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Abstract. In this paper we study functional equation
n∑

i=1

aif(bix+ cih) = 0 (x, h ∈ C)

where ai, bi, ci are fixed complex numbers and f : C → C is the unknown function. We
show, that if there is an i such that bi/ci ̸= bj/cj holds for any 1 ≤ j ≤ n, j ̸= i, the
functional equation has a noncontant solution if and only if there are field automorphisms
ϕ1, . . . , ϕk of C such that ϕ1 · . . . · ϕk is a solution of the equation.

1. Introduction

Studying linear functional equations with constant coefficients is a topic of interest (see,
for example [1] - [9] and the references therein). We investigate the functional equation

(1)
n∑

i=1

aif(bix+ cih) = 0 (x, h ∈ C)

where ai, bi, ci are fixed complex numbers and f : C → C is the unknown function. In this
paper we shall consider those equations of form (1) for which the solutions are generalized
polynomials. By a generalized polynomial we mean a function f : C → C such that, for a
suitable n, we have

∆h1 . . .∆hn+1f(x) = 0

for every h1, . . . , hn+1, x ∈ C. Here ∆h denotes the difference operator, ∆hf(x) =
= f(x+ h)− f(x). The following result is a special case of [9] Theorem 3.9:

Theorem 1.1. Suppose ai, bi, ci (i = 1, . . . , n) are complex numbers, ai ̸= 0 and |bi|+|ci| ̸=
0 for every i = 1, . . . , n. If

n∑
i=1

aif(bix+ cih) = 0

is true for every x, h ∈ C and

(2) there is an i such that bi/ci ̸= bj/cj holds for any 1 ≤ j ≤ n, j ̸= i,

then f is a generalized polynomial of degree at most n− 2.

Our aim is to prove that an equation of form (1) satisfying the condition (2) has a
noncontant solution if and only if there are field automorphisms ϕ1, . . . , ϕk of C such that
ϕ1 · . . . · ϕk is a solution (Theorem 2.3, Theorem 3.5, Corollary 3.6). This result provides
a theoretical possibility to decide the existence of non-constant solutions of equation (1)
under (2).
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2 G. KISS AND A. VARGA

The proof uses results of spectral analysis on discrete Abelian groups [5]. Let (G, ∗)
be an Abelian group, and let CG denote the linear space of all complex valued functions
defined onG equipped with the product topology. By a variety onG we mean a translation
invariant closed linear subspace of CG. A nonzero functionm ∈ CG is called an exponential
if m is multiplicative; that is, if m(x ∗ y) = m(x) ·m(y) for every x, y ∈ G. If a variety
contains an exponential function, then we say that spectral analysis holds in this variety.
If spectral analysis holds in every variety on G, then we say that spectral analysis holds
on G.

We shall use the result of [5] stating that spectral analysis holds on a discrete Abelian
group G if the cardinality of G is less then 2ω (the cardinality of continuum).

Note that the space of the solutions of (1) is a linear space over C, but not necessary
translation invariant. There are important special cases such as

(3)
n∑

i=1

aif(x+ bih) = 0

and

(4)
n∑

i=1

aif(bix+ (1− bi)h) = 0,

when the space of solutions is translation invariant. (Clearly, if the numbers b1, . . . , bn are
distinct, the equations (3), (4) satisfy condition (2).) In general, if the points (bi, ci) ∈ C2

lie on a line not going through the origin (0, 0), then the space of solutions is translation
invariant. Any two of this type of equations are equivalent in the sense that they can
be transformed into each other using a linear substitution. For instance, the substitution
of x′ = h and h′ = x − h shows the equivalence of the functional equations (3) and (4).
The collinearity of (bi, ci) is not a necessary condition for the subspace of solutions to be
translation invariant (see Proposition 3.10).

2. Solutions of order 1

A function fk : C → C is a monomial of degree k, if there exists a nonzero, symmetric
and k-additive function Fk : Ck → C such that fk(x) = Fk(x, . . . , x) for every x ∈ C. It
is well-known that a function f is a generalized polynomial of degree m if and only if
f = f0 +

∑m
k=1 fk, where f0 is constant and fk is a monomial of degree k (k = 1, . . . ,m).

