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Abstract

The aim of this paper is to establish a connection between the stan-
dard Koszul and the quasi-Koszul property in the class of self-injective
special biserial algebras. Furthermore, we give a characterization of stan-
dard Koszul symmetric special biserial algebras in terms of quivers and
relations.

1 Introduction

The concept of biserial algebras was introduced by Tachikawa in [12], while the
significant subclass of special biserial (SB) algebras was first studied in the work
of Skowroński and Waschbüsch [11]. Self-injective, in particular, symmetric spe-
cial biserial (SSB) algebras appear in the theory of modular representations of
finite groups (see [9] and [10]), and play an important role in complex represen-
tations of the Lorentz group [5].

In this paper we study the quasi-Koszul and standard Koszul properties for
self-injective SB algebras. Ágoston, Dlab and Lukács showed in [2] that every
quasi-hereditary standard Koszul algebra is a quasi-Koszul algebra. Though
the standard Koszul property is naturally considered for quasi-hereditary or
at least standardly stratified algebras, it may still be interesting to examine
standard Koszul algebras in general, along with the question whether standard
Koszul algebras are all quasi-Koszul in a given class. We focus mainly on this
implication.

In the process, we give a full description of the (minimal) projective reso-
lutions of simple modules over self-injective SB algebras that have no uniserial
projective modules (Section 2). Here we use a path-building technique based
on the work of Antipov and Generalov [3] on SSB algebras, which is similar to
the one that was used for monomial algebras (cf. [6]).

Section 3 gives a description of standard Koszul SSB algebras in terms of
quivers and relations.

Throughout this paper, K is an arbitrary field, and A denotes a finite-
dimensional basic connected K-algebra with a fixed complete ordered set of
primitive orthogonal idempotents {e1, . . . , en}. Modules are right modules, un-
less otherwise stated. The indecomposable projective summands of the canoni-
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cal decomposition of the regular module

AA = e1A⊕ . . .⊕ enA

are sometimes denoted by P (i), and their simple top by S(i). The corresponding
left modules are P ◦(i) and S◦(i).

Let εi = ei+ei+1+. . .+en, and εn+1 = 0 for convenience. With this notation,
the standard and proper standard modules are defined as ∆(i) = eiA/eiAεi+1A

and ∆(i) = eiA/ei(rad A)εiA, respectively. One can define the standard and
proper standard left modules ∆◦(i) and ∆

◦
(i) analogously.

Let M ∈ mod-A have the minimal projective resolution

. . .
αk+1−→ Pk

αk−→ . . .
α1−→ P0

α0−→M → 0,

and let Ωk(M) = kerαk−1 be the kth syzygy ofM . (IfM = S(i), then we write
Pk(i) for the kth term and Ωk(i) for the kth syzygy.) Usually, if there is no risk
of misunderstanding, we omit the argument of Ωk.

Let M be a submodule of N . We say that M is a top submodule of N
(M

t
≤ N) if (rad N) ∩ M = rad M . Using the concept of top submodules,

we can introduce the subclasses CiA (i ≥ 0) of mod-A and also the notion of
top resolutions, which generalizes linear resolutions for the non-graded case. A
module M is in CiA if Ωj

t
≤ rad Pj−1 holds for all j ≤ i, and let C0A = mod-A.

The module M is a quasi-Koszul module if M ∈ CA := ∩∞i=0CiA, i.e. if M has a
top resolution. An algebra A is quasi-Koszul if all of its simple right modules
are quasi-Koszul, while A is standard Koszul if ∆(i) ∈ CA and ∆

◦
(i) ∈ CA◦ for

all i.

2 Self-injective special biserial algebras

Let Γ be a quiver and I an admissible ideal of KΓ. We write the product of two
arrows α : i→j and β : j→k as αβ : i→j→k. An algebra A ∼= KΓ/I is said to
be special biserial, or SB for short, if for each vertex v of Γ, there are at most
two arrows starting, and at most two arrows ending at v, furthermore, for each
arrow α there exists at most one arrow β and at most one arrow γ such that
βα, αγ /∈ I.

An algebra A is self-injective if AA is an injective A-module. A is a Frobenius
algebra if AA ∼= HomK(AA,K) as right modules. Frobenius algebras are always
self-injective, on the other hand, every self-injective basic algebra is Frobenius
[4]. If A is a Frobenius algebra, then there exists a linear function ϕ : A → K

such that kerϕ does not contain any nontrivial right or left ideal of A. We call a
Frobenius algebra symmetric if the above Frobenius function is symmetric, i.e.
ϕ(ab) = ϕ(ba) for all a, b ∈ A. By an SSB algebra, we mean an SB algebra with
such a fixed symmetric form ϕ.

