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Abstract

We prove that if 3 | d, then the d-dimensional balls are m-divisible
for every m large enough. In particular, the 3-dimensional balls are
m-divisible for every m > 22.

1 Introduction and main results

We say that a subset of R¢ is m-divisible, if it can be decomposed into m
pairwise disjoint congruent pieces. A set is called divisible, if it is m-divisible
for some 2 < m < oo. Investigations of divisible sets started in 1949, when
van der Waerden noticed that the disc is not 2-divisible, and posed this fact
as an exercise in Elemente der Mathematik. Van der Waerden’s observation
prompted the question, still unsolved, whether or not the disc is divisible, or
even m-divisible for every m > 3. As for higher dimensions, it was proved by
S. Wagon in 1983 that the d-dimensional balls are not m-divisible if m < d [8].
Wagon’s result, again, motivated the question whether or not d-dimensional
balls are divisible. In this paper we give a partial answer by proving the
following.

Theorem 1.1. For every d divisible by three there is an my such that the
d-dimensional balls (either open or closed) are m-divisible for every m > my.

In particular, for d = 3 we have the following result.
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Theorem 1.2. The three dimensional balls (either open or closed) are m-
diwvsible for every m > 22.

We remark that in infinite dimensional spaces the situation is different.
It was shown by M. Edelstein that in infinite dimensional strictly convex
Banach spaces the closed unit ball is not divisible [2, Theorem 6]. (On the
other hand, the unit balls of the Banach spaces ¢y and C[0, 1] are m-divisible
for every m > 2; see [2, Theorem 1]. For further results concerning divisibility
in infinite dimensional spaces, we refer to [7].)

Returning to finite dimensional Euclidean spaces, recently it was proved
by C. Richter that in R? most of the convex bodies (that is, convex compact
sets with nonempty interior) are not divisible. More precisely, Richter proved
that the set of divisible convex bodies is of first category in an appropriate
space of all convex bodies [6]. Motivated by this result Richter formulated the
conjecture that no convex body is divisible in R? [6, p. 131]. Our Theorem
1.1 disproves this conjecture if 3 | d. We also have the following simple
consequence of Theorem 1.2.

Corollary 1.3. For every d > 3 there exist convez bodies in R® which are
m-divisible for every m > 22.

Indeed, if Bs denotes the three dimensional unit ball then, by Theorem
1.2, A x Bs is m-divisible for every m > 22 and for every A C R¢3; and if
A is a convex body in R4~3 then so is A x Bs in R¢. Perhaps we can modify
Richter’s conjecture as follows: is it true that if a convex body C C R? is
divisible, then C' is congruent to a set of form A x B, where A C R" is a
convex body, 0 < n < d, and B C R*™ is a ball?

In the next section we present a general sufficient condition for m-divisibi-
lity of sets under a transformation group. (The condition was motivated by
[4, Lemma 1].) Then we prove Theorems 1.1 and 1.2 by showing that this
condition can be realized by isometries. This part of the proof is based on
the fact that the action of SOj is locally commutative on R® \ {0}; that
is, if two elements of SOz have a common nonzero fixed point then they
commute. We shall work with a set of rotations and a translation generating
a free group. The main observation, also motivated by [4], is that under local
commutativity the graph generated by the transformations has the property
that whenever two cycles have a nonzero common vertex then the cycles
coincide (see Lemma 4.1).



The proof of Theorems 1.2 and 1.1 will be given in sections 4 and 5. In the
last section we make some comments on the limits of our method concerning
possible generalizations to other dimensions, and on the number of pieces in
the decompositions.

2 A lemma on decompositions

Let X be a set, and let fi,..., f, be maps from subsets of X into X. Our
aim is to find a sufficient condition for the existence of a decomposition
X =AgUA;U...UA, such that f;(4g) = A; for every i = 1,...,n.

Suppose that f; is defined on D; € X (i = 1,...,n), and put D =
(i, D;. We say that the point = is a core point, if € D, and the points
z, f1(x), ..., fo(x) are distinct. By the image of a core point x we mean the
set {fi(z),..., fa(z)}

We define a graph I' on the set X as follows: we connect the distinct
points z,y € X by an edge if there is an ¢ € {1,...,n} such that fi(z) =y
or fi(y) = x. Then T" will be called the graph generated by the functions
fiyeoes f-

Lemma 2.1. Let X, fi,..., fn, D, and ' be as above, and suppose that the
graph T has the property that whenever two cycles Ci; and Cy in I' share a
common edge, then the sets of vertices of Cy and Cs coincide.

Suppose that there is a point xog € X satisfying the following conditions.
(1) zo is in the image of at least one core point;
(ii) every x € X \ {xo} is in the image of at least three core points.

Then there is a decomposition X = AgU A1 U...UA, such that Ay C D,
and fi(Ao) = A; for everyi=1,...,n.

Proof. We shall prove that whenever E is the set of vertices of a connected
component of I', then F can be decomposed into disjoint sets Ey, E1,..., E,
such that Ey C D, and f;(Ey) = E; for every i = 1,...,n. Clearly, this will
prove the statement of the lemma.

For every core point x we shall denote the set {z, fi(z),..., fu(z)} by
U(x).



Let E be a given connected component of I'. Clearly, if x is a core point
and U(z)NE # 0, then 2 € E. Also, if z € E is a core point, then U(z) C E.

By (i), there is a core point ug such that zq is in the image of ug. It is
easy to check, using Zorn’s lemma, that there exists a maximal subset C' of
E such that every element of C is a core point, if g € E then ug € C, the
sets U(z) (x € C) are pairwise disjoint, and the subgraph of E spanned by
the set V' =|J{U(x) : x € C} is connected. Note that o € U(ug), and thus
we have either 2o ¢ E or o € V.

We prove that V' = E. Suppose this is not true. Since F is connected,
there are points x € E\ V and y € V such that z and y are connected by
an edge. Then z # o, and thus it follows from condition (ii) that there are
distinct core points p, g, such that = belongs to the image of each of p, g, r.
Then p, g, r, x are distinct. Also, at least two of the points p, ¢, r are different
from y. We may assume that p # y and ¢ # y, and thus the points z,y, p, ¢
are distinct.

Now V U U(p) is connected, since U(p) is connected, = € U(p), and z is
connected to y € V by an edge. Thus, by the maximality of the set C, we
have U(p) NV # (). Therefore, we have either p € V, or p ¢ V and f;(p) € V
for a suitable ¢ € {1,...,n}. Similarly, we have either ¢ € V, or ¢ ¢ V and
fi(q) € V for a suitable j € {1,...,n}.