Lemma 2.1. Suppose that f = f0 +
∑m

k=1 fk is a solution of (1), where f0 is constant
and fk is a monomial of degree k (k = 1, . . . ,m). Then each of f0, . . . , fm is a solution of
(1).

Proof. Since any k-additive function has the rational homogeneity property in every co-
ordinate, we have

n∑
i=1

ai · (f0 + r · f1(bix+ cih) + . . .+ rn · fn(bix+ cih)) = 0

for every x, h ∈ C, r ∈ Q. Let x, h be fixed. Putting Fj =
∑n

i=1 aifj(bix+ cih) we obtain∑m
j=0 Fj · rj = 0 for every r ∈ Q. Thus Fj = 0 for every j, proving that fj is a solution

of (1). �
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It is easy to see that if ϕ is an automorphism of C then ϕ is a solution of (1) if and
only if

(5)
n∑

i=1

aiϕ(bi) = 0 and
n∑

i=1

aiϕ(ci) = 0.

Indeed, we have, for every x, h ∈ C,

n∑
i=1

aiϕ(bix+ cih) =
n∑

i=1

ai (ϕ(bix) + ϕ(cih)) =

=

(
n∑

i=1

aiϕ(bi)

)
ϕ(x) +

(
n∑

i=1

aiϕ(ci)

)
ϕ(h).

The following proposition will be used frequently (see [3, Theorem 14.5.1]).

Proposition 2.2. Let K ⊂ C be a finitely generated field and ϕ : K → C be an injective
homomorphism. Then there exists an automorphism ψ of C such that ψ|K = ϕ.

Theorem 2.3. There is a nonzero additive solution of (1) if and only if there exists a
solution of (1) which is an automorphism ϕ : C → C or, equivalently, an automorphism
satisfying (5).

Proof. The ’if’ statement is obvious.
Let f1 be a nonzero additive solution of (1) and let d ∈ C be such that f1(d) ̸= 0.

Put K = Q(b1, . . . , bn, c1, . . . , cn, d), the extension of Q by the complex numbers bi, ci, d
(i = 1, . . . , n).

We put K∗ = {x ∈ K : x ̸= 0}; then K∗ is an Abelian group under multiplication. Let
V denote the set of additive functions f : K → C satisfying

(6)
n∑

i=1

aif(bix) = 0 and
n∑

i=1

aif(cix) = 0

for every x ∈ K. Let

V ∗ = {f |K∗ : f ∈ V }.
We prove that V ∗ is a variety on the Abelian group K∗.

It is clear that V ∗ is a linear space, and it is translation invariant with respect to the
multiplication. Indeed, if f is additive and satisfies (6), then x → f(ax) is also additive,
and also satisfies (6) for every a ∈ K∗. Let g : K∗ → C be a function in the closure of V ∗.
Extend g by g(0) = 0. Let a, b ∈ K∗ be such that a+ b is also in K∗, i.e. a+ b ̸= 0. Since
g ∈ clV ∗, for every ε > 0 there exists f ∈ V ∗ such that

|f(a)− g(a)| < ε, |f(b)− g(b)| < ε and |f(a+ b)− g(a+ b)| < ε.

Now, f(a) + f(b) = f(a+ b) because f is additive, so |g(a+ b)− g(a)− g(b)| < 3ε. This
is true for every ε, therefore g(a + b) = g(a) + g(b). This holds for every a, b ∈ K with
a, b, a+b ̸= 0 and then, by g(0) = 0, it follows that g is additive on K. A similar argument
shows that g satisfies (6). This means that V is closed, and thus V is a variety. Note that
V ∗ ̸= {0}, f1|K∗ ∈ V ∗ and f1 is nonzero on K.

