
LINEAR FUNCTIONAL EQUATIONS WITH

ALGEBRAIC PARAMETERS

GERGELY KISS

Abstract. We describe the solutions of linear functional equa-
tions with algebraic parameters.

1. Introduction

Let K be a subfield of the field of complex numbers. We investigate
the functional equation

(1)
n∑

i=1

aif(bix+ y) = 0

where ai ∈ C, bi ∈ K are given and f : C → C is the unknown function.
We shall also consider the more general equation

(2)
n∑

i=1

aif(bix+ ciy) = 0

where ai ∈ C, bi, ci ∈ K are given and f : C → C is the unknown
function. Our aim is to describe the solutions, at least for some classes
of these equations, on the field K. Note that every solution defined on
K can be extended to a solution on C. Indeed, since C is a linear space
over the field K, the identity on K can be extended to C as a linear
function over K. Let φ : C → K be such an extension. It is clear that
if f satisfies (2) for every x, y ∈ K, then f ◦ φ satisfies (2) for every
x, y ∈ C.

In this paper we shall consider those equations of the form (2) for
which the solutions are generalized polynomials on K.
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By a generalized polynomial on an Abelian group A we mean a
function f : A→ C such that, for a suitable n, we have

(3) ∆h1
. . .∆hn+1

f(x) = 0

for every h1, . . . , hn+1, x ∈ A. Here ∆h denotes the difference operator,

∆hf(x) = f(x+ h) − f(x).

The smallest n for which there are elements h1, . . . , hn+1 satisfying
(3) is called the degree of f. We shall restrict our attention to those
equations (2) whose parameters satisfy the following condition.

The numbers a1, . . . , an are nonzero, and there is an 1 ≤ i ≤ n

such that bicj 6= bjci holds for any 1 ≤ j ≤ n, j 6= i.
(4)

The following result is an easy consequence of [8] (see also [1], [5] and
[9]):

Theorem 1.1. Suppose (4). If
n∑

i=1

aif(bix+ ciy) = 0

is true for every x, y ∈ K, then f is a generalized polynomial on K of
degree at most n− 2.

Note that if ci = 1 for every i = 1, . . . , n, then (4) is satisfied when-
ever a1, . . . , an 6= 0 and the numbers b1, . . . , bn are distinct. That is,
equation (1) with different b1, . . . , bn always satisfies condition (4), and
thus its solutions are generalized polynomials.

In Section 2 our aim is to describe the solutions when bi and ci are al-
gebraic numbers. We show that in this case the space of the solutions of
(2) is spanned by the injective homomorphisms (shortly isomorphisms)
of K or the products of them. (See Theorem 2.3, Theorem 2.7.)

These results make it possible, at least in principle, to find every
solution of a functional equation satisfying condition (4) when bi, ci are
algebraic numbers, since the number of these isomorphisms and of their
product is finite.

We say that the equation (2) is trivial if every additive function is a
solution of the functional equation. Examples of trivial equations are

3f(x+
√

2y) − f(6x+ (3
√

2 + 5
√

3)y) + 5f(x+
√

3y) = 0

and

2f(x+ y) − f(x+ 2y) − 2f(x+ πy) + f(x+ 2πy) = 0.
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In Section 3 we prove that the trivial equations also have the property
that the set of their additive solutions is spanned by those solutions
which are injective homomorphisms. This amounts to show that the
set of all additive functions is spanned by injective homomorphisms
(3.1).

In Section 4 we show that, in general, the set of additive solutions is
not always spanned by the injective homomorphism solutions. In The-
orem 4.3 we prove that there are equations with this property for every
field K containing transcendental numbers, showing that Theorem 2.3
is best possible.

