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Three dialogs of Hacsek and Sajó

in a coffee-house
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First dialog: about ML estimation in exponential
families

S: Did you know that in exponential families the ML-equation
boils down to

Eθ(t(X)) = t(sample),

where X = (X1, . . . ,Xn) is i.i.d. sample and t(X) is sufficient
statistic for the unknown parameter θ ∈ Rk?

H: How can it boil down, and what kind of a family is your
exponential?
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S: You are stupid, the likelihood function of the sample
X = (X1, . . . ,Xn) in exponential family looks like

Lθ(X) =
1

a(θ)
· et(X)θT · b(X),

where θ = (θ1, . . . , θk) is natural parameter,
t(X) = (t1(X), . . . , tk(X)) is sufficient statistic for it, and T

stands for the transposition.

H: And what about the a(θ)?

S: It is the normalizing constant, but can be written as

a(θ) =

∫
X

et(x)θT · b(x) dx,

where X ⊂ Rn is the sample space. This formula will play a
crucial rule in our subsequent calculations.

H: Haha, let us see those famous calculations!
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S: As you know, the likelihood equation is

∇θ ln Lθ(X) = 0,

that is
−∇θ ln a(θ) +∇θ(t(X)θT ) = 0. (1)

Under certain regularity conditions,

∇θ ln a(θ) =

∫
X

t(x)et(x)θT · b(x) dx = Eθ(t(X)).

Therefore, (1) is equivalent to

−Eθ(t(X)) + t(X) = 0,

which finishes the proof.
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H: But this is the idea of moment estimation. Is it true that
in exponential families the ML-estimator is the same as the
moment-estimator?

S: More or less. When, especially, t1(X) = 1
n

∑n
i=1 Xi , . . . ,

tk(X) = 1
n

∑n
i=1 X k

i , then it is. This is the case when our
underlying distribution is Poisson, exponential, or Gaussian.

H: I will tell it to our colleague, Mogyoro (Imre Toth), who
asked whether these two estimators are the same.

S: Not always, think of the continuous uniform distribution,
which does not belong to the exponential family. Anyway, we
had a prosperous discussion.

H: Will you come in tomorrow?
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Second dialog: about Correspondence Analysis

H: My dear Sajó, you told me about correspondence analysis.
I have studied it, but believe me, it is a stupid method. How
does it come, that the best low-rank approximation of the
table has negative entries in most of the cases?

S: You are right if you consider the best L2-norm
approximation. Nonetheless, I am able to slightly adjust that
approximation to obtain a low-rank approximation of positive
entries, under very general conditions. My method also reveals
the block-structure of the table. I was speaking about these
facts at the EMS2013, but I am repeating the most important
notions now.

H: OK, let us see.
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SVD of contingency tables and correspondence
matrices

C = (cij): n ×m contingency table, cij ≥ 0.
Row set: Row = {1, . . . , n}
Column set: Col = {1, . . . ,m}

drow ,i =
m∑

j=1

cij (i = 1, . . . , n)

dcol ,j =
n∑

i=1

cij (j = 1, . . . ,m)

Drow = diag (drow ,1, . . . , drow ,n) Dcol = diag (dcol ,1, . . . , dcol ,m).
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Representation

For a given integer 1 ≤ k ≤ min{n,m}, we are looking for
k-dimensional representatives r1, . . . , rn of the rows and c1, . . . , cm

of the columns such that they minimize the objective function

Qk =
n∑

i=1

m∑
j=1

cij‖ri − cj‖2 (2)

subject to

n∑
i=1

drow ,i ri r
T
i = Ik ,

m∑
j=1

dcol ,jcjc
T
j = Ik . (3)

When minimized, the objective function Qk favors k-dimensional
placement of the rows and columns such that representatives of
highly associated rows and columns are forced to be close to each
other. As we will see, this is equivalent to the problem of
correspondence analysis.
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Solution

