POBABILITY AND STATISTICS, Lessons 9-10.

• Theory of point estimation. Likelihood function: for $\mathbf{x} = (x_1, \ldots, x_n) \in \mathcal{X}$ and $\theta \in \Theta$ let $L_{\theta}(\mathbf{x}) = \mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} p_{\theta}(x_i)$ in the discrete, and $L_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i)$ in the absolutely continuous case.

Theorem (Neyman–Fisher Factorization) The statistic $T(\mathbf{X})$ is *sufficient* for θ if and only if $L_{\theta}(\mathbf{x}) = g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}), \forall \theta \in \Theta, \quad \mathbf{x} \in \mathcal{X}$ with some measurable, nonnegative real functions g and h. (A sufficient statistic contains all the important information for θ , and it is minimal if it is the function of any other sufficient statistic.)

Let $(\Omega, \mathcal{A}, \mathcal{P})$ be parametric statistical space, $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$. We want to estimate θ , or its measurable function $\psi(\theta)$ by means of the statistic $T(\mathbf{X})$ on the basis of the i.i.d. sample $\mathbf{X} = (X_1, \ldots, X_n)$. The point estimator is sometimes denoted by $\hat{\theta}$ or $\hat{\psi}$. Criteria for the "goodness" of an estimate:

- $-T(\mathbf{X})$ is an **unbiased** estimator of $\psi(\theta)$, if $\mathbb{E}_{\theta}(T(\mathbf{X})) = \psi(\theta)$, $\forall \theta \in \Theta$.
- $-T(\mathbf{X}_n)$ is an **asymptotically unbiased** estimator of $\psi(\theta)$, if $\lim_{n\to\infty} \mathbb{E}_{\theta}(T(\mathbf{X}_n)) = \psi(\theta)$, $\forall \theta \in \Theta$.
- Let T_1 and T_2 be both unbiased estimators of $\psi(\theta)$. T_1 is **at least as efficient** than T_2 , if $\mathbb{D}^2_{\theta}(T_1) \leq \mathbb{D}^2_{\theta}(T_2)$, $\forall \theta \in \Theta$. An unbiased estimator is **efficient**, if it is at least as efficient than any other unbiased estimator. Efficient estimator does not always exist, but if yes, then it is unique (with probability 1).
- $T(\mathbf{X}_n)$ is a weakly/strongly **consistent** estimator of $\psi(\theta)$, if $\forall \theta \in \Theta$: $T(\mathbf{X}_n) \to \psi(\theta)$ in probability/almost surely as $n \to \infty$.

We want to give a lower bound for the variance of an unbiased estimator if $dim(\Theta) = 1$. The **Fisher informatin** contained in the i.i.d. sample $\mathbf{X} = (X_1, \ldots, X_n)$ is

 $I_n(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln L_{\theta}(\mathbf{X}) \right)^2 \ge 0. \ (I_n(\theta) = nI_1(\theta) \text{ under the regularity conditions below.})$

Theorem (Cramér–Rao inequality) In the above setup let $T(\mathbf{X})$ be unbiased estimator of the differentiable parameter function $\psi(\theta)$, and suppose that $\mathbb{D}^2_{\theta}(T) < \infty$ ($\forall \theta \in \Theta$). Further, the following regularity conditions hold $\forall \theta \in \Theta$:

$$\frac{\partial}{\partial \theta} \int L_{\theta}(\mathbf{x}) \, d\mathbf{x} = \int \frac{\partial}{\partial \theta} L_{\theta}(\mathbf{x}) \, d\mathbf{x} \quad \text{and} \quad \frac{\partial}{\partial \theta} \int T(\mathbf{x}) L_{\theta}(\mathbf{x}) \, d\mathbf{x} = \int T(\mathbf{x}) \frac{\partial}{\partial \theta} L_{\theta}(\mathbf{x}) \, d\mathbf{x}.$$

Then $\mathbb{D}^{2}_{\theta}(T) \geq \frac{(\psi'(\theta))^{2}}{I_{n}(\theta)} = \frac{(\psi'(\theta))^{2}}{nI_{1}(\theta)} , \qquad \forall \theta \in \Theta.$

Rao–Blackwell–Kolmogorov Theorem: In the above setup let $T(\mathbf{X})$ be a sufficient statistic, and $S(\mathbf{X})$ be an unbiased estimator for $\psi(\theta)$. Then one can construct an unbiased estimator U = g(T) that is at least as efficient az S. The construction of U ("blackwellization"): $U := \mathbb{E}_{\theta}(S|T) = g(T(\mathbf{X})), \forall \theta \in \Theta$. (The message of the theorem: find the efficient estimator among the functions of the minimal sufficient statistic.)

Methods of point estimation

- Maximum likelihood (ML) principle: maximize the likelihood or log-likelihood function in θ ! (The ML-estimator is asymptotically unbiased, efficient, and strongly consistent.)
- Method of moments: $dim(\Theta) := k$ and find the first k moments in the function of $\theta_1, \ldots, \theta_k$. The moment estimator $\hat{\theta}_i$ is the inverse function of the empirical moments.
- Interval estimation. The random interval $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ is a confidence interval of level (at least) 1ε for $\psi(\theta)$, if $\mathbb{P}_{\theta}(T_1 < \psi(\theta) < T_2)(\geq) = 1 \varepsilon$ ($\forall \theta \in \Theta$).