Similarly to the ideas of Antipov and Generalov in [3] about SSB algebras,
we introduce a function δ, which operates on the (scalar multiples of) paths of a
self-injective SB algebra A. Since A is self-injective, soc P (i) and soc P ◦(i) are
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simple modules for all i. So for every path u : i j, there exist paths v, w such
that uv, wu are maximal nonzero paths, which generate soc P (i) and soc P ◦(j),
respectively. The function ϕ cannot vanish on the socle of any indecomposable
projective summand, so there is a unique scalar multiple δ(u) of v such that
ϕ(uδ(u)) = 1; and this definition extends naturally to nonzero scalar multiples
of paths. Note that in the symmetric case v = w, and uv is always a cycle [3].

Let A = KΓ/I denote a self-injective SB algebra. There are two types
of indecomposable projective modules over A. The module eiA can be either
uniserial (i. e. its submodules form a chain), or by the definition of biserial
algebras (cf. [11]) and self-injectivity, its radical can be written as a sum U +V

of two uniserial submodules U and V such that U ∩ V = soc eiA is a simple
module. Moreover, we see that each of the modules U and V is generated by an
arrow, that is, U = αA and V = βA, where α and β are the two distinct arrows
starting at the vertex i in the quiver Γ.

We are going to prove that, apart from a few trivial exceptions, the indecom-
posable projective modules of a quasi-Koszul or standard Koszul self-injective
SB algebra cannot be uniserial, and we construct the (minimal) projective res-
olutions of simple modules in these cases.

In the lemmas and propositions of Section 2, we always assume that A =

KΓ/I is a self-injective connected SB algebra.

Lemma 2.1. Let αA be the submodule of eiA generated by the arrow α starting
at the vertex i. Then αA is a top submodule of rad eiA. Moreover, if αA ≤
M

t
≤ rad eiA, then M is either αA or rad eiA.

Proof. If eiA is uniserial, then the statement clearly holds. Suppose that eiA is
not uniserial, and let β be the other arrow starting at i. Then

rad2 eiA ∩ αA = rad (αA+ βA) ∩ αA = rad αA+ rad βA ∩ αA︸ ︷︷ ︸
soc eiA

= rad αA.

So αA
t
≤ rad eiA. Let M ≥ αA be a top submodule of rad eiA. Using Lemma

1.1 of [1], we get

M̃ := M/αA
t
≤ rad eiA/αA,

but since rad eiA = αA+ βA and αA ∩ βA = soc eiA,

M̃
t
≤ rad eiA/αA ∼= βA/ soc βA.

The module βA/ soc βA is uniserial, so if M̃ is a top submodule of rad eiA/αA,
then M̃ = 0 or M̃ = rad eiA/αA, that is, M = αA or M = rad eiA.

Lemma 2.2. Suppose that eiA is an at least three-dimensional uniserial module
for some i. If its simple top S(i) is in CmA , then Ωk(i) is also uniserial for all
1 ≤ k ≤ m, moreover, for all such k, the syzygy Ωk(i) is generated by an arrow,
and dimK Ωk(i) ≥ 2.
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Proof. We prove the lemma by induction on k. The first step is trivial. For the
induction step, we need the following. Take a submodule U = αA generated by
the arrow α : j→` in the indecomposable projective module ejA such that U ∈
C1A and dimK U ≥ 2. Let ϕ : P(U) → U be its projective cover. U is uniserial
by the SB property but P(U) = e`A is not, since otherwise kerϕ ≤ rad2 P(U),
contradicting U ∈ C1A. By the SB property, αβ = 0 for one arrow β starting at

`. Thus βA ≤ kerϕ
t
≤ rad e`A, so Lemma 2.1 gives that kerϕ is either βA or

rad e`A. But the latter is impossible, since dimK U ≥ 2. Finally, βA is at least
two-dimensional, since P(U) is not uniserial.

Lemma 2.3. Suppose that eiA is an at least three-dimensional uniserial module
for some i. Then S(i) /∈ CA.