Note that the set of the solutions of (2) is a linear space over C,
but not necessary translation invariant with respect to the addition.
There are important cases such as (1) with distinct b1, . . . , bn, when
the space of solutions is translation invariant. (In general, if the points
(bi, ci) ∈ C2 lie on a line not going through the origin (0, 0), then
the space of solutions is translation invariant.) Translation invariance
sometimes simplifies the description of the space of solutions (see, e.g.
Remark 2.9).

We remark that the results presented here were motivated by the
paper [4].

2. Theorems in algebraic case

The proofs of this Section are based on some results of polynomial-
exponential functions on groups.

Let (G, ∗) be an Abelian group, and let CG denote the linear space of
all complex valued functions defined on G equipped with the product
topology. By a variety on G we mean a translation invariant closed
linear subspace of CG. We say that the function f : G→ C is additive,
if f is a homomorphism of G into the additive group of C. A function
is a polynomial if it belongs to the algebra generated by the constant
functions and the additive functions. A nonzero function m ∈ CG

is called an exponential if m is multiplicative; that is, if m(x ∗ y) =
m(x)·m(y) for every x, y ∈ G. An exponential monomial is the product
of a polynomial and an exponential, a polynomial-exponential function
is a finite sum of exponential monomials.

Lemma 2.1. Let (G, ∗) be an Abelian group, V be a translation invari-

ant linear subspace of C(G), and let
∑M

i=1 pi ·mi ∈ V, where p1, . . . , pM

are nonzero generalized polynomials and m1, . . . , mi are distinct nonzero
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exponentials on G. Then (∆h1
. . .∆hk

pi) ·mi ∈ V for every i and for
every h1, . . . , hk ∈ G.

If pi is not constant, then there is a nonzero additive function A :
G→ C such that A ·mi ∈ V and mi ∈ V.

Proof. Since mi is a nonzero exponential, mi(x) 6= 0 for any x ∈ G. If
p(x)m(x) ∈ V , then p(x ∗ h)m(x ∗ h) and c · p(x)m(x) is in V for any
c 6= 0 ∈ C, because V is a translation invariant linear space. Thus, the
equation

p(x ∗ h)m(x ∗ h) −m(h)p(x)m(x) =

=(p(x ∗ h) − p(x))m(x)m(h) = (∆hp(x)) ·m(x)m(h)

shows that ∆hp(x)m(x) ∈ V . The iteration of this process proves the
first statement of the lemma. It is well known that for every generalized
polynomial p there exist an integer k and an additive function A such
that ∆h1

. . .∆hk
p = A and ∆h1

. . .∆hk
∆hk+1

p is a nonzero constant for
some h1, . . . , hk, hk+1 ∈ G. Thus, if p ·m ∈ V , then A ·m and m are in
V , which completes the proof. �

The following proposition will be used frequently (see [3, Theorem
14.5.1.]).

Proposition 2.2. Let K ⊂ C be a finitely generated field and φ : K →
C be an injective homomorphism. Then there exists an automorphism
ψ of C such that ψ|K = φ.

Theorem 2.3. Let b1, . . . , bn, c1, . . . , cn be algebraic numbers satisfying
(4), and put K = Q(b1, . . . , bn). Then every additive solution of (2)
defined on K is of the form

d1φ1 + · · ·+ dkφk,

where d1, . . . , dk are complex numbers and φ1, . . . , φk : K → C are
injective homomorphisms satisfying

(5)
n∑

i=1

aiφj(bi) = 0 and
n∑

i=1

aiφj(ci) = 0

for every j ∈ {1, . . . , k}.
Remark 2.4. It is clear that all injective homomorphisms satisfying
(5) are solutions of (2).

Proof. If f is an additive solution of (2) on K, then

0 =

n∑

i=1

aif(bix+ ciy) =

n∑

i=1

aif(bix) +

n∑

i=1

aif(ciy)
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for every x, y ∈ K. By substituting x = 0 and y = 0 we get
∑n

i=1 aif(ciy) =
0 and

∑n
i=1 aif(bix) = 0, respectively.