First suppose p € V and ¢ € V. Since V is connected, there is a path
P="Yo,Y1,-.-,Yys =y in V. (Note that s > 1.) Then C; = {yo, y1,...,Ys, T} is
a cycle containing the edge (y, z) and the vertex p. By a similar argument we
find another cycle containing (y,z) and ¢. Since both of these cycles contain
the edge (y, ), it follows that the vertex sets of these cycles coincide, and
thus ¢ = y, for some 0 < r < s. Then {¢ = y,,...,ys,z} is another cycle
having the edge (y, ), but not containing the vertex p. Therefore, the vertex
set of this cycle is different from that of (', which is impossible.

Next suppose that p € V, ¢ ¢ V, and f;(q) € V for some j € {1,...,n}.
As in the previous case, we can find a cycle C containing the edge (y, ) such
that C; C VU{z}. Let f;(q) = 20, 21,...,2t = y be apathin V. (Here ¢t = 0 is
not excluded; this is the case if f;(¢) = y.) Then Cy = {20, 21,...,2t = Y, %, q}
is a cycle containing the edge (y, x). Since ¢ ¢ C4, the vertex sets of the cycles
C4 and () are different, a contradiction.

The same argument applies if p ¢ V, f;(p) € V for some i, and g € V.



Finally, suppose that p ¢ V, fi(p) € V, and ¢ ¢ V, f;(¢) € V for some
i,7 € {1,...,n}. As in the previous case, we can find a cycle Cy containing
the edge (y, z) such that Cy C V U {z, ¢}. Similarly, there exists a cycle Cj
containing (y, x) such that C5 C V U {z, p}. Since ¢ ¢ Cs, the vertex sets of
the cycles Cy and C are different, which is a contradiction.

We have proved that V = J{U(z) : = € C} = E. Let Ey = C, and
E; = fi(C) for every i = 1,...,n. Since the sets U(z) (z € C) are pairwise
disjoint, it follows that Fy U F; U ... U E, is a decomposition of E, which
completes the proof. [

3 Lemmas on isometries of R?

By a rational parametrization of SO; we mean an open subset {2 of a Eu-
clidean space RP and rational functions with integer coefficients a;; of the
real variables zi,...,zp (4,7 = 1,...,d) such that the denominators of a;;
do not vanish on €2, and the map v — (a;;(v))¢ (v € Q) is a surjection from
Q onto SO,.

The existence of a rational parametrization of SO, follows, e.g., from the
Cayley-transformation [5, IV.22.1]. Another (elementary) way of construct-
ing such a parametrization is the following. It is well-known (and easy to see)
that every orthogonal transformation A € O4 can be obtained as the prod-
uct (i.e., composition) of at most d reflections about a hyperplane containing
the origin. Since the determinant of a reflection is —1, it follows that every
A € S0, can be obtained as the product of at most d' reflections, where d’ = d
if d is even, and d' = d — 1 if d is odd. Now the number of reflections in the
representation must be even, and then we can find representations contain-
ing exactly d' reflections by extending the given representation by a suitable
even number of factors that equal the same reflection. Therefore, SO, equals
the set of compositions of d' reflections. Let x = (z1,...,74) € R,z # 0,
and let R, denote the matrix of the reflection about the hyperplane per-
pendicular to z. It is easy to check that the entries of the matrix of R, are
rational functions of z1, . .., x4 with integer coefficients alnd with denominator
22+...+22 Now we put D = d-d' and Q = (R? \ {0})d o= (v, ..., va),
where vy, ..., vy € R\ {0}, then we define a;; as the (7,7)’s entry of the
matrix of R,, -+ R,, for every 7,7 = 1,...,d. Then a;; is a rational function



of the coordinates of v € R”. Moreover, if v = (x1,...,zp), then the denom-
inator of a;; equals (27 + ...+ z3) -+ (25_441 + -.. + x3), which does not
vanish in €.

In the sequel we fix a rational parametrization of SOs. If v € Q C RS,
then we shall denote by O, the image of the parametrization; both as a
matrix and as a linear transformation of R®*. Then v — O, is a surjection
from €2 onto SOj3, and every entry of the matrix of O, is a rational function
with integer coefficients of the coordinates of v.

If b € R® then we shall denote by T} the translation by b.

Lemma 3.1. Suppose that the coordinates of the vectors vy, vy, ..., vy € €2
are algebraically independent over the rationals, and let b € R® be an arbitrary
vector. If H denotes the group generated by the transformations O,,, ..., Oy,
and P = Ty0,,, then H 1is freely generated by O,,, ..., 0O,, and P.

I UN

Proof. If the coordinates of the vectors vy, v{,...,vy € €2 are algebraically
independent over the rationals, then the matrices O,,,...,0,, generate a
free subgroup of SOj3. Indeed, suppose that w is a nonempty reduced word
on the alphabet O%!,..., OF!. Then the entries of the matrix w are rational
functions with integer coefficients of the coordinates of vy, ..., vy. If w is the
identity matrix, then, by the algebraic independence of the coordinates, the
entries of the diagonal of w are identically 1, and the other entries of w are
identically zero. Thus, for every uy,...,uy € €2, by replacing O,, by O,, in w
we always obtain the identity matrix. However, SO3 contains N + 1 matrices
generating a free group (see [9]). Therefore, we may choose ug,...,uy € Q
such that O,,,...,0,, generate a free group and then, substituting them
into w we cannot get the identity matrix. This contradiction shows that w
is not the identity.

Now let w be a nonempty reduced word on the alphabet Offll, e, Ofle
and P*!') and let W be the word obtained from w by substituting P by O,,.
Let W and W denote the transformations defined by w and w. It is easy to
see that W (x) = W (x) + ¢ for every z € R?, where and c is a suitable vector
of R®. Since w is a nonempty reduced word on the alphabet OF', ..., OF],

it follows that W is not the identity map, and then W is not the identity
either. [J

Lemma 3.2. Suppose that the coordinates of the vectors vy, v1,...,vn € €2
and of b € R® are algebraically independent over the rationals. Let w be



a nonempty reduced word on the alphabet Of};l,...,Ole and Ty. Suppose

that the transformation defined by w has a fized point. Then, if we replace
Ougs - - -, Oyy by arbitrary elements of SOs, and replace Ty, by an arbitrary
translation in the word w, then the transformation obtained is either a trans-
lation or has a fized point.

Proof. First we introduce the following notation: if V' is a 3 x 3 matrix and
c € R3, then we denote by [V;c| the matrix obtained from the matrix of U
extended by c as a fourth column.

We show that if U € SOz and U is not the identity, then the map 7T.U
has a fixed point if and only if the rank of the matrix [I — U;c| equals 2.
Indeed, T,U has a fixed point if and only if the equation (I — U)x = ¢ has a
solution if and only if the rank of I — U equals the rank of [I — U;¢]. Now
the kernel of I — U consist of the fixed points of U; that is, the points of the
axis of U, and thus the kernel of I — U has dimension 1. Thus the dimension
of the image space of I — U is two; that is, the rank of [I — U] equals two,
which proves the statement.