Proof. First, observe that if X,Y ∈ mod-A and

0→ Y → Pm → . . .→ P0 → X → 0

is a non-split exact sequence with indecomposable projective intermediate terms,
then we have Ωm+1(X) ∼= Y and by the self-injectivity Ω−(m+1)(Y ) ∼= X, where
Ω−k(Y ) is the kth cosyzygy of the module Y .

Now, assume that S(i) ∈ CA, consequently, Ω1(i) = rad P (i) ∈ CA. Lemma
2.2 yields that the submodule Ωk(i) is generated by an arrow in Pk−1(i) for each
k, moreover, dimK Ωk(i) ≥ 2. This also implies that every projective term in
the projective resolution of S(i) is indecomposable. But there exist only finitely
many modules of the form αA, so there exists a smallest index k and a smallest
integer h for which Ωk(i) ∼= Ωk+h(i). By our previous observation,

S(i) ∼= Ω−k(Ωk(i)) ∼= Ω−k(Ωk+h(i)) ∼= Ωh(i),

which contradicts dimK Ωh(i) ≥ 2.

We have seen in Lemma 2.3 that eiA cannot be uniserial if dimK eiA ≥ 3

and A is quasi-Koszul. However, there are cases when eiA is uniserial. If A is
local, then AA may be uniserial: K and K[x]/〈x2〉 are both quasi-Koszul and
standard Koszul algebras. If A is non-local and there exists at least one index
i for which eiA is uniserial, then the structure of the algebra is very special as
we will see in the next proposition.

Proposition 2.4. Suppose that A is non-local and quasi-Koszul. Assume that
there exists an index i for which the module eiA is uniserial. Then all the inde-
composable projective modules are uniserial. Furthermore, A ∼= KΓ/I, where Γ

is a directed cycle on n vertices, and I is generated by all the paths of length 2.

Proof. First, observe that if eiA is uniserial for some i, then dimK eiA = 2

by Lemma 2.3 and the connectedness of A. Suppose that there exists a non-
uniserial indecomposable projective module. Let U = {eiA | eiA is uniserial}
and N = {ejA | ejA is not uniserial}. The elements of U are two-dimensional
projective-injective modules, so the image of every non-trivial morphism be-
tween elements of U and N (in either direction) is simple. Let us consider the
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bijection f : U ∪N → U∪N which maps each projective module to the injective
envelope of its top. Since A is connected, f(U) 6= U and f(N ) 6= N . So there
are indices i, j such that eiA is uniserial but ejA is not, and soc eiA ∼= S(j).

Let γ denote the unique arrow from i to j. The module ejA is not uniserial,
so we can find distinct arrows α : j→′j and β : j→j′. Note that both γα and
γβ are 0. Considering the indecomposable injective modules I(′j) and I(j′)

corresponding to the vertices ′j and j′, we see that none of them is equal to
P (j), so α and β cannot be maximal nonzero paths from the right. It means
that they are not maximal nonzero paths from the left either. So there exist
arrows α′, β′ such that α′α and β′β are not 0. The arrows α′, β′ are distinct
from γ (since γα = γβ = 0) and are also distinct from each other by the SB
property of A. So there would be three distinct arrows ending at j, which is
impossible in the quiver of a biserial algebra.

Finally, since A is a connected and self-injective algebra with only two-
dimensional indecomposable projective modules, the quiver of A is indeed a
directed cycle.

Remark 2.5. Note that in the second part of the proof, we have actually shown
that if A does not have any uniserial projective module with dimension greater
than 2, but possesses a uniserial projective module with dimension 2, then A

must be an algebra described above.

We would like to show that a similar statement holds for standard Koszul
self-injective algebras, namely, if the module eiA with dimension at least 3 is
uniserial, then A cannot be standard Koszul. That would mean – aside from the
cases above – that it is enough to investigate algebras for which all the vertices
in Γ have in- and out-degree 2.

Before we do that, we would remind the reader that the properties SB,
self-injective and symmetric are ”side-independent”. That is, an algebra A is
SB/self-injective/symmetric if and only if A◦ is SB/self-injective/symmetric.
Due to the results of Green and Martínez-Villa [7], we know that A is quasi-
Koszul if and only if A◦ is quasi-Koszul. We will use these facts later on.

Lemma 2.6. If A is a non-simple standard Koszul algebra having a unise-
rial projective module, then every indecomposable projective A-module is two-
dimensional.

