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Motivation

To classify large data sets into homogeneous parts, cf. Bolla
and Tusnády, Discrete Math., 1994. Statistical parameters
whose values are approximated by taking a smaller sample.

To investigate the testability of different kinds of minimum
multiway cut densities emerging in classification problems.

For this purpose we generalize a theorem of Borgs, Chayes,
Lovász, Sós, Vesztergombi, Convergent sequences of dense
graphs I, 2006 to formulate equivalent statements for the
testability of weighted graph parameters.

We use some theorems of Borgs, Chayes, Lovász, Sós,
Vesztergombi, Convergent sequences of dense graphs II, 2007
to prove testability of special constrained versions of minimum
multiway cut densities.

To investigate effects of random perturbations on the weights,
and the cut-norm of the graphon assigned to the so-called
Wigner-noise, cf. Bolla, Lin. Alg. Appl., 2005.
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Notation

G = Gn: weighted graph on the node set [n] = {1, . . . , n} = V (G ).
Edge-weights: βij ∈ R, β(G ) = (βij) ∈ Symn (strength of the
interaction between the nodes).
For randomization purposes suppose that βij ∈ [0, 1] (0=no edge).
Node-weights: αi > 0, i = 1, . . . , n (individual weights of the
nodes).
Let G denote the set of such weighted graphs.
αG :=

∑n
i=1 αi (volume of G )

αU :=
∑

i∈U αi (volume of the node-set U ⊂ V (G ))

eG (U,T ) :=
∑
u∈U

∑
t∈T

αuαtβut , U,T ⊂ V = V (G )

Pk : set of k-partitions P = (V1, . . . ,Vk) of V .
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Minimum k-way cut densities

Let k < n be a fixed positive integer.

fk(G ) := min
P∈Pk

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum k-way cut density of G .
Let c ≤ 1/k be a fixed positive real number.
Pc

k : set of k-partitions of V such that
αVi
αG

≥ c (i = 1, . . . , k), or

equivalently, c ≤ αVi
αVj

≤ 1
c (i 6= j).

f c
k (G ) := min

P∈Pc
k

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum c-balanced k-way cut density of G .
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Let a = {a1, . . . , ak} be a probability distribution on [k].
Pa

k : set of k-partitions of V such that(
αV1

αG
, . . . ,

αVk

αG

)
is approximately a-distributed.

f a
k (G ) := min

P∈Pa
k

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum a-balanced k-way cut density of G .
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Minimum weighted k-way cut densities

We want to penalize cluster volumes that wildly differ. Historically,

µk(G ) := min
P∈Pk

k−1∑
i=1

k∑
j=i+1

1

αVi
· αVj

· eG (Vi ,Vj)

minimum weighted k-way cut density of G .

µc
k(G ) := min

P∈Pc
k

k−1∑
i=1

k∑
j=i+1

1

αVi
· αVj

· eG (Vi ,Vj)

minimum weighted c-balanced k-way cut density of G , where
0 < c ≤ 1/k.
Remark:

µk(G ) = min
G/P∈Ŝk(G)

k−1∑
i=1

k∑
j=i+1

βij(G/P),

where the weighted graph G/P is the k-quotient of G with respect
to P, and Ŝk(G ) is the set of k-quotients.
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Testability of weighted graph parameters

Definition

A weighted graph parameter f is testable if for every ε > 0 there is
a positive integer k such that if G ∈ G satisfies

max
i

αi (G )

αG
≤ 1

k
,

then
P(|f (G )− f (ξ(k,G ))| > ε) ≤ ε,

where ξ(k,G ) is a random simple graph on k nodes randomized
“appropriately” from G .

The randomization procedures will be discussed later.
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Remarks:

|V (G )| ≥ k follows from the node-condition.

In the proof of the subsequent theorem we use the
graphon-randomization procedure introduced in Section 4.4 of
Borgs et al. I, where a random simple graph is randomized
out of the step-function graphon WG assigned to the weighted
graph G .

To be testable, f must be invariant under scaling the
node-weights.
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Equivalent statements of testability

Theorem

Equivalent statements for the testability of the bounded weighted
graph parameter f .

For every ε > 0 there is a positive integer k such that for
every weighted graph G ∈ G satisfying the node-condition
maxi αi (G )/αG ≤ 1/k, |f (G )− E(f (ξ(k,G )))| ≤ ε.

For every left-convergent weighted graph sequence (Gn) with
maxi αi (Gn)/αGn → 0, f (Gn) is also convergent (n →∞).

f can be extended to graphons such that f̃ (W ) is continuous
in the cut-norm and f̃ (WGn)− f (Gn) → 0, whenever
maxi αi (Gn)/αGn → 0 (n →∞).