Let w be a nonempty reduced word on the alphabet Of,f)l, .. .,Ofle and
(T,)*!, and let W be the transformation defined by w. Note that (T,)~! =
T . Therefore, if we apply the identities AT; = TuyyA and TyT, = Tyie
successively, we find that w has the form T.U, where

(i) U is defined by the word w obtained from w by deleting the letters
Tbﬂ, and

(ii) ¢ = Cb, where C is a finite sum of transformations +W;, where each
W; is defined by a word on the alphabet OF', ..., OFL.

vo ?
Let u;; and ¢;; denote the entries of the matrices of U and C (4,5 = 1, 2, 3).
It follows from (i) and (ii) that each of u;; and ¢;; is a rational function with
integer coefficients of the coordinates of vy, ..., vy. Also, by (ii) we find that
the coordinates cq, ¢y, c3 of the vector ¢ are rational functions with integer
coefficients of the coordinates of v, ..., vy and b.

By Lemma 3.1, W = T_U is not the identity map. Since W has a fixed
point by assumption, it follows that W is not a translation, and thus U is
not the identity. As we saw above, this implies that W = T.U has a fixed
point if and only if the rank of the matrix [I —U; ] equals two. Now the rank
of I — U equals two, and thus this condition holds if and only if each of the
3 x 3 subdeterminants of [I — U; ¢| vanishes. Each of these determinants are
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rational functions with integer coefficients of the coordinates of vy,..., vy
and b. If these are zero, then they must be identically zero.

Let ug,...,uy € € and b € R® be arbitrary, and let w’ denote the
word obtained from w by substituting O;:' by O;! for every i = 0,..., N,
and (T3)** by (Ty)*!. It is easy to see that the transformation W’ defined
by w' is the form T U', where the entries u;; of U’ are obtained from w;;
by substituting vy, ...,vnx by ug,...,ux. Similarly, the coordinates ¢ of the
vector ¢’ are obtained from ¢; by substituting vg,...,vnx by ug,...,uy and
substituting the coordinates of b by those of &'. This implies that the 3 x 3
subdeterminants of [I — U’; /| are obtained from the 3 x 3 subdeterminants
of [I — U;c| by the same substitutions. As we proved above, if W has a
fixed point, then all these determinants, as rational functions of the variables
listed, are identically zero. Therefore, in that case the 3 x 3 subdeterminants
of [I — U'; ] are zero, and thus the rank of [I — U’; '] is at most two. If U’
is not the identity, then the rank is exactly two, and thus W' = T, U’ has a
fixed point. If U’ is the identity, then W' = T, is a translation.

Since the rational parametrization O, maps {2 onto SOs, the transfor-
mations O,,,...,0,, can be arbitrary elements of SOs, which proves the
statement of the lemma. []

The next lemma is essentially due to de Groot [3] (see also [9, Theorem
5.7]). Considering that de Groot’s formulation is somewhat different and

that the formula on [9, p. 59] contains a misprint, we sketch the proof.
Lemma 3.3. Let A and B be the rotations in SO3z given by the matrices
[cos@ —sin@ O-I [1 0 0 -|
sin 6 cos 0 and |0 cosf —sinf;
[ 0 0 lJ [O sin 6 oS GJ
respectively, where the common rotation angle 0 is such that cos@ is tran-

scendental. If the integers nq, mq,...,ns, ms are nonzero, then the matriz of
the transformation A™ B™ ... A" B™s equals

Pi—1 —sgn (1) - g1 - sinf —sgn (nim,) - ¢
2% Pi—2 - Sin 0 qt —sgn (my) - g1 -sin@| , (1)
Pi—1 Pi—2 - sin 6 Pi—1

where t = |ni| + |my| + ... + |ns| + |msl|, pa stands for a polynomial in cos
(possibly different in each entry) with rational coefficients and of degree at
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most d, and qq stands for a monic polynomial in cos@ (possibly different in
each entry) with rational coefficients and of degree exactly d.

Proof. It is easy to check by induction on n that

an —Gn—-1- sin ¢ 0
A" =21 | g, -sind Qn 0
0 0 21-n
for every n = 1,2,.... Since A" is orthogonal, A™" equals the transpose of
A" and thus we have
in| —sgn (n) - gjp|—1 -sind 0
A" =271 | sen (n) - gy 1 - sin n| 0 (2)
0 0 21|

for every n # 0. We find, in the same way, that

21=mi 0 0
B™=2m=1. 1 ¢ Qm| —sgn (m) - qjm|—1 -sinf| (3)
0 sgn(m) - qpm-1-sind qjm|

for every m # 0. Multiplying (2) and (3) we can see that (1) is true for s = 1.
Then it is easy to check by induction on s that (1) is true for every s > 1. O

Lemma 3.4. Suppose that the coordinates of the vectors vy, v, ...,vn € €2
and of b € R® are algebraically independent over the rationals. Put P =
TyOy,, and let w be a nonempty reduced word on the alphabet Offll, ey Off;

and P*'. If the first letter of w is one of Offil (i =1,...,N) and the last
letter of w is P!, then the transformation W defined by w has no fized point.

Proof. Let A and B be the transformations (matrices) as in Lemma 3.3.
Let p be a positive integer to be fixed later. We shall replace O,, by AB* A
for every i = 1,..., N, O,, by AP, and the vector b by £ = (0,0,1). By
Lemma 3.2, it is enough to show that for a suitable choice of p, under this
replacement, w is transformed to a word representing a transformation which
is not a translation and has no fixed point.

Let K denote the set of words of the form A"t B™: ... A" B™s where
s > 1 and ny,mq,...,ns, ms are nonzero integers. The integer n; will be
called the first exponent of the word A™ B™ ... A"s B™s,
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It is easy to see that if v is a nonempty reduced word on the alphabet
Oz',...,Of], then, under the substitution considered, v becomes a word

of the form DA*!, where D € K, and the first exponent of D equals +1.
Therefore, under this substitution w becomes a word of the form

C = Dy A (TuAP) . . . Dy A% (T, AP)™,

where D.,...,D, € K, each of ¢,...,, equals 1, and r{,...,r, are
nonzero integers. Note that in this expression the transformations Dy, ..., D,
and the integers ¢; and r; only depend on w; that is, they do not depend on

.
For every r we have (T, AP)" = T, A", since T}, and A commute. There-

fore,
C = D\T, A" TP Dy T, AP DT,y . .. DT, AT 7P,

We define E; = Asi-1t"i-1P D, for every i = 1,...,u, where we put ry = r,.
We can choose p so large that E; € K, and the first exponent of F; has the
same sign as r;_; for every i1 =1,... u.

We prove that C' is not a translation and has no fixed point. Suppose
this is not true. Then F = As«t™wP(C A~«~"P ig g translation or has a fixed
point. We have

F =E\T,  ET,,...E/T, .