By [5, Theorem 1], if G is a discrete Abelian group of torsion free rank less than
continuum, then harmonic analysis holds on G. This means that every nonzero variety
on CG contains an exponential. Since K∗ is countable, we find that V ∗ contains an
exponential.
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Let ϕ be an exponential element of V ∗. Then ϕ(xy) = ϕ(x)ϕ(y) for every x, y ∈
K∗. If we define ϕ(0) = 0 then, by ϕ ∈ V ∗, ϕ becomes additive on K, and thus ϕ
is a homomorphism from the field K to C. Since ϕ ̸≡ 0, it must be an injective field
homomorphism. Since ϕ ∈ V ∗, we have

0 =
n∑

i=1

aiϕ(bix) =
n∑

i=1

aiϕ(bi)ϕ(x) and 0 =
n∑

i=1

aiϕ(cix) =
n∑

i=1

aiϕ(ci)ϕ(x)

for every x ∈ K∗. This implies 0 =
∑n

i=1 aiϕ(bi) =
∑n

i=1 aiϕ(ci). Using Proposition 2.2,
ϕ can be extended to an automorphism of C. This completes the proof. �
Theorem 2.4. Suppose that a1, . . . , an are nonzero and b1, . . . , bn are distinct complex
numbers. The following are equivalent:

(i) There is a nonconstant solution of (3).
(ii) There is a solution of (3) which is an automorphism of C.
(iii)

∑n
i=1 ai = 0, and there exists an automorphism ϕ : C → C such that

n∑
i=1

aiϕ(bi) = 0.

Proof. (i)=⇒ (ii): The substitution h = 0 shows that
∑n

i=1 aif(x) = 0, thus either∑n
i=1 ai = 0 or 0 is the only solution. By (i), we have

∑n
i=1 ai = 0. This condition

implies that the constant functions are solutions.
Let f(x) be a nonconstant solution. By Theorem 1.1, every solution is a generalized

polynomial. If the degree of f is k, then for suitable h1, . . . , hk−1, the degree of the
function g = ∆h1 . . .∆hk−1

f is 1. Then g(x) = a(x) + c, where a(x) is a nonzero additive
function and c is a constant. Since g − c is a solution, we may assume that f is a not
identically zero additive function. Then, by Theorem 2.3, there is an automorphism of C
which is a solution of (3).

(ii) =⇒ (iii): If ϕ is an automorphism which is a solution of (3), then
∑n

i=1 aiϕ(1) = 0
and

∑n
i=1 aiϕ(bi) = 0.

(iii) =⇒ (i): It is clear by the previous theorem. �
Remark 2.5. Theorem 2.4 does not hold in the general case, because the existence of a
nonzero solution of (1) does not imply the existence of a nonzero additive solution. For
example, the equation

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0

is satisfied by x2. It is easy to check that every additive solution must be zero.

Proposition 2.6. Suppose
∑n

i=1 ai = 0 and
∑n

i=1 aibi ̸= 0. If either

(i) bi ∈ Q (i = 1, . . . , n), or
(ii) ai ∈ Q (i = 1, . . . , n),

then every solution of
∑n

i=1 aif(x+ bih) = 0 is constant.

Proof. We may assume that a1, . . . , an are nonzero and b1, . . . , bn are distinct. Indeed, by
deleting the terms corresponding to ai = 0 and adding the terms corresponding identical
bi’s neither the conditions, nor the conclusion change. Due to Theorem 2.4, if there
is a nonconstant solution, then

∑n
i=1 aiϕ(bi) = 0, where ϕ : Q(bi) → C is an injective

homomorphism.
Assuming (i) and taking into consideration that the identity is the only isomorphism

over Q, we find
∑n

i=1 aibi =
∑n

i=1 aiϕ(bi) = 0, contradicting the assumption.
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Assuming (ii), again we use the fact that ϕ fixes the elements of Q. We obtain

ϕ

(
n∑

i=1

aibi

)
=

n∑
i=1

aiϕ(bi) = 0

and
∑n

i=1 aibi = 0, a contradiction. �

3. Solutions of higher order

First we need some technical lemmas.

Lemma 3.1. Let fk(x) = Fk(x, . . . , x︸ ︷︷ ︸
k

) be a monoid, where Fk is symmetric and k-additive.

Then
k!Fk(x1, x2, . . . , xk) = ∆x1∆x2 . . .∆xk

fk(t)

for every t ∈ C.
Proof. See [3, §9,Lemma 2].

Lemma 3.2. If ϕ1, . . . , ϕk are distinct injective homomorphisms of the field K into C,
then there exists an element x ∈ K such that ϕi(x) ̸= ϕj(x) for every 1 ≤ i < j ≤ k.