Let V denote the set of additive functions f : K → C satisfying

(6)
n∑

i=1

aif(bih) = 0 and
n∑

i=1

aif(cih) = 0

for every h ∈ K. We denote K∗ = {x ∈ K : x 6= 0}; then K∗ is an
Abelian group under multiplication. Let

V ∗ = {f |K∗ : f ∈ V }.
We prove that V ∗ is a variety on the Abelian group K∗.

It is clear that V ∗ is a linear space and that V ∗ is translation invari-
ant. Indeed, if f is additive and satisfies (6), then x → f(ax) is also
additive, and also satisfies (6) for every a ∈ K∗. Let g : K∗ → C be a
function in the closure of V ∗. Extend g by g(0) = 0. Let a, b ∈ K⋆ be
such that a + b is also in K∗, i.e. a + b 6= 0. Since g ∈ clV ∗, for every
ε > 0 there exists f ∈ V ∗ such that

|f(a) − g(a)| < ε, |f(b) − g(b)| < ε and |f(a+ b) − g(a+ b)| < ε.

Now, f(a)+ f(b) = f(a+ b) because f is additive, so |g(a+ b)− g(a)−
g(b)| < 3ε. This is true for every ε, therefore g(a + b) = g(a) + g(b).
This holds for every a, b ∈ K with a, b, a+ b 6= 0 and then, by g(0) = 0,
it follows that g is additive on K. A similar argument shows that g
satisfies (6). This means that V ∗ is closed, and thus V ∗ is a variety.

Since the b′is are algebraic numbers, the field K is a finite algebraic
extension of the field Q. If β1, . . . , βN is a basis of K as a linear space
over Q and if f : K → C is additive, then

f(r1β1 + . . .+ rNβN) = r1f(β1) + . . .+ rNf(βN)

for every r1, . . . , rN ∈ Q. Therefore, the values of f at any point of
K are determined by the values f(β1), . . . , f(βN). Since the set of all
functions mapping {β1, . . . , βN} into C has dimension N it follows that
the set A of all additive functions defined on K forms a finite dimen-
sional vector space over C. This implies that V, as a linear subspace of
A is also finite dimensional. Consequently, V ∗ is a finite dimensional
translation invariant linear space of functions defined on K∗. By [8]
and [2], it follows that every element of V ∗ is a polynomial-exponential
function.

In other words, every element f ∈ V ∗ can be written as a finite
sum f =

∑M
j=1 pj ·mj , where p1, . . . , pM are nonzero polynomials and

m1, . . . , mM are distinct exponentials on K∗.
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By Lemma 2.1, m1, . . . , mM ∈ V ∗. Therefore,

(7) mj(xy) = mj(x)mj(y)

for every j and x, y ∈ K∗. If we define mj(0) = 0 then mj becomes
additive on K, and thus mj is a homomorphism of the field K into C.
Since mj 6≡ 0, it must be an injective homomorphism. The condition
mj ∈ V ∗ implies that mj is a solution of (2), and thus satisfies (5).

We prove that each pj is constant.

Suppose that p1 is not constant. Then, by Lemma 2.1, there is a
nonzero additive function A on K∗ such that A · m1 ∈ V ∗. Due to
Proposition 2.2, if K ⊂ C is a finitely generated field and φ : K → C

is an injective homomorphism, then there exists an automorphism ψ
of C such that ψ|K = φ. Therefore, m1 can be extended to C as an
automorphism. We shall denote the extension also by m1.