Since MT,; = TyqM for every linear transformation M and for every vec-
tor d, is follows that F' = T.E, where ¢ = E;(rik) + E1Es(r2k) + ... +
E\E,...E,(ryk) and E = E; ... E,. The rotation F is not the identity, since
E; € K for every i, and A, B generate a free group. Thus F' is not a trans-
lation.

In order to prove that F' has no fixed point, we shall apply the argument
of the proof of [9, Theorem 5.7, p. 60]. Let a be a unit vector in the direction
of the axis of F; that is, a fixed point of E of unit length. Let & denote the
angle of rotation of E “looking from the direction of a”. (This means that if
x is a nonzero vector perpendicular to a, then the orientation of the vectors
z, Ex, ais positive.) Since E? is not the identity, £ is not an integer multiple
of m, and sin ¢ # 0.

It is easy to see that the image space of I — E is the plane perpendicular
to a. If ¢ does not belong to this plane; that is, if ¢ is not perpendicular to
a, then the rank of the matrix [/ — E; | is three, and thus T.F has no fixed
point.

10



Therefore, it is enough to show that the scalar product {c,a) is nonzero.
Let Ey...E; = F; for every i = 1,...,u. (Thus F, = E.) Then we have

(c,a) = Zr (Fy(k), a). (4)

Since F; is orthogonal, we have F/ = F, ', and thus (Fj(k),a) = (k, F; ' (a)).

7

Note that F;*(a) is a unit vector and a fixed point of F;"'EF;. In other
words, F; '(a) is a unit vector in the direction of the axis of F;, 'EF;. One
can check that the angle of rotation of F, ' EF; looking from the direction of
F; (a) equals .

1

Now we use the fact that if x is a unit vector in the direction of the axis of
an orthogonal transformation U and & is the angle of rotation (looking from
the direction of z), then (2sinf) - z = (ase — as3, @13 — a3y, Go1 — a12), where
(a;;) is the matrix of U. (See [9, Theorem A.6, p. 226].) Therefore, if (a;;) is
the matrix of F;_IEF;', then (2 sin f) . F;_l(a) = (a32 — 923, Q13 —A31, 21 — alz).
Since k = (0,0, 1), it follows that (k, F; (a)) = (2sin&)7! - (ag; — a).

Since Fi_lEFi = FE1FEio...E,Ey, ..., E; it follows from Lemma 3.3,
that the matrix of F; 'EF; is given by (1). We obtain

(k,F7'(a)) = (2sin&) "+ (ag; — arp) = 2% - (2sin &) ' -sgn (ny) - ¢;_y - sin .

Note that the value of ¢t and s is the same for every ¢ = 1, ..., u, and that n,
stands for the first exponent of E;.;. By the choice of p, this first exponent
has the same sign as r;. Therefore, we find that r; - (F;(k), a) is of the form
(sinf/sin€) - Q;_1, where ;1 is a polynomial of cos# with rational coeffi-
cients, of degree t — 1, and having a positive leading coefficient. Then, by (4),
{c,a) has the same form. Since cosf is transcendental, this gives (c,a) # 0,
which completes the proof. [

Let H be a group of bijections mapping a set X onto itself. By the
conjugates of an element f € H we mean the elements ¢g~!fg, where g € H.
It is easy to see that a map f € H has a fixed point if and only if each of its
conjugates has a fixed point.

Lemma 3.5. Suppose that the coordinates of the vectors vy, vi,...,vny € €2
and b € R® are algebraically independent over the rationals. Let G denote
the group generated by the transformations O,,,...,0,,, and let H denote

Y UN
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the group generated by the transformations O,,, ..., Oy, and P, where P =
14Oy Then a map W € H has a fized point if and only if it is a conjugate
of an element of G.

Proof. The ‘if’ part of the statement is obvious: if g € GG, then 0 is a fixed
point of g, and thus every conjugate of g has a fixed point.

In order to prove the ‘only if’ part, suppose that W € H has a fixed point,
but W is not a conjugate of any element of G. Let W be such an element
represented by a word w on the alphabet OF', ..., O%!, P of minimal length.
Then w contains one of the letters P!, since otherwise W € G. We show that
w is not a power of P. First note that P = T;0,, does not have a fixed point,
because the rank of the matrix [I — O,,;b] equals three (this follows from
the condition that the coordinates of vy and b are algebraically independent
over the rationals). Since P does not change orientation, it follows that P
is a screw motion with a nonzero translation part. If n # 0, then P™ is also
a screw motion with a nonzero translation part, and hence P™ has no fixed
point either.

Therefore, w must contain letters of the form OF' (i =1,..., N) as well.
Since W has a fixed point, it follows from Lemma 3.4, that either the first
letter of w is one of P=!, or the last letter of w is one of OF' (i =1,...,N).

Thus w = uv, where u ends with one of the letters P£!, and u starts with one
of the letters O;ﬂ (¢=1,...,N). Then vu is a conjugate of W, and the word
vu is not longer then w. Since w = uwv has a fixed point, so does vu, and thus
its length cannot be shorter than that of w. Thus vu has the same length as
w. Consequently, there is no cancellation in vu, and thus vu ends with one of
the letters P*!, and starts with one of the letters OF' (i = 1,..., N). Then,
by Lemma 3.4, the transformation defined by vu does not have a fixed point.
This contradiction completes the proof. []

4 Proof of Theorem 1.2

Let B3 denote the three dimensional unit ball (either closed or open). We
shall prove Theorem 1.2 by finding isometries that satisfy the conditions of
Lemma 2.1 with X = Bs. Our aim is to prove that the transformations
Ouys - - -, Oy, (restricted to Bs) and P = T,0,, (restricted to Bz N P~!(Bs))
satisfy these conditions for suitable vectors vy, v1,...,vx € Q and b € R3.
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First we check that the condition on the graph generated by the isometries
can be satisfied.

Lemma 4.1. Suppose that the coordinates of the vectors vg, vy, ...,vy € §2
and b € R? are algebraically independent over the rationals, and let T' denote
the graph on R generated by the transformations O,,,..., 0y, and P =
T4,Oy,- Then the graph I' has the property that whenever two cycles Cy and
Cs in I share a common edge, then the sets of vertices of C1 and Cy coincide.

Proof. We shall prove more: we show that if two cycles have a common
nonzero vertex, then they coincide. Let C' = {xq, x1,-..,Z, = To} be a cycle
in I'. Then, by the definition of I', for every ¢ = 1,...,n there is a map
Ri S {03:11, PPN 03:;, Pil} such that €T; = Rz(xz—l)

In the word w = R,, - -- RoR; there is no cancellation, since R;; = R; !
would imply z;,1 = Riy1(z;) = Ry (2:), 75 = Ri(z;1) and ;1 = R (7)) =
Ti41, which is impossible. For the same reason, R, # R;'. Indeed, R, =
R7" would imply z, = Rn(2n_1) = R (#n_1), 11 = Ri(x9) = Ri(x,) and
1 = Zn_1, which is impossible. Let W denote the transformation defined by
w. Note that z( is a fixed point of W.