Proof. We use induction on k. For k = 1 and k = 2 the statement is clear. Suppose k > 2
and the statement is true for k − 1. Let ϕ1, . . . , ϕk be distinct injective homomorphisms.
By the induction hypothesis, there exists an x ∈ K such that ϕ1(x), ϕ2(x), . . . , ϕk−1(x)
are distinct. If they are different from ϕk(x), then we are done. Suppose for example that
ϕ1(x) = ϕk(x). Since ϕ1 ̸= ϕk, there is an x′ such that ϕ1(x

′) ̸= ϕk(x
′). For every i < k

the number of integers mi satisfying ϕi(x + mix
′) = ϕ1(x + mix

′) is finite. Thus there
remains a suitable element of the form x+mx′. �
Lemma 3.3. Let ϕ1, . . . , ϕm be distinct injective homomorphisms of the field K into C,
and let k be a positive integer. Then there exists an element h ∈ K such that∏

j∈J

ϕj(h) ̸=
∏
j′∈J ′

ϕj′(h)

whenever J and J ′ are distinct multisets of the elements 1, . . . ,m containing each of
1, . . . ,m at most k times.

Proof. Let x be as in Lemma 3.2. For every multiset J let

PJ(r) =
∏
j∈J

ϕj(r − x) =
∏
j∈J

(r − ϕj(x))

for every r ∈ Q. Then PJ is a polynomial of the variable r ∈ Q. If the multisets J, J ′

are distinct, then the polynomials PJ , PJ ′ are also distinct, because, by the choice of
x, the numbers ϕj(x) (j = 1, . . . ,m) are distinct, and thus the set of roots of PJ with
multiplicities is different from that of PJ ′ .

If the multisets J, J ′ are distinct then PJ(r) ̸= PJ ′(r) for all but a finite number of
r ∈ Q. Therefore, we can choose an r ∈ Q such that all the values PJ(r) are distinct as
J runs through the possible multisets. Then h = r − x satisfies the requirements. �
Lemma 3.4. For every field automorphisms ϕ1, . . . , ϕk of C, the product ϕ1 · . . . · ϕk is a
solution of (1) if and only if

(7)
n∑

i=1

ai
∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci) = 0
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for every J ⊆ {1, . . . , k}.

Proof. Let

HJ =
n∑

i=1

ai
∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci) (J ⊂ I).

(=⇒) We denote I = {1, . . . k}. If ϕ1 · . . . ·ϕk is a solution then, applying (1) with x = 1
and h = y ∈ C we obtain

0 =
n∑

i=1

ai

k∏
j=1

(ϕj(bi) + ϕj(ci)ϕj(y)) =

=
n∑

i=1

ai ·
∑
J⊂I

∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci)ϕj′(y) =

=
∑
J⊂I

 n∑
i=1

ai
∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci)

∏
j′ /∈J

ϕj′(y) =

=
∑
J⊂I

HJ

∏
j′ /∈J

ϕj′(y).

(8)

We may assume that the automorphisms ϕ1, . . . , ϕm are distinct, and each of ϕm+1, . . . , ϕk

equal one of ϕ1, . . . , ϕm. If J is a multiset containing the element i qi times (i = 1, . . . ,m)
then we put HJ = HJ , where J ⊂ I is such that, for every i = 1, . . . ,m, the cardinality
of the set {j : ϕj = ϕi} equals qi. Clearly, (8) can be written in the form

(9)
∑
J

nJHJ

∏
j′ /∈J

ϕj′(y) = 0,

where J runs through the distinct multisets of size at most k consisting of elements
1 . . .m, and the coefficient nJ are suitable positive integers. By Lemma 3.3, we can
choose h such that the values of the products of these injective homomorphisms at h are
distinct. Then, applying (9) with y = h, h2, . . . , hN , we get the following system with the
notation

∏
J ϕj(h) =MJ : ∑

J

nJHJ ·MJ = 0

∑
J

nJHJ · (MJ)
2 = 0

...∑
J

nJHJ · (MJ)
N = 0.

This is a Vandermonde system which has no nontrivial solution if N is at least the number
of multisets J with the given properties. This completes the proof of (7).