Proof. Suppose that eiA is uniserial with dimK eiA ≥ 3 and soc eiA ∼= S(t).
Now, A◦ is also self-injective SB, and Aet is a uniserial A◦-module. Since ∆(i)

and ∆
◦
(t) are in C1A and C1A◦ , respectively, both of them have to be either simple

or projective. If ∆(i) is projective, then ∆
◦
(t) is not, hence it is simple. Both

cases contradict Lemma 2.3.
If A is a non-local, then Remark 2.5 gives that A ∼= KΓ/I, where Γ is a

directed cycle on n vertices and I is generated by all the paths of length 2. So
every indecomposable projective module is two-dimensional.

In Proposition 2.7, we summarize the previous lemmas and observations.
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Proposition 2.7. If A is a standard Koszul self-injective SB algebra that has
a uniserial projective module, then A is quasi-Koszul.

Proof. The algebras K and K[x]/〈x2〉 are Koszul, while the algebras described
in Proposition 2.4. are quadratic and monomial, hence Koszul, cf. [8].

Now, we can move on, and may assume that Γ consists of vertices with in-
and out-degree 2. We construct the minimal projective resolutions of simple
modules over algebras of this type. Although our description uses Loewy di-
agrams – similarly to the diagrammatic method of [3] – we also give explicit
calculations. These extend the result of Proposition 3.3 b) in [3].

As an aid for describing the projective resolutions of simple modules, we
define a graph on N× N for each simple module S(s) (Fig. 1).

•
(0, 0)

•
(1, 1)

•
(1, 0)

•
(0, 1)

•
(2, 0)

•
(0, 2)

...
... . . .

•
(3, 0)

•
(0, 3)

•
(2, 1)

•
(1, 2)

a0
,0

b
0,0

a0
,1

b
1,0a1

,0
b
0,1

a2
,0

b
0,2a1

,1
b
1,1

b
2,0 a0

,2

Figure 1: the graph corresponding to the resolution of S(s)

The origin, (0, 0) represents the vertex s ∈ Γ. For all pairs (i, j), there
are exactly two arrows starting at (i, j): ai,j to (i + 1, j) and bi,j to (i, j + 1).
The arrows represent scalar multiples of nonzero paths in the following way.
First, a0,0 and b0,0 are just the two arrows starting at s. The leftmost and the
rightmost arrows are defined recursively such that ai+1,0 is the unique arrow of Γ

for which ai,0ai+1,0 is a minimal zero path. The definition of b0,i+1 is analogous.
The other arrows are defined via the function δ. Let ai,j be δ(bi,j−1), for j ≥ 1,
and similarly, bi,j = δ(ai−1,j) for j ≥ 1. Let the common endpoint of the
paths determined by ai−1,j and bi,j−1 correspond to (i, j). We will denote the
indecomposable projective module corresponding to the vertex assigned to (i, j)

by P (i, j).
Proposition 2.8 links this graph of s with the projective resolution of the

simple module S(s), namely, it will turn out that the hth term in the projective
resolution of S(s) is isomorphic to the direct sum of the indecomposable projec-
tive modules corresponding to the vertices contained in the hth level. Moreover,
the syzygies can be tracked by stepping downwards on the levels of the graph.
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Proposition 2.8. Let s be a vertex in the quiver Γ of A, where Γ consists of
vertices with in- and out-degree 2. The Loewy-diagram of the hth syzygy of S(s)

follows the row

•
(h − 1, 1)

•
(1, h − 1)

•
(h, 0)

•
(0, h)

•
(h − 2, 2)

•
(2, h − 2)

•
(h, 1)

•
(1, h)

•
(h − 1, 2)

•
(2, h − 1)

· · ·ah
−
1,
1

b
1,h−

1

b
h
,0 a 0

,h

b
h−

1,1 a 1
,h
−
1

ah
−
2,
2

b
2,h−

2

of Fig. 1. In fact, the hth term of the minimal projective resolution of the simple
module S(s) is

Ph =

h⊕
i=0

P (i, h− i), (1)

while the corresponding kernel is

Ωh+1 = ãh,0A+

h−1∑
i=0

(bh−i,i + ãh−i−1,i+1)A+ b0,hA, (2)

where ãh−i,i = (−1)hah−i,i.

Proof. We prove the statement by induction on h. For h = 0, it is obvious that
P0 = P (0, 0) and Ω1 = a0,0A+ b0,0A. Let us assume that our statement holds
for some h.