We claim that W € G, where G denotes the group generated by the
transformations O,,, ..., O,,. Since x, is a fixed point of W, it follows from
Lemma 3.5 that W is a conjugate of an element of G. Then we have w =
v~ luv, where the word u does not contain the letters PL. If W ¢ G, then
v must contain at least one of the letters P*!', and thus v can be written
in the form zy, where = does not contain the letters P*!, y is reduced, and
the first letter of y is one of P*'. Then w = y~ 'z 'uxy. Let z denote the
reduced form of z7'vz. Then z does not contain the letters P*!, and thus
in the word y 'zy there is no cancellation. Let R denote the last letter of y.
Then w = y 'zy implies that the first letter of w equals R~!, and the last
letter of w equals R. But, as we proved above, this is impossible, which gives
W € G. Therefore, each of the letters of w is one of OF! (i = 1,...,N). In
particular, W € SQOs.

Now suppose that C" = {zf,...,z},} is another cycle of I' such that C
and C' have a common nonzero vertex. We may assume that zo = xj # 0.
Let 2} = Ri(z;_q) foreveryi=1,...,m.If w' = R, - -- R4 R} and W' denotes
the transformation defined by w’ then, repeating the argument above, we find
that w' is reduced, the first letter of w' is not the inverse of the last letter of
w', W' € G and thus W' € SOs.
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Since W and W’ have a common fixed point different from the origin, it
follows that they have the same axis of rotation, and thus they commute.
Therefore, we have w = 2* and w' = 2’ for some word z and nonzero integers
1, j- Indeed, since G is free, it follows that each subgroup of G is free. Thus the
subgroup generated by W and W' is free. But this subgroup is commutative,
and thus it must be cyclic. If z is its generator, then we have w = z* and
w' = 27 for some nonzero ¢ and j. Replacing w by w™! (or w' by (w')™!) if
necessary, we may assume that i, 5 > 0.

We have w’ = (w')". Since the first and last letter of w are not the inverses
of each other, in the power w’ there are no cancellations. The same is true
for (w')?, and thus the words w’ and (w')? are formally equal. By symmetry,
we may assume that n (the length of w) is not greater than m (the length of
w'). Then we have R} = R; for every i = 1,...,n. Thus

o) = RiR,_,...Rj(z}) = RiRi_1 ... Ri(x0) = ;

for every i = 1,...,n. Since x,, = xg, this implies that m = n, and C' = C.
This completes the proof. [J

Let v1,...,vx € Q be fixed, and put ¢, = {x € R* : O,,(z) = z} and
lij={z € R®: 0,'Oy;(x) = x} for every i,j =1,...,N, i # j. Then ¢; is
the axis of rotation of O,,, and ¢; ; is the axis of rotation of O, 'O,,. Note that
¢ j =4, for every i # j. Let L denote the union of the sets ¢; and ¢, ; (¢,j =
1,...,N, i # j). Note that if 2 ¢ L, then the points x,0,,(z),..., Oy, ()

are distinct. We put I, = {i € {1,..., N} : O, *(z) € L} for every z.

Lemma 4.2. Suppose that the coordinates of the vectors vy,...,vy € ) are
algebraically independent over the rationals. Then

(i) ifi#J, k#n and {i,5} # {k,n}, then £;; N ly, = {0};
(ii) ifz # 0 and x € ¢, j for some 1 < i < j <N, then I, = {;
(iii) I, contains at most two indices for every x # 0.

Proof. (i) Suppose = € ¢; jN ¥y, and z # 0. Thus z is a common fixed point
of 0,'0,; and O, '0O,,. Then these rotations must commute, since their axis
of rotation coincides. However, it is easy to check that if {7, j} # {k, n}, then
the words Ov_ilOvj and Ov_klOvn do not commute. Since the transformations
O,, (i =1,..., N) generate a free group by Lemma 3.1, this is a contradiction.

14



(ii) Suppose that i # j, z € £;; \ {0}, and &k € L. If O, () € £y, then z
is a common fixed point of O,'O,; and O,,0,,, O, . Therefore, they must
commute. However, it is easy to check that if 7 # j then the words Ov_ilOvj
and O,,0,, O, ! do not commute for any choice of k and m, which is a
contradiction.

Next suppose that O;kl (z) € £y m, where n # m. Then z is a common
fixed point of O,;'O,, and 0,,0;'0,,, O . Therefore, they must commute.
However, it is easy to check that if 7 # j and n # m then these words do not
commute for any choice of k, which is a contradiction.

(iii) Suppose that x # 0 and k,n € I, where k # n. We prove that in this
case O, '(z) belongs to ¢ ,. There are several cases to consider.

I. Suppose that O, '(z) € £;, and O, (z) € £;. Then z is a common fixed
point of kaOWOU_k I and O, Oy, Ov_nl. Then these rotations must commute.
Now the word u = O,,0,,0;" is either reduced (if i # k) or equals O,, (if
i = k). Similarly, the word v = O,,0,,0, ! is either reduced or equals O, .
It is easy to check that in each of these cases we have uv # vu, which is
impossible.

IL. Suppose that O, (z) € £;, and O, ' (x) € £}, where j # m. Then z is a
common fixed point of O,,0,,0, ' and O,, Ov_levm O; 1.

The word v = 0,,0,,0,, ! is either reduced or equals O,,. On the other
hand, the word v = 0,,0,.'0,,,0,! is either reduced, or equals O,,0,'
where m # n, or O,,ROU_J,1 with j # n. (Note that at least one of j and m is

different from n, as j # m.) It is easy to check that in each of these cases we
have uv # vu, and thus this case cannot occur either.

III. The case when O, *(x) € £j, (j #m) and O, (x) € {; is similar to IL
IV. Finally, we suppose O, '(z) € £;i; (i # j) and O;'(z) € L, (m # p).
Then z is a common fixed point of O,,0,.'0,,0," and O,,0,'0,,0,".

The word u = 0,,0;'0,,0, " is either reduced or equals O,, O ' where
i # k, or O,,0;" with j # k. Similarly, the word v = O,,0,"0,,0; " is either
reduced or equals O,,nOU_Ti where m # n, or O,,0, L with p # n. It is easy
to check, by inspecting each of the 9 cases, that the condition uv = vu is
satisfied only if {i, 5} = {m,p} = {k,n}. Therefore, we have O, () € £y n.