X := (x1, . . . , xk) = (rT1 , . . . , r
T
n )T n × k

Y := (y1, . . . , yk) = (cT
1 , . . . , c

T
m)T m × k

Qk = 2k − tr (D
1/2
rowX)T Ccorr (D

1/2
col Y)→ min

subject to
XT DrowX = Ik , YT DcolY = Ik ,

where Ccorr = D
−1/2
row CD

−1/2
col : correspondence matrix (normalized

contingency table) belonging to the table C.
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Representation theorem

Let Ccorr =
∑r

i=1 siviu
T
i be SVD, where r ≤ min{n,m} is the rank

of Ccorr , or equivalently (since there are not identically zero rows or
columns), the rank of C and 1 = s1 ≥ s2 ≥ · · · ≥ sr > 0.
v1 = (

√
drow ,1, . . . ,

√
drow ,n)T and u1 = (

√
dcol ,1, . . . ,

√
dcol ,m)T .

Let k ≤ r be a positive integer such that sk > sk+1. Then

min Qk = 2k −
k∑

i=1

si

and it is attained with X∗ = D
−1/2
row (v1, . . . , vk) and

Y∗ = D
−1/2
col (u1, . . . ,uk).
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Regular row-column cluster pairs

The Expander Mixing Lemma for edge-weighted graphs naturally
extends to this situation (Butler): for all R ⊂ Row and C ⊂ Col

|c(R,C )− Vol(R)Vol(C )| ≤ s2
√
Vol(R)Vol(C ),

where s2 is the largest but 1 singular value of Ccorr and

Vol(Ra) =
∑
i∈Ra

drow ,i , Vol(Cb) =
∑
j∈Cb

dcol ,j .

Since the spectral gap of Ccorr is 1− s2, in view of the above
Expander Mixing Lemma, ’large’ spectral gap is an indication of
’small’ discrepancy: the weighted cut between any row and column
subset of the contingency table is near to what is expected in a
random table.
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Volume-regular cluster pairs

We extend the notion of discrepancy to volume-regular pairs.

Definition

The row–column cluster pair R ⊂ Row , C ⊂ Col of the
contingency table C of total volume 1 is γ-volume regular if for all
X ⊂ R and Y ⊂ C the relation

|c(X ,Y )− ρ(R,C )Vol(X )Vol(Y )| ≤ γ
√
Vol(R)Vol(C )

holds, where ρ(R,C ) = c(R,C)
Vol(R)Vol(C) is the relative inter-cluster

density of the row–column pair R,C .

We will show that for given k, if the clusters are formed via
applying the weighted k-means algorithm for the optimal row- and
column representatives, respectively, then the so obtained
row–column cluster pairs are homogeneous in the sense that they
form equally dense parts of the contingency table.
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Weighted k-variance

The weighted k-variance of the k-dimensional row representatives
is defined by

S2
k (X) = min

(R1,...,Rk)

k∑
a=1

∑
j∈Ra

drow ,j‖rj − r̄a‖2,

where r̄a = 1
Vol(Ra)

∑
j∈Ra

drow ,jrj is the weighted center of cluster

Ra (a = 1, . . . , k). Similarly, the weighted k-variance of the
k-dimensional column representatives is

S2
k (Y) = min

(C1,...,Ck)

k∑
a=1

∑
j∈Ca

dcol ,j‖cj − c̄a‖2,

where c̄a = 1
Vol(Ca)

∑
j∈Ca

dcol ,jcj is the weighted center of cluster

Ca (a = 1, . . . , k). Observe, that the trivial vector components can
be omitted, and the k-variance of the so obtained
(k − 1)-dimensional representatives will be the same.
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Thm (B, European Journal of Combinatorics 2013)

Theorem

Let C be a contingency table of n-element row set Row and
m-element column set Col, with row- and column sums
drow ,1, . . . , drow ,n and dcol ,1, . . . , dcol ,m, respectively. Suppose that∑n

i=1

∑m
j=1 cij = 1 and there are no dominant rows and columns:

drow ,i = Θ(1/n), (i = 1, . . . , n) and dcol ,j = Θ(1/m),
(j = 1, . . . ,m) as n,m→∞. Let the singular values of Ccorr be

1 = s1 > s2 ≥ · · · ≥ sk > ε ≥ si , i ≥ k + 1.