Let dh+1 :

h+1⊕
i=0

P (i, h+ 1− i)→ Ωh+1 be described by the matrix

dh+1 =



ãh,0 bh,0
ãh−1,1 bh−1,1

. . . . . .

ãh−i,i bh−i,i

. . . . . .

ã1,h−1 b1,h−1

ã0,h b0,h


acting from the left. The map dh+1 is clearly surjective, and it is easy to check
from Fig. 1 that

ãh+1,0A+

h∑
i=0

(bh+1−i,i + ãh−i,i+1)A+ b0,h+1A

is in the kernel ker dh+1. On the other hand, for an arbitrary x ∈ ker dh+1, we
have

ãh−i,i[x]i + bh−i,i[x]i+1 = 0

for all i, so
ãh−i,i[x]i = −bh−i,i[x]i+1 ∈ soc P (h− i, i),
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thus [x]i ∈ rad P (h+ 1− i, i) for all i. This implies that dh+1 is the projective
cover of Ωh+1. Furthermore,

[x]i = αh−i+1,iri + βh−i+1,isi, i = 0, . . . , h+ 1,

for some si, ri ∈ A, where αh−i+1,i and βh−i+1,i are the two distinct arrows
(starting at the vertex (h − i + 1, i)) in the ith summand of Ph+1. Note that
αh−i+1,i and βh−i+1,i are the starting segments of ah−i+1,i and bh−i+1,i, respec-
tively, so both ãh−i,iαh−i+1,i and bh−i,iβh−i,i+1 are zero according to the graph
defined in Fig. 1. Let us compute [dh+1x]i.

[dh+1x]i = ãh−i,iβh−i+1,isi + bh−i,iαh−i,i+1ri+1 = 0. (3)

The two terms in (3) have their images in distinct components of the factor
rad Ph/ soc Ph, so both terms must be in the socle of Ph. Hence,

βh−i+1,isi = bh−i+1,is
′
i and αh−i,i+1ri+1 = ah−i,i+1r

′
i+1.

By the definitons of the monomials a, b and the function δ, we can write

ãh−i,ibh−i+1,is
′
i = (−1)hbh−i,iah−i,i+1s

′
i.

Therefore, after rewriting (3),

bh−i,iah−i,i+1((−1)hs′i + r′i+1) = 0,

that is, (−1)hs′i + r′i+1 = j ∈ Annr(bh−i,iah−i,i+1). Let us express j as a linear
combination of paths ui of A, and separate the terms:

j =
∑

λiui =
∑

ah−i,i+1ui=0

λiui︸ ︷︷ ︸
j′

+
∑

ah−i,i+1ui 6=0

λiui︸ ︷︷ ︸
j′′

.

Note that bh−i+1,ij
′′ = 0 by the SB property, so we get

[x]i = αh−i+1,iri + bh−i+1,i(s
′
i + (−1)h+1j′′)

and
[x]i+1 = ah−i,i+1((−1)h+1s′i + j′′) + βh−i+2,isi+1,

and on the right-hand side of the latter, the first term is ãh−i,i+1(s′i+(−1)h+1j′′).
Applying this for every index i, we see that

ker dh+1 ≤ ãh+1,0A+

h∑
i=0

(bh−i+1,i + ãh−i,i+1)A+ b0,h+1A

because at both ends, ah+1,0 and b0,h+1 are just the arrows αh+1,0 and β0,h+1.

Using the graph defined above, we can now give a characterization of quasi-
Koszul self-injective SB algebras.
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Proposition 2.9. With notations as above, A is quasi-Koszul if and only if for
all vertices s in Γ, one of the elements a0,1 and b1,0 is a scalar multiple of an
arrow.

Proof. First, it is easy to see that if for a vertex s ∈ Γ, both of a0,1 and b1,0 are

in rad2 A, then Ω2(s)
t

� rad P1(s), hence the simple module S(s) /∈ C2A.
Conversely, fix an arbitrary vertex s. It is enough to show that

a0,1 or b1,0 is an arrow⇒ (∀h : rad2 Ph ∩ Ωh+1 ≤ rad Ωh+1).

Note that on the right-hand side of (2), each generating element (except ah,0
and b0,h) is a linear combination of two paths. One term of the combination
is a scalar multiple of an arrow, otherwise these two paths would be the end
segments of two distinct nonzero paths with length at least 3, ending at the
same vertex. Then we could find an appropriate vertex s′ for wich the condition
of the statement fails.