We have proved the following: if x # 0 and n, k are different elements of
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I, then O (z) € £y,,. Suppose that k,n,p are distinct elements of I,. Then
we have O, ' () € £k Ny p, Which contradicts (i). Thus I, cannot have more
than two elements. [

For every isometry f we shall denote by f* the restriction of f to the set
B3N f~Y(Bs). Thus f* maps a subset of Bz into Bs. (If f € SO3 then f* is
the restriction of f to Bs.)

Lemma 4.3. Suppose that the coordinates of the vectors vy, v, ...,vn € 2
and b € R® are algebraically independent over the rationals. Suppose further
that ||Oy, —I|| < 0.01 (I denotes the identity), and that b = (by, by, b3), where
0.09 < b; < 0.1 and 0 < by, b3 < 0.001. Let T'* denote the graph on Bs
generated by the transformations O} , ..., 0, and P*, where P = T,O,,.

If x € B3\ L and P(x) € Bs, then x is a core point. In particular, if
x = (x1,29,23) € Bs\ L and 1 < —0.29, then x is a core point.
Proof. Since x ¢ L, the points z,0,,(x),...,0O,,(x) are distinct. The

7 UN
transformations P and PO;Z_1 (1=1,...,N) have no fixed points by Lemma

3.5, and thus P(z) is different from each of the points z, O,, (), ..., Oy, (2).
If P(x) € Bs, then z belongs to the domain of P* and clearly to each of O,
and thus zx is a core point.

In order to finish the proof we have to show that if z1 < —0.29, then
P(w) S B3.

Let Oy (z) = y = (y1, Y2, y3)- Since ||O,, — I|| < 0.01, we have |y — z| <
0.01, and thus y; < —0.28. We have to show that y + b = T,(y) € Bs. Let
b = (b1,0,0). Then |b— b'| < |bo| + |b3]| < 0.01. Also, we have

ly+02 = +0) 2+ 12+ 12 <y +0)2+1— 2 =b,(2y1 +by) +1 <
< 0.09-(—0.56 +0.1) +1 < 0.96

and |y +b < |y+ 0|+ [b—V| <+0.96+0.01 < 1, which proves y + b € Bs.
O

We shall denote by S, the unit sphere {z € R® : |z]| = 1}.

Lemma 4.4. There are rotations Aq, As, A3, Ay € SO3 with the following
property: for every x € Sy there is an i € {1,2,3,4} such that the first
coordinate of A;(x) is at most —1/3.
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Proof. The points p; = (—1,0,0), p» = (1/3,v/8/3,0), ps = (1/3,—/2/3,
V/2/3) and p, = (1/3,—+/2/3, —+/2/3) are the vertices of a regular tetrahe-
dron inscribed in Ss. It is easy to see that for every ¢ = 1,2, 3,4 there is a
rotation A; € SO3 such that A;(p;) = p;. We show that A,,..., A satisfy
the requirement.

First we prove that for every x € Sy there is an ¢ € {1,2,3,4} such that
|z — pi| < 2/+/3. The function d(z) = min,<;<4 |z — p;| is continuous, and
thus it attains its maximum on Sy. If d(z) is maximal at a point z € S, then
|z —p;| = d(z) is satisfied for at least three of the indices i = 1,...,4, because
otherwise the value of d(x) could be increased by moving z in an appropriate
direction on Sy. Therefore, the maximum of d is attained at four points, and
one of them is (1,0,0). Easy computation shows that for x = (1,0,0) we

have d(z) = 2/v/3.

Let z € Sy be arbitrary, and let i € {1,2,3,4} be such that |z — p;| <
2/4/3. Then the distance between the points A;(z) and A4;(p;) = p; is at most
2/4/3. It is easy to check that if y € Sy and |y — p1| < 2/v/3, then the first
coordinate of the point y is at most —1/3. O

Lemma 4.5. Let A, Ay, A3, Ay € SO3 be as in the previous lemma. Sup-
pose that the coordinates of the vectors vy, vi,...,vn €  and b € R® are
algebraically independent over the rationals. Suppose further that

(i) [|Ov = 11| < 0.01;

(ii) for every i = 1,2,3,4 there are at least five indices 1 < j < N such
that ||0,;, — A; || < 0.01;

(iii) b= (b1, bo, b3), where 0.09 < b; < 0.091 and 0 < be, b3 < 0.001.

Then there is a set E C By such that the sets E,TyO0y(E), Oy (E) (j =
1,...,N) constitute a partition of Bs. In particular, Bs is N + 2-divisible.

Proof. We check that the conditions of Lemma 2.1 are satisfied for the
transformations O; ,...,0; and P*, where P = T;0,,.

The condition on the cycles of the graph is satisfied by Lemma 4.1. In-
deed, the graph I'* generated by the transformations O} ,...,0; and P*is
a subgraph of the graph I' generated by O,,,...,0,, and P. If two cycles
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of I'* share a common edge then they also share an edge in I' and then, by
Lemma 4.1, they have the same set of vertices.

We show that conditions (i) and (ii) of Lemma 2.1 are satisfied with
xo = 0. In order to check (i) it is enough to show that P~1(0) is a core point.
It is clear that P~1(0) € Bs. Therefore, it is enough to prove that the points
P~1(0) and O,,P*(0) (: =1,..., N) are distinct (nonzero) elements of Bj.

Suppose that P~*(0) = O,,P~1(0) for some 1 < 7 < N. Then, by P! =
0, T_y, we have —O, '(b) = —0,,0,.' (b). Since the coordinates of vy, v; and
b are algebraically independent over the rationals, this must be an identity
in the sense that whenever U,V € SO; and ¢ € R?, then U™*(c) = VU (¢),
which is clearly impossible.

Next suppose that O, P '(0) = O,,P*(0) for some i # j. Then
—0,,0,,'(b) = —=0,,0,.'(b), and we obtain a contradiction in the same way.

Now we check that condition (ii) of Lemma 2.1 is satisfied. We have to
prove that every x € B3\ {0} is in the image of at least three core points. By
Lemma 4.3, it is enough to show that z is the image of at least three points
y € B3 \ L such that P(y) € Bs.

Let z € B3 \ {0} be arbitrary. We show that there are at least N — 2
indices 1 < ¢ < N such that the corresponding elements Ov_il(x) are distinct
and are not in L. First suppose that x € ¢, for some 1 <k <n < N. Then,
by (ii) of Lemma 4.2, O;jl(x) ¢ Lforeveryj=1,...,N.IfO, '(z) = O;jl(x)
for some i # j, then « € ¢, ;, and thus we have {7, j} = {k,n} by (i) of Lemma
4.2. This means that the points O, *(z) (1 <4 < N, i # k) are distinct and
are not in L.

Next suppose that z ¢ /; ; for every i # j. Then the elements Ov_il(x) (1=
1,...,N) are distinct. By (iii) of Lemma 4.2, at least N —2 of these elements
are outside L, proving the statement.