The partition (R1, . . . ,Rk) of Row and (C1, . . . ,Ck) of Col are
defined so that they minimize the weighted k-variances S2

k (X) and
S2

k (Y) of the row and column representatives. Suppose that there
are constants 0 < K1,K2 ≤ 1

k such that |Ri | ≥ K1n and
|Ci | ≥ K2m (i = 1, . . . , k), respectively. Then the Ri ,Cj pairs are
O(
√

2k(Sk(X)Sk(Y)) + ε)-volume regular (i , j = 1, . . . , k).
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The proof

H: But how does the positivity of the k-rank approximation
follow from this?

S: I am afraid, you have to understand some basic steps of the
proof for this, as follows.

Recall that the largest singular value of Ccorr is 1 with

corresponding singular vector pair v0 = D
1/2
row1m and u0 = D

1/2
col 1n,

respectively. The optimal k-dimensional representatives of the rows
and columns are row vectors of the matrices X = (x0, . . . , xk−1)

and Y = (y0, . . . , yk−1), where xi = D
−1/2
row vi and yi = D

−1/2
col ui ,

respectively (i = 0, . . . , k − 1). (Note that the first columns of
equal coordinates can as well be omitted.)
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Assume that the minimum k-variance is attained on the k-partition
(R1, . . . ,Rk) of the rows and (C1, . . . ,Ck) of the columns,
respectively. Then

S2
k (X) =

k−1∑
i=0

dist2(vi ,F ), S2
k (Y) =

k−1∑
i=0

dist2(ui ,G ),

where F = Span {D1/2
roww1, . . . ,D

1/2
rowwk} and

G = Span {D1/2
col z1, . . . ,D

1/2
col zk} with the so-called normalized row

partition vectors w1, . . . ,wk of coordinates wji = 1√
Vol(Ri )

if j ∈ Ri

and 0, otherwise; and column partition vectors z1, . . . , zk of
coordinates zji = 1√

Vol(Ci )
if j ∈ Ci and 0, otherwise (i = 1, . . . , k).

Note that the vectors D
1/2
roww1, . . . ,D

1/2
rowwk and

D
1/2
col z1, . . . ,D

1/2
col zk form orthonormal systems in Rn and Rm,

respectively (but they are, usually, not complete).
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However, we can find orthonormal systems ṽ0, . . . , ṽk−1 ∈ F and
ũ0, . . . , ũk−1 ∈ G such that

S2
k (X) ≤

k−1∑
i=0

‖vi−ṽi‖2 ≤ 2S2
k (X), S2

k (Y) ≤
k−1∑
i=0

‖ui−ũi‖2 ≤ 2S2
k (Y).

Let Ccorr =
∑r−1

i=0 siviu
T
i be SVD, where

r = rank (C) = rank (Ccorr ). We approximate Ccorr by the rank k
matrix

∑k−1
i=0 si ṽi ũ

T
i .
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The vectors v̂i := D
−1/2
row ṽi are stepwise constants on the partition