Let h and x ∈ Ωh+1 be arbitrary. By using the form (2) of Ωh+1 and
rearranging, we can express x as

x =

h∑
i=0

ãh−i,iri + bh−i,iri+1 (4)

with appropriate elements ri ∈ A. In (4), the members are sorted so that for
each i, the term ãh−i,iri + bh−i,iri+1 belongs to the same direct component of
Ph, therefore, x ∈ rad2 Ph means that all these terms are in the radical-square
of the component they are contained in. Focusing on one particular term, we
observe that its image in rad Ph/ soc Ph is a combination of two elements from
distinct components, so each member of this sum has to be in the radical-square,
hence ri ∈ rad A for all i ≥ 1.

Corollary 2.10. A is quasi-Koszul if and only if all of its simple modules are
in C2A.

Proof. One direction is obvious. For the converse, we observe that if both
elements a0,1 and b1,0 are in rad2 A, then S(s) /∈ C2A.

In the remaining part of the section, we will prove that a standard Koszul
self-injective SB algebra satisfies the conditions of Proposition 2.9 for being
quasi-Koszul. Without loss of generality we may assume that there are no
uniserial projective modules.

Definition 2.1. Let u = s1→s2→ . . .→sm be a path in Γ. We say that u
contains a valley if there exist indices j < k < ` for which sj ≥ sk and sk < s`.

Lemma 2.11. If u = s1→s2→ . . .→sm contains a valley, then it also contains
a short valley, that is, there exists an index i such that si−1 ≥ si and si < si+1.

Proof. Let u′ : sj sk sm be the subpath of u with j < k < m such that
sj ≥ sk and sk < sm. Let t denote the largest index between j and m for which
st is minimal. Then st−1→st→st+1 is a short valley.
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Lemma 2.12. Let u be a nonzero path such that |u| (the length of u) is at least
3. If u contains a valley, then A is not standard Koszul.

Proof. Suppose that u starts at the vertex i. We may assume that eiA is
not uniserial (see Lemma 2.6). By the previous lemma, there is a subpath
u′ : j→k→m of u, which is a short valley. If j > m, then u′A is a top submodule
of Ω(∆(j)) but it is not a top submodule of rad ejA, so ∆(j) /∈ C1A. On the
other hand, if j ≤ m, then a similar argument shows that ∆

◦
(m) /∈ C1A◦ .

Proposition 2.13. Let A be standard Koszul. For all i, at least one of the
maximal nonzero paths in eiA has length 2.

Proof. Assume - on the contrary - that eiA contains two distinct paths u, v with
length at least 3. Let t denote the common endpoint of u and v:

u : i→ ′i→ ′′i→ . . .→ (b)i→ t

v : i→ i′ → i′′ → . . .→ i(r) → t,

where r, b ≥ 3.
Recall from the proof of Proposition 2.9 that if for some s, both a0,1 and

b1,0 are in rad2 A, then the simple module S(s) fails to be in C2A. Therefore,
S(i) /∈ C2A and S◦(t) /∈ C2A◦ , so ∆(i) 6= S(i) and ∆

◦
(t) 6= S◦(t). These also

imply that none of ∆(i) and ∆
◦
(t) can be projective. For example, if ∆(i) is

projective, then (b)i, i(r) ≤ i, and since ∆
◦
(t) 6= S◦(t), one of i(r) and (b)i – let

us say (b)i – must be less than t. But then u contains a valley, contradicting
Lemma 2.12. Similarly, if ∆

◦
(t) = Aet, then u or v contains a valley.

So neither ∆(i) nor ∆
◦
(t) is simple or projective, hence exactly one of i′ and

′i is greater than i, and exactly one of (b)i and i(r) is less than t.
Since none of the paths u and v contains a valley, it can be assumed that the

indices are increasing along u and decreasing along v. That would mean that
both i < t and t < i, a contradiction.

Theorem 2.14. If A is a self-injective standard Koszul SB algebra, then A is
quasi-Koszul.

Proof. The theorem is an easy consequence of Propositions 2.7, 2.9 and 2.13.

3 Standard Koszul symmetric special biserial al-
gebras

We now turn our attention to SSB algebras. In this section, let A = KΓ/I

be a standard Koszul SSB algebra. Recall that the existence of the symmetric
form ϕ implies that soc AA is generated by cycles. Moreover, if the path u =

α1, α2 . . . , αk is in soc AA, then the paths αi, αi+1, . . . , αi−1 are in the socle of
AA for all i.
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Observe that if eiA is an indecomposable projective A-module, and all com-
position factors of eiA are isomorphic to S(i), then the fact that A is connected
implies that AA = eiA, i.e. A is local.