If |z] < 0.9, then |0, (x)| < 0.9 and PO, '(x) € Bs foreveryi=1,...,N
by |b| < 0.1. According to the previous remarks, this implies that there are
at least N —2 indices 1 < j < N for which O, !(x) is a core point. Therefore,
in this case condition (ii) of Lemma 2.1 is satisfied.

Suppose that |z| > 0.9. By Lemma 4.4, there is an i € {1,2,3,4} such
that the first coordinate of A;(z) is at most (—1/3)-|z| < —(1/3)-0.9 < —0.3.
By assumption, there are five indices 1 < j < N such that ||O;j1—AZ-|| < 0.01.
If j is such an index, then the first coordinate of Ov_j1 (x) is less than —0.29.
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By Lemma 4.3, Ov_j1 (x) will be a core point provided it is not an element of
L. We have seen that with the exception of two indices, the points Ov_j1 (x)
are distinct and are not elements of L. Therefore, there are at least three
indices j such that O, l(x) is a core point; that is, condition (ii) of Lemma
2.1 is satisfied in this case as well, which completes the proof. [

Proof of Theorem 1.2. Let m > 22 be arbitrary, and put N = m — 2.
Then we have N > 20. It is well-known that there is an everywhere dense
subset of R whose elements are algebraically independent over the rationals.
Since the map v — O, is a continuous surjection from {2 onto SOj3, we can

find vectors vy, ...,vy,b € R® such that the conditions of Lemma 4.5 are
satisfied. Thus Bs; is m-divisible. [J

5 Proof of Theorem 1.1

Let d = 3s, and let B; denote the d dimensional unit ball (either closed
or open). Let n = 1/(100s%). We can find a finite subset F of the sphere
Sy = {z € R® : |z| = 1} such that dist (z, F) < n for every x € Sy. For every
x € F let O, € SO;3 be a rotation such that O,(z) = (—1,0,0), and put
A ={0, : x € F}. It is clear that A has the following property: for every
x € Bj there exists an O € A such that O(z) = (1,22, z3), where z; < 0
and |xs|, |z3| < n. Let {A41,..., A,} be an enumeration of the elements of .A.

We shall prove that By is m-divisible for every m > 5n° + 2. Suppose
that m = N + 2, where N > 5n?. Using the facts that the parametrization
v — O, is a continuous function of v, and that there exists an everywhere
dense subset of R whose elements are algebriacally independent over QQ, we
can find a system of vectors vf € Q (k=10,...,N, j=1,...,s) and b =
(b, ...,bg) € R with the following properties.

(i) The coordinates of v;-“ and of ¢ are algebriacally independent over Q.
(ii) We have ||Ov? —I|| <nforevery j=1,...,s.

(iii) For every 1 < iy,...,is < n there are at least five indices 1 < k < N
such that ||OU;; - AZ-;IH < nforevery j=1,...,s.

(iv) 1/(8s) < b; < 1/(4s) for every i =1,...,d.
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We represent R? as V; x ... x Vi, where V; = {(x1,...,24) : 7; = 0 for every
i#3j—2,3j —1,3j} (j =1,...,s). We shall identify V; with R® for every
j=1,...,s. Forevery k =0,..., N there is a transformation Oy € SO, such
that Og(z) = Ov;p (z) forevery z € V; (j =1,...,s). Our aim is to prove that
the transformations Oy, ..., Oy (restricted to By) and @ = T,0y (restricted
to By N Q *(By)) satisfy the conditions of Lemma 2.1 with X = B, and
Ty = 0.

First we check that the condition on the graph I' generated by the isome-
tries O1,...,0x and @ is satisfied. It is clear that the transformations
Oq,...,0x and @ generate a free group. We show that whenever two cycles
C and C' in I' share a common nonzero vertex, then the cycles C and C’
coincide.

Let C = {yo,%1,---,% = %) and C = {y5,y1,---,¥; = Yo} be two
cycles in I' such that 0 # yo = yj. Then, by the definition of I', for every

i=1,...,pthereisamap R; € {OF',..., 0! Q*'} such that y; = R;(yi_1),
and for every i = 1,...,q there is a map R, € {OF',..., 0!, Q*'} such that
yi = Ri(yi_1)-

As we saw in the proof of Lemma 4.1, in the words w = R,--- Ro Ry
and w' = Ry --- RyR; there is no cancellation, moreover, R, # R7' and
R, # (R})~'. Let W and W' denote the transformations defined by w and
w'. Then yo = y{ is a common fixed point of W and W'.

Let m; denote the projection of R? onto V; (j = 1,...,s). Since yy # 0,
we can fix a j such that m;(yo) # 0. Let P; € SO3 be defined by
Pj = T(CSj—2aCSj—1;03j)O’U?'
We denote by w denote the word obtained from w by replacing the letter
O,:CIE1 by O:E,; and @ by P;. Let W be the transformation defined by w. It is
J

easy to see that for every z € R? we have

Wi(r;(z)) = m; (W ()

and, similarly, L
W!(m;(x)) = m; (W'(2)) -

Since W and W' have a common nonzero fixed point (namely, 7;(yp)), it
follows from the argument of the proof of Lemma 4.1, that we have either
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W =W or W =W’ . This implies that we have either R = R or R =
(R')~!, and thus the cycles C' and C’ coincide.

Next we show that for every x € B, there are five indices k£ € {1,..., N}
such that QO;*(z) € B,. Let z € B, be fixed. By the choice of the rotations
Aq, ..., A,, there are indices i1,...,%; such that for every j = 1,...,s, the
first coordinate of A; (7;(x)) is nonpositive, and the absolute value of the
other two coordinates of A;, (;(z)) is less than 7. Then it follows from (ii)
and (iii) above that there are five indices £ € {1,..., N} such that the vector
y = 0p0; ' (z) has the following property: if y = (y1, ..., ya), then ys;_s < 27
and |ysj_1/, |ysj| < 2n for every j =1,...,s. We show that QOy(z) € By for
all such k.

It is enough to prove that |Q(y)| < 1. Let z = (21, ..., 24), where z3; o =
min(ys;_s,0) and z3;_; = 23; = 0 for every j =1,...,s. Then |y — z| < 6s7,
and thus |Q(y) — Q(z)| < 6sn. It is enough to show that |Q(z)| < 1 — 6sn.
We have

2

s S
1 z
2237'721)3]'72 < 35 Zzgj,Q < —— Z iy = u
j=1 j=1

Since Q(z) = (21 + b1, ..., 24 + ba), this implies

Q(2)|* = |z + b =
S a2 by + By) + S By ) <
j=1 Jj=1
< o2 = |4| + 35 1613 2] - (1 - 4i) + %
1—4%—}-12 1_1%33<1_68n’

since n < 1/(96s?). This proves the statement.