(R1, . . . ,Rk) of the rows, whereas the vectors ûi := D
−1/2
col ũi are

stepwise constants on the partition (C1, . . . ,Ck) of the columns,
i = 0, . . . , k − 1. The matrix

k−1∑
i=0

si v̂i û
T
i

is therefore an n ×m block-matrix on k × k blocks corresponding
to the above partition of the rows and columns. Let ĉab denote its
entries in the ab block (a, b = 1, . . . , k).
This is the rank k approximation of the matrix C with a
block-matrix.
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The point is: The entries ĉij ’s of the block-matrix will already be
positive provided the weighted k-variances S2

k (X) and S2
k (Y) are

’small’ enough. Let us discuss this issue more precisely.
In accord with the notation used in the proof, denote by ab in the
lower index the matrix restricted to the Ra × Cb block (otherwise it
has zero entries). Then for the squared Frobenius norm of the rank
k approximation of D−1

rowCD−1
col , restricted to the ab block, we have

that∥∥∥∥∥D−1
row ,aCabD−1

col ,b − (
k−1∑
i=0

si v̂i û
T
i )ab

∥∥∥∥∥
2

2

=
∑
i∈Ra

∑
j∈Cb

(
cij

drow ,idcol ,j
− ĉab)2

=
∑
i∈Ra

∑
j∈Cb

(
cij

drow ,idcol ,j
− c̄ab)2 + |Ra||Cb|(c̄ab − ĉab)2.
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Here we used the Steiner equality with the average c̄ab of the
entries of D−1

rowCD−1
col in the ab block. We can estimate the above

Frobenius norm by a constant multiple of the spectral norm.
In this way,

(c̄ab−ĉab)2 ≤ 1

max{|Ra|, |Cb|}
·max
i∈Ra

1

drow ,i
·max
j∈Cb

1

dcol ,j
·[
√

2k(Sk(X)+Sk(Y))+ε]2.

But using the conditions on the block sizes and the row- and
column-sums of the Theorem, provided

√
2k(Sk(X) + Sk(Y)) + ε) = O

(
1

(min{m, n})
1
2
+τ

)

holds with some ’small’ τ > 0, the relation c̄ab − ĉab → 0 also
holds as n,m→∞. Therefore, both ĉab and ĉabdrow ,idcol ,j are
positive over such blocks that are not constantly zero in the
original table if m and n are large enough.
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S: This is the end of the long story.

H: Will you come in tomorrow?
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Third dialog: about Reproducing Kernel Hilbert
Spaces

H: My dear Sajó, there are fairy tales about some fictitious
spaces, where everything is ‘smooth’ and ‘linear’.

S: Such spaces really exist, the hard part is that we should
adopt them to our data. Good news is that it is not necessary
to actually map our data into them.

H: Then how can we use them?

S: It suffices to treat only a kernel function, but the bad news
is that the kernel must be appropriately selected so that the
underlying nonlinearity could be detected.

H: They must be the Reproducing Kernel Hilbert Spaces. Tell
me more about them!
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History

S: Reproducing Kernel Hilbert Spaces were introduced in the
middle of the 20th century by Aronszajn,Parzen, and others,
but the theory itself is an elegant application of already known
theorems of functional analysis, first of all the Riesz–Fréchet
representation theorem and the theory of integral operators
(see Fréchet, Riesz, Szőkefalvi-Nagy) tracing back to the
beginning of the 20th century. Later on, in the last decades of
the 20th century and even in our days, Reproducing Kernel
Hilbert Spaces are several times reinvented and applied in
modern statistical methods and data mining (for example,
Bach,Baker).

H: But what is the mystery of reproducing kernels and what is
the diabolic kernel trick?
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Definition of an RKHS

A stronger condition imposed on a Hilbert space H of functions
X → R (where X is an arbitrary set, for the time being) is that the
following so-called evaluation mapping be a continuous, or
equivalently, a bounded linear functional. The evaluation mapping
Lx : H → R works on an f ∈ H such that Lx(f ) = f (x).

Definition

A Hilbert space H of (real) functions on the set X is an RKHS if
the point evaluation functional Lx exists and is continuous for all
x ∈ X .
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H: And where does the name RKHS come from?