We put d = m−1
1 ◦(A·m1) and d(0) = 0.We show that d is a derivation

onK. Since m1 is an automorphism, it is an additive function, and then
m−1

1 is also additive. Since A ·m1 ∈ V ∗, thus A ·m1 also additive, and
the composition d is also additive; that is, d(x + y) = d(x) + d(y).
Since A is additive on K∗ with respect to the multiplication, we have
A(xy) = A(x) + A(y) for every x, y ∈ K∗. Therefore,

d(xy) = (m−1
1 ◦ (A ·m1))(xy) = m−1

1 (A(xy) ·m1(xy)) =

= m−1
1 ((A(x) + A(y)) ·m1(x)m1(y)) =

= m−1
1 (A(x) ·m1(x)) · y +m−1

1 (A(y) ·m1(y)) · x =

= d(x)y + d(y)x

(8)

for every x, y ∈ K∗. Clearly, d(xy) = d(x)y + d(y)x holds in the cases
x = 0 or y = 0 as well. Therefore, d is a derivation on K.

On the other hand, it is well known (and it is easy to check) that
on algebraic extensions of Q the only derivation is the identically zero
function. However, the function A is not identically zero and m1 is an
automorphism, thus d cannot be identically zero. This contradiction
shows that p1 must be constant, which completes the proof. �

Now we are interested in the solutions of (1) of arbitrary degree. In
order to generalize Theorem 2.3 we need some technical lemmas.

LetK be a subfield of C. A function fk : K → C is called a monomial
of degree k, if there exists a nonzero, symmetric and k-additive function
Fk : Kk → C such that fk(x) = Fk(x, . . . , x) for every x ∈ C. It is well-
known that if f is a generalized polynomial of degree m, then it can
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be written of the form f = f0 +
∑m

k=1 fk, where f0 is constant and fk

is a monomial of degree k (k = 1, . . . , m) (see [6]).

Lemma 2.5. Suppose that f = f0+
∑m

k=1 fk is a solution of (2), where
f0 is constant and fk is a monomial of degree k (k = 1, . . . , m). Then
each of f0, . . . , fm is a solution of (2).

Proof. [4, Lemma 2.1.] �

Lemma 2.6. Let f(x) = Fk(x, . . . , x
︸ ︷︷ ︸

k

) be a monomial, where Fk is

symmetric and k-additive. In this case

k!Fk(x1, x2, . . . , xk) = ∆x1
∆x2

. . .∆xk
f(t)

for every t ∈ C.

Proof. See [3, §9, Lemma 2.] �

Theorem 2.7. Let bi, ci (i = 1, . . . , n) be algebraic numbers satisfying
(4), and put K = Q(b1, . . . , bn, c1, . . . , cn). Let f be a solution of (2)
defined on K. If the degree of f is at most k, then f is the linear
combination of products of at most k injective homomorphisms of K
which products are also solutions of (2).

Proof. Suppose that there is a solution of (2) of degree k. By Lemma
2.5, there is a solution which is a monomial of degree k. Let fk(x) =
Fk(x, . . . , x) be a solution, where Fk is nonzero, symmetric and k-
additive. Our aim is to show that Fk is the linear combination of
functions of the form φ1 · · ·φk, where φ1, . . . , φk : K → C are injec-
tive homomorphisms such that the terms of the linear combination are
solutions of (2) as well.

Let V be the set of all functions S : Kk → C such that S is k-
additive and the function x 7→ S(s1x, s2x, . . . , skx) (x ∈ K) satisfies
(2) for every s1, s2, . . . sk ∈ K. We prove that Fk ∈ V. By Lemma 2.6,

k! · Fk(s1x, s2x, . . . , skx) = ∆s1x∆s2x . . .∆skxfk(0) =
M∑

j=1

±fk(ejx)

with suitable e1, . . . , eM ∈ K. Thus Fk(s1x, s2x, . . . , skx) is a linear
combination of functions of the form fk(ex), which are also solutions
of (2). Therefore, Fk(s1x, s2x, . . . , skx) is a solution, and thus Fk ∈ V.
Let

(K∗)k = {(x1, . . . , xk) : x1, . . . , xk ∈ K \ {0}}.
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Then (K∗)k is an Abelian group under multiplication by coordinates. It
is easy to check that V ∗ = {S|(K∗)k : S ∈ V } is a translation invariant,

closed, linear subspace of C((K∗)k); i.e. it is a variety. Since Fk ∈ V ,
V ∗ is nonzero.