For every ε > 0 there is an ε0 > 0 real and an n0 > 0 integer
such that if G1,G2 are weighted graphs satisfying
maxi αi (G1)/αG1 ≤ 1/n0, maxi αi (G2)/αG2 ≤ 1/n0, and
δ�(G1,G2) < ε0, then |f (G1)− f (G2)| < ε.
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About the proof

With minor modifications the proof of Theorem 6.1. of Borgs et al.
I is followed. The left-convergence means the convergence of the
homomorphism density

t(F ,G ) =
1

(αG )k

∑
Φ:V (F )→V (G)

k∏
i=1

αΦ(i)

∏
ij∈E(F )

βΦ(i)Φ(j)

for any simple graph F (k = |V (F )|). We consider mainly
injective homomorphisms Φ ∈ Inj(F ,G ) and use the notation:

αΦ =
k∏

i=1

αΦ(i), injΦ(F ,G ) =
∏

ij∈E(F )

βΦ(i)Φ(j),

indΦ(F ,G ) =
∏

ij∈E(F )

βΦ(i)Φ(j)

∏
ij∈E(F̄ )

(1− βΦ(i)Φ(j)),
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inj(F ,G ) =
∑

Φ∈Inj(F ,G)

αΦ · injΦ(F ,G ),

ind(F ,G ) =
∑

Φ∈Inj(F ,G)

αΦ · indΦ(F ,G ).

As for any Φ ∈ Inj(F ,G )

injΦ(F ,G ) =
∑
F ′⊇F

indΦ(F ′,G ),

inj(F ,G ) =
∑
F ′⊇F

ind(F ′,G )

also holds, and therefore the convergence of t(F ,Gn) implies the
convergence of tind(F ,Gn) = ind(F ,Gn)/(αGn

)k , that roughly
equals P(ξ(k,Gn) = F ).
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Randomization procedures

A simple graph on k nodes is randomized out of the weighted
graph G . For large |V (G )| = n the following procedures give
similar results, as far as P(ξ(k,G ) = F ) is concerned.
1. k vertices are chosen with replacement with respective
probabilities αi (G )/α(G ) (i = 1, . . . , n). Given the node-set
{Φ(1), . . . ,Φ(k)}, the edges come into existence conditionally
independently, with probabilities of the edge-weights. ξ1(k,G ) is
the resulting random graph.

P(ξ1(k,G ) = F |Φ ∈ Inj(F ,G )) =
∑

Φ∈Inj(F ,G)

αΦ

(αG )k
· indΦ(F ,G ).

(By graphon-randomization we may get back F even if Φ is not
injective. If k � n, then most of the homomorphisms are injective.)
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2. k vertices are chosen without replacement one after the other,
etc. ξ2(k,G ) is the resulting random graph.

P(ξ2(k,G ) = F ) =
∑

Φ∈Inj(F ,G)

αΦ∏k
i=1

∑
j /∈{Φ(1),...,Φ(i−1)} αj

·indΦ(F ,G ),

where {Φ(1), . . . ,Φ(i − 1)} = ∅, if i = 1.
3. k vertices are chosen at once, etc. ξ3(k,G ) is the resulting
random graph.

P(ξ3(k,G ) = F ) =
∑

Φ∈Inj(F ,G)

αΦ

k!(α)k
· indΦ(F ,G ),

where (α)k is the elementary symmetric polynomial of degree k of
the variables α1, . . . , αn.
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Testability of the minimum k-way cut densities

fk(G ) is testable, though fk(Gn) → 0 if there is no dominant
node-weight. So, this is of not much use.

(See example: fk(Gn) ≤ αmax (Gn)
αGn

· αGn−αmax (Gn)
αGn

→ 0.)

f c
k (G ) is testable for any c ≤ 1/k.
The proof is based on the 3rd equivalent statement of the
Theorem.

fk(G ) = min
P∈Pk

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj) =

= min
P∈Pk

fk(G ;V1, . . . ,Vk),

where the minimum is taken over k-partitions P = (V1, . . . ,Vk) of
the vertices.
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fk(G ) is extended to graphons:

f̃k(W ) := inf
Q∈Qk

k−1∑
i=1

k∑
j=i+1

∫∫
Si×Sj

w(x , y) dx dy =

= inf
Q∈Qk

f̃k(W ;S1, . . . ,Sk),

where the infimum is taken over the Lebesgue-measurable
k-partitions Q = (S1, . . . ,Sk) of [0,1] (

∑k
i=1 λ(Si ) = 1), and

0 ≤ w(x , y) ≤ 1 is the two-variable symmetric function assigned to
the graphon W .
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Similarly, for a given 0 < c ≤ 1/k

f c
k (G ) = min

P∈Pc
k

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj) = min
P∈Pc

k

fk(G ;V1, . . . ,Vk),

where the minimum is taken for the c-balanced k-partitions
P = (V1, . . . ,Vk) of the vertices.
f c
k (G ) is extended to graphons:

f̃ c
k (W ) := inf

Q∈Qc
k

k−1∑
i=1

k∑
j=i+1

∫∫
Si×Sj

w(x , y)dxdy = inf
Q∈Qc

k

f̃k(W ;S1, . . . ,Sk),

where the infimum is taken over the Lebesgue-measurable
k-partitions Q = (S1, . . . ,Sk) of [0,1] such that λ(Si ) ≥ c
(i = 1, . . . , k).
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First we show that both f̃k(W ) and f̃ c
k (W ) are continuous in

the cut-norm. It follows trivially by

0 ≤ sup
S⊂[0,1]

|
∫∫

S×S̄
w(x , y) dx dy | ≤

≤ sup
S,T⊂[0,1]

|
∫∫

S×T
w(x , y) dx dy | = ‖W ‖�.