S: From the Riesz–Fréchet representation theorem. This
theorem states that a Hilbert space (in our case H) and its
dual (in our case the set of H → R continuous linear
functionals, e.g. Lx) are isometrically isomorphic. Therefore,
to any Lx there uniquely corresponds a Kx ∈ H such that

Lx(f ) = 〈f ,Kx〉H, ∀f ∈ H. (4)

Since Kx is itself an X → R function, it can be evaluated at
any point y ∈ X . We define the bivariate function
K : X × X → R as

K (x , y) := Kx(y) (5)

and call it the reproducing kernel for the Hilbert space H.
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H: But why is this kernel positive semidefinite?

S: Because by using formulas (4) and (5), we get that on the
one hand,

K (x , y) = Kx(y) = Ly (Kx) = 〈Kx ,Ky 〉H,

and on the other hand,

K (y , x) = Ky (x) = Lx(Ky ) = 〈Ky ,Kx〉H.

By the symmetry of the (real) inner product it follows that the
reproducing kernel is symmetric and it is also reproduced as
the inner product of special functions in the RKHS:

K (x , y) = 〈Kx ,Ky 〉H = 〈K (x , .),K (., y)〉H,

hence, K is positive semidefinite.
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RKHS belonging to a kernel

S: Vice versa, if we are given a positive definite kernel function
on X × X at the beginning, then there exists an RKHS such
that with appropriate elements of it, the inner product relation
holds.

Definition

A symmetric two-variate function K : X ×X → R is called positive
definite kernel (equivalently, admissible, valid, or Mercer kernel) if
for any n ∈ N and x1, . . . , xn ∈ X , the symmetric matrix of entries
K (xi , xj) = K (xj , xi ) (i , j = 1, . . . n) is positive semidefinite.

We remark that a symmetric real matrix is positive
semidefinite if and only if it is a Gram matrix, and hence, its
entries become inner products, but usually not of the entries
in its arguments. However, the simplest kernel function, the
so-called linear kernel, does this job: Klin(x , y) = 〈x , y〉X ,
where X is subset of a Euclidean space.
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H: Show me other positive definite kernels!
S: You can get a lot of them with the following operations:

1 If K1,K2 : X × X → R are positive definite kernels, then the
kernel K defined by K (x , y) = K1(x , y) + K2(x , y) is also
positive definite.

2 If K1,K2 : X × X → R are positive definite kernels, then the
kernel K defined by K (x , y) = K1(x , y)K2(x , y) is also positive
definite. Especially, if K is a positive definite kernel, then so
does cK with any c > 0.

Consequently, if h is a polynomial with positive coefficients
and K : X × X → R is a positive definite kernel, then the
kernel Kh : X × X → R defined by

Kh(x , y) = h(K (x , y))

is also positive definite. Since the exponential function can be
approximated by polynomials with positive coefficients and the
positive definiteness is closed under pointwise convergence,
the same is true if h is the exponential function: h(x) = ex ,
perhaps some transformation of it.
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H: Then putting these facts together and using the formula

‖x − y‖2 = 〈x , x〉+ 〈y , y〉 − 2〈x , y〉,

we can easily verify that the Gaussian kernel is positive
definite:

KGauss(x , y) = e−
‖x−y‖2

2σ2 ,

where σ > 0 is a parameter.

S: You are getting more and more clever, Hacsek. Now we are
able to formulate the converse statement.

Theorem

For any positive definite kernel K : X × X → R there exists a
unique, possibly infinite-dimensional Hilbert space H of functions
on X , for which K is a reproducing kernel.

If we want to emphasize that the RKHS corresponds to the kernel
K , we will denote it by HK .
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H: Cannot we realize the elements of HK in a more
straightforward Hilbert space?

S: Oh, yes, this is the feature space F . Assume that there is a
(usually not linear) map φ : X → F such that when x ∈ X is
mapped into φ(x) ∈ F , then

K (x , y) = 〈φ(x), φ(y)〉F

is the desired positive definite kernel.
Let T be a linear operator from F to the space of functions
X → R defined by

(Tf )(y) = 〈f , φ(y)〉F , y ∈ X , f ∈ F .

