
POBABILITY AND STATISTICS, Lessons 9-10.

• Theory of point estimation. Likelihood function: for x = (x1, . . . , xn) ∈ X and θ ∈ Θ
let Lθ(x) = Pθ(X = x) =

∏n

i=1 Pθ(Xi = xi) =
∏n

i=1 pθ(xi) in the discrete, and Lθ(x) =
∏n

i=1 fθ(xi) in the absolutely continuous case.

Theorem (Neyman–Fisher Factorization) The statistic T (X) is sufficient for θ if and
only if Lθ(x) = gθ(T (x)) · h(x), ∀θ ∈ Θ, x ∈ X with some measurable, nonnegative real
functions g and h. (A sufficient statistic contains all the important information for θ, and it
is minimal if it is the function of any other sufficient statistic.)

Let (Ω,A,P) be parametric statistical space, P = {Pθ : θ ∈ Θ}. We want to estimate θ, or
its measurable function ψ(θ) by means of the statistic T (X) on the basis of the i.i.d. sample
X = (X1, . . . , Xn). The point estimator is sometimes denoted by θ̂ or ψ̂. Criteria for the

”
goodness” of an estimate:

– T (X) is an unbiased estimator of ψ(θ), if Eθ(T (X)) = ψ(θ), ∀θ ∈ Θ.

– T (Xn) is an asymptotically unbiased estimator of ψ(θ), if limn→∞
Eθ(T (Xn)) =

ψ(θ), ∀θ ∈ Θ.

– Let T1 and T2 be both unbiased estimators of ψ(θ). T1 is at least as efficient than
T2, if D

2
θ(T1) ≤ D

2
θ(T2), ∀θ ∈ Θ. An unbiased estimator is efficient, if it is at least as

efficient than any other unbiased estimator. Efficient estimator does not always exist,
but if yes, then it is unique (with probability 1).

– T (Xn) is a weakly/strongly consistent estimator of ψ(θ), if ∀θ ∈ Θ:
T (Xn) → ψ(θ) in probability/almost surely as n→ ∞.

We want to give a lower bound for the variance of an unbiased estimator if dim(Θ) = 1. The
Fisher informatin contained in the i.i.d. sample X = (X1, . . . , Xn) is

In(θ) = Eθ

(

∂
∂θ

lnLθ(X)
)2

≥ 0. (In(θ) = nI1(θ) under the regularity conditions below.)

Theorem (Cramér–Rao inequality) In the above setup let T (X) be unbiased estimator of
the differentiable parameter function ψ(θ), and suppose that D

2
θ(T ) <∞ (∀θ ∈ Θ). Further,

the following regularity conditions hold ∀θ ∈ Θ:

∂

∂θ

∫

Lθ(x) dx =

∫

∂

∂θ
Lθ(x) dx and

∂

∂θ

∫

T (x)Lθ(x) dx =

∫

T (x)
∂

∂θ
Lθ(x) dx.

Then D
2
θ(T ) ≥ (ψ′(θ))2

In(θ)
= (ψ′(θ))2

nI1(θ)
, ∀θ ∈ Θ.

Rao–Blackwell–Kolmogorov Theorem: In the above setup let T (X) be a sufficient sta-
tistic, and S(X) be an unbiased estimetor for ψ(θ). Then one can construct an unbiased
estimator U = g(T ) that is at least as efficient az S. The construction of U (

”
blackwelliza-

tion”): U := Eθ(S|T ) = g(T (X)), ∀θ ∈ Θ. (The message of the theorem: find the efficient
estimator among the functions of the minimal sufficient statistic.)

Methods of point estimation

– Maximum likelihood (ML) principle: maximize the likelihood or log-likelihood function
in θ! (The ML-estimator is asymptotically unbiased, efficient, and strongly consistent.)

– Method of moments: dim(Θ) := k and find the first k moments in the function of
θ1, . . . , θk. The moment estimator θ̂j is the inverse function of the empirical moments.

• Interval estimation. The random interval (T1(X), T2(X)) is a confidence interval of level
(at least) 1 − ε for ψ(θ), if Pθ(T1 < ψ(θ) < T2)(≥) = 1 − ε (∀θ ∈ Θ).