Now we prove that the conditions (i) and (ii) of Lemma 2.1 are satisfied
with 2o = 0. Note that for every j, the coordinates of v,...,vY and of
(€3j—2, €3j-1, c3;) are algebraically independent over Q. By the argument of
the proof of Theorem 1.2, for every j, the points P; '(0) and OU;,cP]-*l(O) (k=
1,...,N) are distinct nonzero elements of Bs. Since P, '(0) = m;(Q'(0))

and Ov;;Pj*l(O) = m;(0xQ'(0)) for every k = 1,..., N, it follows that the
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points @7'(0) and O,Q~'(0) (k =1,..., N) are distinct nonzero elements of
Bg. Thus @7*(0) is a core point; that is, (i) of Lemma 2.1 is satisfied.

Let z € By, x # 0 be arbitrary. Then there is a j such that 7;(z) # 0. In
the proof of Theorem 1.2 it was shown that there are at least N — 2 indices
k for which the points O;,f(wj(x)) are distinct, and are core points with

J
respect to the graph generated by the transformations O,U; (t=1,...,N)

and P;. In particular, for each of these indices &, the points O, 01;{91(77-‘7'(1:))
J
(¢=1,...,N) and PjOv_,'cl(wj (z)) are distinct. Then it follows that for each
J

of these indices k, the points
O¢'(#), QO;'(z) and 0;0.'(x) (i=1,...,N) (5)

are distinct. As we proved above, there are five indices k& for which the points
listed in (5) belong to By. Therefore, at least three of these indices k£ have the
property that the points listed in (5) are distinct and belong to By. Therefore,
these points are distinct core points, and thus the condition (ii) of Lemma
2.1 is satisfied. J

6 Concluding remarks

Since the transformation group O, does not contain noncommutative free
subgroups, our method cannot say anything about the divisibility of discs.
As for d = 3, the question whether or not Bj is m-divisible for 4 < m < 21
also remains open. There are several obstacles in the way of improving the
bound 22. One of them is the condition of Lemma 2.1 which requires that
every point x # xy be in the image of at least three core points. This
condition cannot be relaxed; in fact, Lemma 2.1 is sharp, as the following
example shows.

Example 6.1. For every n > 2 there exists a set X and there are maps
fi, -, fn from subsets of X into X with the following properties.

(1) Ewvery point of X is in the image of at least two core points.
(ii) The graph generated by the maps fi,..., fn only contains one cycle.

(iii) There is no decomposition X = AgU A1 U...U A, such that fi,..., fu
are defined on Ay, and f;(Ag) = A; for everyi=1,...,n.
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First we sketch the construction for n = 2. We define a graph I' as fol-
lows. Let Py, ..., Ps be distinct points, and let V, V5, V, be pairwise disjoint
countably infinite sets not containing the points P, ..., Ps. The vertex set of
the graph I will be X = VU Vo UV, U{PF,..., Ps}. For every i = 0,2,4 let
T; be a tree on the set V; U {P;} such that the degree of the point P; is two,
and the degree of each point x € V; is four. Let I' be the union of the trees
T, Ty, Ty together with the edges (P;, Pi11) (i = 0,...,5), where Py = P.
Then the graph I' only contains one cycle, namely the hexagon (P, ..., Ps).

Now we direct the edges of ' in such a way that for each of 7+ = 1, 3,5 the
two edges meeting at P; are directed towards F;, and at every other point
x € X, two of the four edges meeting at x are directed outwards, and the
other two are directed towards x. It is easy to see that this is possible. Then
we ’colour’ the directed edges by the ’colours’ f; and f, as follows. ﬂl)e
directed edges POPi, PQPé, P4P6 have colour f;, and the directed edges P, P,

P, P;, PyPs, have colour f;. Every other edge will be coloured in such a way
that, for every z € X \ { Py, P3, P5}, one of the two outgoing edges has colour
f1, the other has colour f;, one of the two edges directed towards = has colour
f1, and the other has colour f,. Again, it is easy to check that this is possible.

Then we define f; and f, on the set D = X \ { P, P35, Ps} as follows. If
x € D, then let f;(z) = y, if the edge (z,y) is directed towards y and has
colour f; (i =1,2). It is clear that fi, fo are defined on D, they map D onto
X, every point of D is a core point, and that (i) is satisfied. We prove (iii).
Suppose that X = Ay U A; U Ay is a decomposition such that f; and f, are
defined on Ay, fi1(Ag) = A; and fo(Ag) = A,. Since fi, fo are not defined at
Py, we have P; ¢ A,. If Ay does not contain any of the points Py, P, then
P ¢ A; U A, which is impossible. If Py € Ap, then Ay cannot contain any
of the points P, and P, because otherwise A; and As; would not be disjoint.
Thus Py, P, ¢ A,, and then P; ¢ Ay U A; U Ay which is absurd. We get a
similar contradiction if P, € Aj.

If n > 2, then the construction is similar, but we have to start with 6
trees, Ty, ...,Ts, such that for + = 0,2,4 the degree of P, equals 2n — 2,
for i = 1,3,5 the degree of P, equals 2n — 4, and the degree of every point
x # Py,...,Psis 2n. We omit the details.

Now we turn to the questions concerning higher dimensions. In the proof
of Theorem 1.1 we showed that if m > my = 5n® + 2, then By is m-divisible.
Here d = 3s, and n is the size of the smallest subset I’ of the sphere S,
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such that dist (z, F) < 1/(100s?) for every x € S,. It is easy to see that
n > c-s* with an absolute positive constant ¢, and thus mg > exp (c;dlogd).
It would be desirable to improve this bound, especially because a substantial
improvement would need new ideas.

The most important question is whether or not B, is divisible for every
d > 3. It is very likely that the answer is affirmative; however, our proof
does not seem to work in the general case. The crucial step in the proof
of Theorems 1.1 and 1.2 is Lemma 4.1 which states that the condition of
Lemma 2.1 on the graph generated by the isometries considered is satisfied.
The proof of Lemma 4.1 is based on the fact that if Op,...,On € SOz
are ‘generic’ rotations, b € R® is a ‘generic’ vector and P = T,0,, then
a nonempty reduced word on the alphabet Ofll, . Ovi]\} and P has a fixed
point only if the word is a conjugate of a word on the alphabet Offll, . Off]\}
(See Lemma 3.5 for the precise statement.) Unfortunately, this statement
does not generalize for other dimensions. For example, if d = 4, then a
‘generic’ rotation O € SO, has no fixed point other than the origin. Thus
T,O has a fixed point for every vector b € R*, since I — O is invertible, and
(I —O)7*(b) is a fixed point of T,O. Still, we conjecture that the statement
of Lemma 4.1 is true for every dimension d > 3. It would be interesting to
see if the methods applied in [1] can be used in this context.
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