

λi

∑
j /=i

t2
ijvjvT

j

+
k∑

i=1

λi


∑

j /=i

(
tii tijvivT

j + tij tjjvjvT
i

)
+

∑
j /=i

∑
l /=i

tij tilvjvT
l




+
k∑

i=1

λi


 k∑

j=1

tijrivT
j +

k∑
j=1

tj ivj rT
i + rirT

i


 . (4.2)

With the triangle inequality the norm of the left-hand side matrix can be estimated314
from above with the sum of the norms of the individual terms. First we estimate the315
squared norms and use that λ2

i = O(n1+2ε), 1 − t2
ii = O(1/n) and ‖ri‖2 = O(1/n),316

further317

‖vivT
j ‖2 = ‖vivT

j (vivT
j )

T‖ = ‖vivT
i ‖ = vT

i vi = 1

and similarly,318

‖rivT
j ‖2 = ‖rivT

j (riv
T
j )

T‖ = ‖rirT
i ‖ = rT

i ri � a

n

with some constant a. For details, see the proof of Theorem 4 in [5].319
Summarizing, as A = ∑n

i=1 λixixT
i and the spectral norm of the part320 ∑n

i=k+1 λixixT
i is at most

√
n, we can choose B = ∑k

i=1 λivivT
i —the first term321

in (4.2)—for the blown up matrix, while the norm of the remaining terms—they,322
together with

∑n
i=k+1 λixixT

i , will form E—is estimated from above by nε with323
ε < 1/2, that finishes the proof. �324

5. Conclusions and other directions325

In the models discussed in Sections 2 and 3 a special kind of a random noise326
was added to a fairly general underlying structure. We have shown that if the adja-327
cency matrix of our underlying graph on n vertices has some protruding eigenvalues328
(of order n in absolute value), then a Wigner-noise cannot disturb essentially this329
structure: the adjacency matrix of the noisy graph will have the same number of330
protruding eigenvalues with corresponding eigenvectors revealing the structure of331
the graph. Vice versa, if the representation with them shows well metric classification332
properties, in Section 4 we have shown, how to find the clusters themselves.333
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Theoretically, for any graph on n vertices, the Regularity Lemma of Szemerédi334
guarantees the existence of a partition V0, V1, . . . , Vk of the vertices (here V0 is a335
“small” exceptional set) such that the edge-densities between most of the Vi, Vj336
pairs (1 � i < j � k) are homogeneous in the following sense. We say that a pair337
Vi, Vj (i /= j) is ε-regular, if for any A ⊂ Vi , B ⊂ Vj with |A| > ε|Vi |, |B| > ε|Vj |338
|dens (A,B) − dens (Vi, Vj )| < ε holds, where dens (A,B) denotes the edge-density339
between the disjoint vertex sets A and B. In fact, denoting by cut (A,B) the cut-set340
between A and B,341

dens (A,B) = |cut (A,B)|
|A| · |B| .

If the graph is sparse—the number of edges e = O(n2)—then k = 1, otherwise k can342
be arbitrarily large (but it depends only on ε).343

If our random graph has a blown up skeleton, then |cut (Vi, Vj )| is the sum of344
|Vi | · |Vj | independent, identically distributed Bernoulli variables with parameter pij345
(1 � i, j � k), where pij ’s are entries of the pattern matrix P. Hence |cut (A,B)| is a346
binomially distributed random variable with expectation |A| · |B| · pij and variance347
|A| · |B| · pij (1 − pij ). Therefore by Lemma 4.2 (with the choice K = 1) and with348
A ⊂ Vi , B ⊂ Vj , |A| > ε|Vi |, |B| > ε|Vj | we have that349

P
(|dens (A,B) − pij | > ε

) = P
(∣∣|cut (A,B)| − |A| · |B| · pij

∣∣ > ε · |A| · |B|)
� e

− ε2|A|2|B|2
2[|A||B|pij (1−pij )+ε|A||B|/3]

= e
− ε2|A||B|

2[pij (1−pij )+ε/3]