First, we handle non-local algebras; local algebras will be discussed later. So
from now on, A possesses at least two non-isomorphic simple modules, and for
every i, there exists j 6= i such that S(j) is a composition factor of eiA. Thus
dimK eiA ≥ 3 for every i. This condition, along with the former results of the
paper, implies the next statement.

Proposition 3.1. If A is non-local, then no eiA is uniserial.

We can use combinatorial arguments again to characterize the quivers Γ for
which KΓ/I can be standard Koszul. To obtain the generating relations of I
for such quivers, we have to use only that A is symmetric (i.e. the existence of
some symmetric form ϕ).

Proposition 3.2. If A is standard Koszul, and u is a maximal nonzero path in
A with |u| ≥ 3, then u is a power of a loop.

Proof. Let u : u1→u2→ . . .→um→u1 be a maximal nonzero path with m ≥
3. Suppose that u passes through at least two distinct vertices. Let uk be a
maximal vertex in u. Now, u′ : uk→uk+1→ . . .→uk−1→uk is also a maximal
nonzero path. Since uk is maximal, the path u′ contains a valley, contradicting
Lemma 2.12.

Corollary 3.3. If A is non-local, then all the vertices in Γ are contained in
exactly two maximal nonzero cycles. If one of these cycles has length greater
than 2, then it is a power of a loop.

Lemma 3.4. If α : a→b is an arrow in Γ with a 6= b, then there must also
exist a unique arrow β : b→a. Moreover, both αβ and βα are maximal nonzero
paths.

Proof. The existence of such β is just a reformulation of Proposition 3.2 and
Corollary 3.3. For the uniqueness, suppose that there are two arrows β1,2 : b→a.
Using the connectedness and the SSB property of A, along with Corollary 3.3,
we see that Γ consists of two vertices and the four arrows α1,2 : a→b and
β1,2 : b→a. It follows from Corollary 3.3 that ∆

◦
(2) = Ae2/ soc Ae2 but this is

not in C1A◦ .

Lemma 3.5. Γ contains at most 2 vertices that are endpoints of loops.

Proof. Let us assume that there are (at least) three vertices in Γ that are end-
points of loops. Let them be s1, s2, s3. Since A is connected, there are directed
paths from s1 to s2 and from s1 to s3. Let u1 and u2 be two such paths with
minimal length. Let t be the vertex where u1 and u2 differ for the first time.
Using Lemma 3.4, it is easy to check that both the in- and out-degree of t is at
least 3, and this contradicts the SB property of A.
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Lemma 3.6. If A is non-local, then Γ contains exactly 2 vertices that are
endpoints of loops.

Proof. First, suppose that there are no loops in Γ. We take an arbitrary vertex
s0. Since A is connected, s0 has a neighbour, i.e. there exists an arrow α1 :

s0→s1 (and by Lemma 3.4 an arrow β1 : s1→s0, too). The vertex s1 also has
out-degree 2, so there must be an arrow α2 : s1→s2 6= s0, and so on. At some
point, sn coincides with s0. This means that the arrows α0, α1, . . . , αn and
β0, β1, . . . , βn in Γ form two disjoint, parallel and oppositely directed cycles on
n vertices, and the maximal nonzero paths of A are of the form αiβi and βiαi.
One can check that ∆

◦
(n) = P ◦(n)/ soc P ◦(n) /∈ C1A◦ .

We can repeat the first part of the previous argument in the situation where
Γ contains exactly 1 loop. Now, starting with the vertex s0 (which belongs to
the loop) and running over the vertices s1, s2, . . . will lead us to some vertex sn
that has to coincide with a former vertex. But that vertex would have in- and
out-degree (at least) 3.

Corollary 3.7. If Γ has at least 2 vertices (i.e. A is not local), then Γ has the
shape shown in Fig. 2.