Then
Tφ(x) = Kx , ∀x ∈ X

and hence, HK becomes the range of T .
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H: Could you tell me an example of an RKHS? What an
animal is it?

S: Yes, a couple. I’ll give the theoretical construction for Hk

and F , together with the functions Kx and the features φ(x).
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First example

Let K be the continuous kernel of a positive definite
Hilbert–Schmidt operator which is an integral operator working on
the L2(X ) space, where X is a compact set in R for simplicity.
Due to the positive definiteness of K , and the Mercer theorem, K
can be expanded into the following uniformly convergent series:

K (x , y) =
∞∑
i=1

λiψi (x)ψi (y), ∀x , y ∈ X

by the eigenfunctions and the eigenvalues of the integral operator.
The RKHS defined by K is the following:

HK = {f : X → R : f (x) =
∞∑
i=1

ciψi (x)}

such that
∑∞

i=1
c2
i
λi
<∞.
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Kx = K (x , .) =
∞∑
i=1

λiψi (x)ψi

Therefore,

〈Kx ,Ky 〉HK
=
∞∑
i=1

λiψi (x)λiψi (y)

λi
= K (x , y).

Here the feature space F is the following:

φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . . ), x ∈ X

and the inner product is naturally defined by

〈φ(x), φ(y)〉F =
∞∑
i=1

λiψi (x)ψi (y) = 〈Kx ,Ky 〉HK
.

The functions
√
λ1ψ1,

√
λ2ψ2, . . . , which form an orthonormal

basis in Hk , and because of this transformation, a function

f ∈ L2(X ) is in Hk if ‖f ‖2Hk
=
∑∞

i=1
c2
i
λi
<∞.



First dialog Second dialog Third dialog

Second example

Now X is a Hilbert space of finite dimension, say Rp, and its
elements will be denoted by boldface x, stressing that they are
vectors.
If we used Klin on X × X , then Kx = 〈x, .〉X , and by the
Riesz–Fréchet representation theorem, φ(x) = x would reproduce
the kernel, as Klin(x, y) = 〈x, y〉X for all x, y ∈ X . Now the RKHS
induced by Klin is identified with the feature space, which is
X = Rp itself.
In case of more sophisticated kernels, HK contains non-linear
functions, and therefore, the features φ(x) can be realized usually
in much higher dimension than that of X .
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For x = (x1, x2) ∈ X = R2 let

φ(x) := (x2
1 , x

2
2 ,
√

2x1x2)

F ⊂ R3. We want to separate data points allocated along two
concentric circles, and therefore R2 → R quadratic functions are
applied.

〈φ(x), φ(y)〉F = x2
1 y2

1 +x2
2 y2

2 +2x1x2y1y2 = (x1y1+x2y2)2 = 〈x, y〉2X ,

hence, the new kernel is the square of the linear one, which is also
positive definite (polynomial kernel).
The RKHS HK corresponding to the feature space F now consists
of homogeneous degree quadratic functions R2 → R, with the
functions f1 : (x1, x2)→ x2

1 , f2 : (x1, x2)→ x2
2 , and

f3 : (x1, x2)→
√

2x1x2 forming an orthonormal basis in Hk such
that K (x, y) =

∑3
i=1 fi (x)fi (y).
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S: Observe that in both examples φ(x) is a vector with
coordinates which are the basis vectors of the RKHS evaluated
at x . In the first exercise φ(x) is an infinite, whereas in the
second one, a finite dimensional vector. Note that HK is an
affine and sparsified version of the Hilbert space of X → R
functions, between which the inner product is adopted to the
requirement that it would reproduce the kernel.

H: For me it means that non-linear features can be
represented by a more complicated Hilbert space, and not the
original one. Am I right, my dear Sajó?

S: Not exactly, but probably this is the point of the whole
RKHS story.
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The end
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