� e
− ε4|Vi ||Vj |

2[pij (1−pij )+ε/3]
,

350
that tends to 0, as |Vi | = ni → ∞ and |Vj | = nj → ∞. Hence, any pair Vi, Vj is351
almost surely ε-regular. In this case our random graph turns out to be a so-called352
generalized random graph of [13], that is the sum of a blown-up skeleton and a353
noise. We note, however, that the Regularity Lemma does not give a construction for354
the clusters. Provided the conditions of Theorem 4.3 hold, by the cluster centers a355
similar construction is given in the proof of the theorem. Some algorithmic aspects356
of the Regularity Lemma are also discussed in [9].357

In fact, there are other kind of real-world graphs that are more or less vulnerable358
to random noise, e.g. scale-free graphs introduced in [3]. Bollobás and Riordan [7]359
investigate the vulnerability of this graph under the effect of removing edges, if n →360
∞. In the sequel I shall use the definition of Chung et al. [8] for a graph on n vertices361
with given positive expected degree sequence d1, . . . , dn. Let dij :=didj /

∑n
l=1 dl362

be the weight of the connection between the ith and j th vertices, where loops are363
also present and we suppose that maxi d

2
i �

∑n
i=1 di . So our weight matrix D =364
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(dij )
n
i,j=1 is a diadic product, having the eigenvalue zero with multiplicity n − 1,365

further the only positive eigenvalue is equal to366 ∑n
i=1 d2

i∑n
i=1 di

, (5.1)

the second order average degree introduced in [8]. In my approach the random noise367
means the addition of a Wigner-noise to D, the effect of which depends on the368
asymptotic order of the quantity (5.1).369

The random power law graph is a special case of this model. Let β > 0 denote370
the power in the distribution of the actual degrees: the probability that a vertex has371
degree x is proportional to 1/xβ (x is not necessarily an integer). The maximum372
eigenvalue of our graph is proportional to the square root of the maximum degree,373
see [8]. Móri [14] proves that in case of trees the maximum degree is asymptotically374
of order n1/(β−1), if n is “large”, and this asymptotic order is also valid for other375
power law graphs with β > 1. Hence, with 1/2(β − 1) > 1/2, that is with β < 2 the376
largest eigenvalue has order greater than

√
n that is not changed significantly after a377

Wigner-noise is added.378
In view of [8] the following degree sequence gives a power law graph with para-379

meters β (the power) and i0 (specifies the support of the distribution):380

di = c · i− 1
β−1 , i = i0, . . . , i0 + n,

where c is a normalizing constant.381
In order to have a real graph the following two inequalities must hold:382

i0+n∑
i=i0

di = 2e � 2

(
n + 1

2

)
= (n + 1)n ∼ n2, (5.2)

where e denotes the number of edges, and for the minimum degree383

dmin = di0+n = c · (i0 + n)
− 1

β−1 � 1. (5.3)

For large n the sum
∑i0+n

i=i0
di is bounded by means of integration, hence the left-hand384

side of (5.2) is estimated as385

i0+n∑
i=i0

di = c

i0+n∑
i=i0

i
− 1

β−1 � c

∫ i0+n−1

i=i0

x
− 1

β−1 dx

= c
β − 1

2 − β

[
i
− β−1

2−β

0 − (i0 + n − 1)−
β−1
2−β

]
, (5.4)

where 1 < β < 2.386
Relations (5.2)–(5.4) give upper and lower estimates for c:387

(i0 + n)
1

β−1 � c � n2

β−1
2−β

[
i
− β−1

2−β

0 − (i0 + n − 1)−
β−1
2−β

] = O(n2)
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for large n’s. This surely holds, if 1/(β − 1) � 2, that is, if β � 1.5. If, in addition,388
β < 2 holds, the largest eigenvalue is greater than

√
n in magnitude. Consequently,389

for β ∈ [1.5, 2) c can be chosen such that the number of edges e = �(n2), so our390
graph is dense enough to have more than one cluster by the Regularity Lemma. In391
other words, our graph has a blown up skeleton and, therefore, it is robust enough.392
For example, β is 1.5 in the flux distribution examined in [2]. Scale-free graphs with393
β ∈ [1.5, 2) frequently occur in case of cellular networks. Perhaps, because of this,394
such metabolic networks can better tolerate a Wigner-noise—that more or less affects395
each of the edges—than those with β � 2, usual in case of social and communication396
networks.397
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