Since the b′is and c′is are algebraic numbers, the field K is a finite
algebraic extension of the field Q. Let β1, . . . , βN be a basis of K as a
linear space over Q. If Ek : (K∗)k → C is k-additive, then

Ek(x, . . . , x) = Ek(r1β1 + . . .+ rNβN , . . . , r1β1 + . . .+ rNβN) =

= (r1)
kEk(β1, . . . , β1) + . . .+ (rN)kEk(βN , . . . , βN) =

=
∑

(i1,...,ik)∈Ik

(
k∏

s=1

ris

)

Ek(βi1 , . . . , βik)

for every r1, . . . , rN ∈ Q and I = {1, . . . , N}.
Therefore, the values of Ek at any point of (K∗)k are determined

by the values Ek(β1, . . . , β1), . . . , Ek(βN , . . . , βN). Since the set of all
functions mapping {(β1, . . . , β1), . . . , (βN , . . . , βN)} into C has dimen-
sion Nk, it follows that the set Ek of all k-additive functions defined
on (K∗)k forms a finite dimensional vector space over C. This implies
that V ∗, as a linear subspace of Ek is also finite dimensional.

Consequently, V ∗ is a finite dimensional translation invariant, closed
linear space of functions defined on (K∗)k. By [8] and [2], it follows
that every element of V ∗ is a polynomial-exponential function.

In particular, Fk =
∑L

j=1 Pj ·Mj, where P1, . . . , PL are nonzero poly-

nomials and M1, . . . ,ML are distinct exponentials on (K∗)k with re-
spect to the multiplication.

We shall prove that every exponential element of V ∗ is of the form
φ1(x1)φ2(x2) . . . φk(xk)|(K∗)k where φj is an injective homomorphism
for every j ∈ {1, . . . , k}. We shall also prove that every exponential
monomial element of V ∗ is a constant multiple of an exponential. This
will imply

Fk(x1, . . . , xk) =

L∑

j=1

cj · φ1(x1) . . . φk(xk)

for every x1, . . . , xk ∈ V ∗. Putting x1 = . . . = xk = x we obtain

(9) fk(x) = Fk(x, . . . , x) =

L∑

j=1

cj · φ1(x) . . . φk(x)
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for every x ∈ K∗. Since (9) is also true for x = 0, this will complete
the proof.

Let M(x1, x2, . . . , xk) be an exponential element of V ∗. Then M is
multiplicative in each coordinate, that is

M(x1y1, x2y2, . . . , xkyk) = M(x1, x2, . . . , xk)M(y1, y2, . . . , yk)

for every xi, yi ∈ K∗. Therefore,

M(x1, x2, . . . , xk) = M(x1, 1, . . . , 1)M(1, x2, . . . , 1) · · ·M(1, 1, . . . , xk) =

= m1(x1)m2(x2) · · ·mk(xk)

for every x1, . . . , xk ∈ K∗. We extend mj to K by putting mj(0) = 0.
Then each mj is an injective homomorphism, because it is additive by
the k-additivity of M, and it is multiplicative as well.

Now we prove that each Pj is constant.

Suppose, e.g. that P1 is not constant. Then, by Lemma 2.1, there is
a nonzero additive function A on (K∗)k such that

d(x1, . . . , xk) = A(x1, . . . , xk) ·m1(x1) · · ·mk(xk) ∈ V ∗.

The additivity of A means that is,

(10) A(x1 ·y1, x2 ·y2, . . . , xk ·yk) = A(x1, x2, . . . , xk)+A(y1, y2, . . . , yk)

for every x1, . . . , xn, y1, . . . , yn ∈ K∗. We prove that in this case d ≡ 0
which is a contradiction.