EXISTENCE OF NONTRIVIAL SOLUTIONS OF LINEAR FUNCTIONAL EQUATIONS 7

(⇐=) Since ϕj is an automorphism, ϕj(bix+ cih) = ϕj(bi)ϕj(x) + ϕj(ci)ϕj(h). Thus,

n∑
i=1

ai

k∏
j=1

ϕj(bix+ cih) =
n∑

i=1

ai

k∏
j=1

(ϕj(bi)ϕj(x) + ϕj(ci)ϕj(h)) =

=
n∑

i=1

ai
∑

J⊆{1,...,k}

∏
j∈J

(ϕj(bi)ϕj(x))
∏
j′ /∈J

(ϕj′(ci)ϕj′(h)) =

=
∑

J⊆{1,...,k}

 n∑
i=1

ai ·
∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci)

∏
j∈J

ϕj(x)
∏
j′ /∈J

ϕj′(h) = 0,

because every term is 0. Thus the product of ϕ1 · . . . · ϕk is a solution of (1).

Theorem 3.5. For every positive integer k the following are equivalent.

(i) There exists a monomial of degree k which is a solution of (1).
(ii) There exist field automorphisms ϕ1, . . . , ϕk of C such that ϕ1 · . . . · ϕk is a solution

of (1).
(iii) There exist field automorphisms ϕ1, . . . , ϕk of C such that

(10)
n∑

i=1

ai
∏
j∈J

ϕj(bi)
∏
j′ /∈J

ϕj′(ci) = 0

for every J ⊆ {1, . . . , k}.

Proof. (ii)=⇒(i) is trivial with fk(x) := sym(ϕ1 · . . . · ϕk)(x, . . . , x).
(i)=⇒(ii): Suppose that there is a solution of (1) of degree k. By Lemma 2.1, there is a

solution which is a monomial of degree k. Let fk(x) = Fk(x, . . . , x) be a solution, where Fk

is nonzero, symmetric and k-additive. Let d1, . . . , dk ∈ C be such that Fk(d1, . . . , dk) ̸= 0.
We put

K = Q(b1, . . . , bn, c1, . . . , cn, d1, . . . , dk).

Let (K∗)k = {(x1, . . . , xk) : x1, . . . , xk ∈ K \ {0}}. Then (K∗)k is an Abelian group under
multiplication by coordinates. Since (K∗)k is countable, spectral analysis holds on it
according to [5]. Let V be the set of all functions S : Kk → C such that S is k-additive
and the function x 7→ S(s1x, s2x, . . . , skx) satisfies (1) for every s1, s2, . . . sk ∈ K. We
prove that Fk|Kk ∈ V. By Lemma 3.1,

k! · Fk(s1x, s2x, . . . , skx) = ∆s1x∆s2x . . .∆skxfk(0) =
N∑
j=1

±fk(ejx)

with suitable e1, . . . eN ∈ C. Thus Fk(s1x, s2x, . . . , skx) is a linear combination of functions
of the form fk(ex), which are also solutions of (1). It can be easily seen by simultaneous
substitutions x→ ex and h→ eh. Therefore, Fk(s1x, s2x, . . . , skx) is a solution, and thus
Fk|Kk ∈ V .

We denote
V ∗ = {f |(K∗)k : f ∈ V }.

It is easy to check that V ∗ is a closed linear subspace of C(K∗)k , translation invariant with
respect to the multiplication; i.e. it is a variety. Also, V ∗ ̸= {0}, because Fk|(K∗)k ∈ V ∗.

Since spectral analysis holds on V ∗, there is an element B(x1, x2, . . . , xk) ∈ V ∗ which
is multiplicative in each coordinate. That is,

B(x1y1, x2y2, . . . , xkyk) = B(x1, x2, . . . , xk) ·B(y1, y2, . . . , yk)
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for every xi, yi ∈ K∗. Therefore,

B(x1, x2, . . . , xk) = B(x1, 1, . . . , 1) ·B(1, x2, . . . , 1) · . . . ·B(1, 1, . . . , xk) =

= ϕ1(x1) · ϕ2(x2) · . . . · ϕk(xk)

for every x1, . . . , xk,∈ K∗. We extend ϕj to K by ϕj(0) = 0. Then each ϕj is an injective
homomorphism, because it is additive by the k-additivity of B, and it is multiplicative
as well. Therefore, ϕ1(x) · . . . · ϕk(x) = B(x, . . . , x) is a solution of (1) on K. Using
Proposition 2.2, we can extend ϕj to C as an automorphism. (iii)⇐⇒(ii): It is clear by
using Lemma 3.4. �
Corollary 3.6. Suppose that equation (1) satisfies condition (2). Then (1) has a non-
constant solution if and only if there is a k ∈ N and there are automorphisms ϕ1, . . . , ϕk

such that ϕ1 · . . . · ϕk is a solution.