Next we show that f̃k(WGn)− fk(Gn) → 0 and
f̃k

c
(WGn)− f c

k (Gn) → 0 whenever maxi αi (Gn)/αGn → 0.
The local infima of f̃k(W ;S1, . . . ,Sk) are taken over the
k-partitions of [0,1] measurable with respect to the algebra
generated by I1, . . . , In, where λ(Ij) = αj/αG . The global
infima cannot differ too much.
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Relation to the ground state energies

fk(G ) = min
Φ:V (G)→[k]

EΦ(G , J, 0)

where the magnetic field is 0 and J ∈ Symk is the following:
Jii = 0 (i = 1, . . . , k) and Jij = −1/2 (i 6= j). By Theorem 2.15 of
Borgs et al. II the left-convergence of (Gn) implies the convergence
of the ground-state energies, that is the testability of fk .

f a
k (G ) = min

Φ∈Ωa(G)
EΦ(G , J, 0)

with the above J. By Theorem 2.14 of Borgs et al. II the
left-convergence of (Gn) is equivalent to the convergence of the
microcanonical ground-state energies (for any magnetic field, J,
and a) that – with this special J – also implies the testability of f a

k

for any distribution a over [k].
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Testability of the weighted minimum k-way cut
densities

µk is not testable:
We can show an example where µk(Gn) → 0, but randomizing a
sufficiently large part of Gn, the weighted minimum k-way cut
density of that part is constant.
The testability of µc

k can be proved the same way as that of f c
k ,

making use of the fact that that, due to

1

αVi

≤ 1

c · αG
,

the integrand is bounded from above.
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Blown-up weight matrices

From now on, the node-weights are 1, and a weighted graph G on
n vertices is identified with its n × n symmetric weight matrix A.
GA denotes the weighted graph with unit node-weights and
edge-weights in A .

Definition

The n × n symmetric random matrix W is a Wigner-noise if its
entries wij (1 ≤ i ≤ j ≤ n) are independent random variables,
E(wij) = 0, the wij ’s are uniformly bounded, and there is a
constant σ > 0 (that won’t change by n) such that var (wij) ≥ σ2,
∀i , j .

Though, the main results of this paper can be extended to wij ’s
with any light-tail distribution (especially to Gaussian distributed
wij ’s), our almost sure results are based on the assumptions of this
definition.
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Definition

The n× n symmetric real matrix B is a blown-up matrix, if there is
a k × k symmetric so-called pattern matrix P with entries
0 ≤ pij ≤ 1, and there are positive integers n1, . . . , nk with∑k

i=1 ni = n, such that the matrix B can be divided into k × k
blocks, where block (i , j) is an ni × nj matrix with entries equal to
pij (1 ≤ i , j ≤ n).

Such schemes are sought for in microarray analysis and they are
called chess-board patterns, cf. Kluger et al., Genome Research,
2003.
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Fix P, blow it up to an n × n matrix Bn, and consider the noisy
matrix An:=Bn+Wn.
As rank (Bn) = k and ‖Wn‖ = O(

√
n) almost surely (n →∞),

the noisy matrix An almost surely has k protruding eigenvalues (of
order n), and all the other eigenvalues are of order

√
n −→

spectral gap between the k largest and the other eigenvalues.
Xn := (x1, . . . , xk) n × k : eigenvectors of An.
Rows of Xn: x1, . . . , xn ∈ Rk vertex representatives of GAn .

S2
k (Xn) :=

k∑
i=1

∑
j∈Vi

‖xj − x̄i‖2, where x̄i =
1

ni

∑
j∈Vi

xj .

k-variance of the representatives.

Theorem

S2
k (Xn) = O

(
1

n

)
almost surely, under the growth condition ni/n ≥ c (i = 1, . . . , k).
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Cut-norm of the Wigner-noise

In the other direction: For sufficiently large n, under some
conditions, we can separate an n × n symmetric “error-matrix”E
from A, such that ‖E‖ = O(

√
n) and the remaining matrix A− E

is a blown-up matrix B of“low rank”−→ GB is a weighted graph
with homogeneous edge-densities within the clusters (determined
by the blow-up).
It resembles to the weak Szemerédi-partition, but the error-term is
bounded in spectral norm, instead of the cut-norm.
However, by large deviations, we can prove that

‖WGWn
‖� → 0 almost surely as n →∞,

and hence, if An=Bn+Wn, then

GAn → GP almost surely as n →∞

(left-convergence), where P is the k × k pattern matrix.
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