• •γ
α1

β1

•
α2

β2

. . . • • •
αn−2

βn−2

αn−1

βn−1

δ

Figure 2: the quiver of a non-local standard Koszul SSB algebra

Proposition 3.8. Let A = KΓ/I be a non-local standard Koszul SSB algebra.
Then Γ has the shape shown in Fig. 2, and I is generated by the relations

I =
〈
αiαi+1, βi+1βi, γα1, αn−1δ, β1γ, δβn−1, αi+1βi+1 − βiαi,

γk − α1β1, λδ
m − βn−1αn−1 | i = 1, . . . , n− 2

〉
, λ ∈ K \ {0}, k,m ≥ 2. (5)

The vertices are indexed so that the indices are increasing from the vertex with
the smallest index towards either end according to Fig 2.

Proof. We may assume that I is generated by paths and differences of paths
except the term λδm − βn−1αn−1. Otherwise, we can exchange the arrows for
their scalar multiples repeatedly (let us say moving from left according to the
quiver in Fig. 2). At the last vertex, we might not be able to do this if K is not
algebraically closed.

If the ordering differs from the one we stated, then there is a vertex k having
neighbours only with lower indices. In this situation ∆

◦
(k) /∈ C1A◦ .

Let us investigate now the local algebras. There are two cases depending on
the degree of the single vertex s ∈ Γ. If there is only one arrow in Γ, then A

is monomial and commutative. Therefore A is standard Koszul if and only if
∆(1) = S(1) ∈ CA. Hence A ∼= K or K[x]/〈x2〉.
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For the other case, suppose that s ∈ Γ has degree 2, and let the two arrows
be x and y. If xy 6= 0, then x2 = 0 and y2 = 0 by the SB property. We
show that xyx = 0. Assume – on the contrary – that xyx 6= 0. If xyxy = 0,
then ϕ(xyxy) = ϕ(yxyx) = 0, and AxyxA would be a proper ideal in kerϕ

because we have ϕ(xyx) = ϕ(x2y) = 0. Otherwise, if xyxy 6= 0, then both
dimK yA and dimK xA ≥ 3, hence A is not standard Koszul (cf. Lemma 2.13).
Therefore if xy 6= 0, then xyx = 0, and similarly, yxy = 0. Since A is symmetric,
ϕ(xy − yx) = 0, and x2 = y2 = xyx = yxy = 0 implies that the ideal generated
by xy − yx is in kerϕ, so xy = yx. Consequently, A ∼= K[x, y]/〈x2, y2〉.

Suppose that xy = 0. Then yx = 0 (otherwise AyxA is a proper ideal in
kerϕ), but since the socle is simple, x2, y2 6= 0. Besides, if k,m are the smallest
integers such that xk and ym are in the socle, then I = 〈xy, yx, xk − λym〉,
where λ ∈ K \ {0}. Since A is standard Koszul, we may assume, for example,
that k = 2.

Theorem 3.9. A = KΓ/I is a standard Koszul SSB algebra if and only if
either

(a) A is isomorphic to one of the K-algebras: K, K[x]/〈x2〉, K[x, y]/ 〈x2, y2〉,
K〈x, y〉/〈xy, yx, x2 − λym〉, or

(b) Γ has the shape shown in Fig. 2 and I is generated by the relations of (5).

Proof. In the local case, we have shown that the conditions of (a) are necessary.
Note that if A is local, then it is standard Koszul if and only if it is quasi-Koszul.
One may apply our former observations or Proposition 2.9 to the algebras de-
scribed in (a), and see that they are standard Koszul. In the non-local case, we
have seen that the conditions of (b) are necessary.

Suppose now that the condition (b) holds for A. We show that both ∆(i) and
∆
◦
(i) are quasi-Koszul for all i. We may assume that none of them is projective

or simple. (Projective modules are in CA, and if A satisfies the conditions of
(b), then it is quasi-Koszul by Proposition 2.9, so all its simple left and right
modules are quasi-Koszul.) If ∆(i) (or ∆

◦
(i)) is neither simple nor projective,

then we can see from the induction step in the proof of Lemma 2.2 that each
of the syzygies Ωh(∆(i)) (or Ωh(∆

◦
(i))) is generated by a respective arrow for

all h. According to Lemma 2.1, these submodules are top submodules of the
radical of the projective module that they are contained in.

The only thing to check is whether these algebras are symmetric, since they
are obviously SB. For the algebras in (a), let ϕ be 1 on an arbitrary basis element
of soc AA and 0 on all the other subspaces generated by paths. For the algebras
in (b), define ϕ to be 1 on all the maximal nonzero paths of A except that
ϕ(δm) = 1/λ. Let ϕ vanish on all the other paths. It is easy to check that these
functions can be extended to symmetric forms for the given algebras.
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