Proof. If f is a nonconstant solution then, by Theorem 1.1, it must be a generalized
polynomial of degree k > 0. Then we can apply Theorem 3.5. �
Remark 3.7. Condition (2) is necessary in Theorem 1.1 and Corollary 3.6. For instance,
it is easy to construct a nonzero solution f to the functional equation f(x) − f(2x) = 0
although every generalized polynomial solution of this equation is zero due to the rational
homogeneity property. Thus, there are no automorphisms ϕ1, . . . , ϕk such that ϕ1 · . . . ·ϕk

is a solution, because, clearly, the product ϕ1 · . . . · ϕk is a generalized polynomial. We
note that if the pairs of parameters (bi, ci) lie on a line going through the origin, then
the functional equation can be reduced to the form

∑n
i=1 aif(dix) = 0 which has only the

identically zero generalized polynomial solution in general.

In the case of functional equations of the form (3) or (4) we can say more than in
Theorem 3.5, due to the translation invariance of the space of solutions with respect to
the additive structure.

Theorem 3.8. If ϕ1 · . . . · ϕk is a solution of the functional equation (3), where ϕi is an
automorphism for every i = 1, . . . , k, then every subproduct of them is also a solution of
(3).

Proof. By Lemma 3.4, ϕ1 · . . . · ϕk is solution of (3) if and only if

(11)
n∑

i=1

aiϕj1(bi) . . . ϕjs(bi) = 0

for every choice of the integers 0 ≤ j1 < j2 < . . . < js ≤ k (0 ≤ s ≤ k). Therefore, the
conditions are automatically satisfied for any subproduct, thus the statement is clear. �

Theorem 3.5 motivates the question whether or not the existence of a solution of order
k implies the existence of solutions of the form ϕk, where ϕ is an automorphism of C. The
next proposition shows that the answer is negative.

Proposition 3.9. There is a linear functional equation which has a solution of degree
two, but has no solution of the form ϕ2 where ϕ is an isomorphism.

Proof. Put K = Q(i). This field has only 2 isomorphism, ϕ1(z) = z and ϕ2(z) = z . Using
Theorem 3.5. it is enough to guarantee that:

(1)
∑n

i=1 ai = 0, otherwise there is no non-trivial solution.

(2)
∑n

i=1 aibi = 0 and
∑n

i=1 aibi = 0 which imply that ϕ1 and ϕ2 are solutions of the
functional equation.
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(3)
∑n

i=1 aib
2
i ̸= 0,

∑n
i=1 aib

2
i ̸= 0 which means that neither ϕ2

1 nor ϕ2
2 is a solution.

(4)
∑n

i=1 ai|bi|2 = 0 which implies that ϕ1ϕ2 is a solution.

It can be easily shown that

f(z + 1) + f(z − 1)− f(z + i)− f(z − i) = 0

is such an equation. �
In the last proposition we will show that the translation invariance of the space of

solutions does not imply that the functional equation can be reduced to the form (3).

Proposition 3.10. There is a functional equation of the type (1) which only has constant
solutions, and the pairs (bi, ci) are not collinear.

Proof. It is easy to find integers ai, bi and ci (i = 1, . . . , n) with the following properties:∑n
i=1 ai = 0,

∑n
i=1 aib

r
i ̸= 0 for any r = 1, 2, . . . and the pairs (bi, ci) are not collinear.

Since the identity is the only injective homomorphism of Q, it follows from Theorem 3.5
that if there is a nonconstant solution, then there is a solution which is the mth power
of the identity on Q for a suitable m ∈ N. Substituting x = 1, h = 0 we get

∑n
i=1 aib

m
i

which is nonzero. Thus any solution of this equation must be constant. �
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