Then d(x1, 1, . . . , 1) = A(x1, 1, . . . , 1)m1(x1) is a polynomial expo-
nential of the case of Theorem 2.3, therefore d(x1, 1, . . . , 1) = 0 and
since m1(x1) 6= 0, A(x1, 1, . . . , 1) = 0. This is true for every coordi-
nate. Using (10), we obtain that

A(x1, x2, . . . , xk) = A(x1, 1, . . . , 1) + · · · + A(1, 1, . . . , xk) = 0

for every x1, x2, . . . , xk ∈ K∗, therefore d must be zero. �

Lemma 2.8. If φ1, . . . , φk : K → C are injective homomorphisms then
the product φ1 · · ·φk is a solution of (2) if and only if

(11)

n∑

i=1

ai

∏

j∈J

φj(bi)
∏

j′ /∈J

φj′(ci) = 0

for every J ⊆ {1, . . . , k}.

Proof. See [4, Lemma 3.4] �
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Remark 2.9. In the special case when the functional equation can
be written of the form (1) the situation is slightly simpler, since the
condition (11) takes the following form:

(12)
n∑

i=1

aiφj1 . . . φjs
(bi) = 0

for every choice of the integers 0 ≤ j1 < · · · < js ≤ k (0 ≤ s ≤ k).
Consequently, if we take the injective homomorphism solutions of (1),
then forming the products at most n − 1 of them gives a basis of the
space of the solutions. Furthermore, the conditions (12) imply that
every subproduct of a product which is a solution of (1) must be a
solution, as well.

3. Trivial functional equations

In this section we present another class of equations such that the
set of its additive solutions is spanned by those solutions which are
injective homomorphisms.

Theorem 3.1. The variety VC generated by the automorphisms of C

contains every additive function.

Proof. The variety VC is the closure of the set of linear combinations of
the automorphisms of C. This means that whenever f : C → C is such
that, for every y1, y2, . . . , yn ∈ C and ε > 0 there are automorphisms
φ1, φ2, . . . , φM satisfying

|f(yj) −
M∑

m=1

ci · φm(yj)| < ε

for every j = {1, . . . , n}, then f ∈ VC. We have to show that every
additive function on C has this property.

It is enough to prove that if K is finitely generated, then the variety
VK , generated by the injective homomorphisms of K into C contains
every additive function on K. Indeed, for given points y1, y2, . . . , yn ∈
C, we may take the subfield K generated by these points. If we can
guarantee that the restriction of a given additive function f to K is in
the variety VK for every finitely generated subfield K of C, then, by
Proposition 2.2, VC contains the function f .

We will prove the following stronger statement by induction on the
number of generators of K : if a function f ∈ VK and the points
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y1, y2, . . . , yn ∈ K are given, then there are injective homomorphisms
φ1, φ2, . . . , φM and there are complex numbers c1, . . . , cM such that

f(yj) =

M∑

m=1

cm · φm(yj)

for every j = {1, . . . , n}. It is clear that the statement is true for
K = Q, since every additive function on Q is of the form c · Id, where
Id denotes the identity function of Q. Let us assume that the statement
is true for a finitely generated K. We prove the statement for K(β)
and for K(t), where β is an algebraic number, and t is a transcendental
number.

Case 1: β is an algebraic number, and |K(β) : K| = n. Then

K(β) = {a0 + a1β + · · ·+ an−1β
n−1 : ai ∈ K (i = 0, . . . , n− 1)}.

Let the additive function f : K(β) → C and the numbers y1, . . . , yN ∈
K(β) be given.

Since every yj is a sum of terms of the form b ·βi (b ∈ K), therefore,
by additivity, it is enough to represent f at the points bi,j · βi for
every bi,j ∈ K (j = 1, . . . , N, i = 0, . . . , n − 1). For every fix i, the
function f(x ·βi) is an additive function on K. Thus, by the induction
hypothesis, there are injective homomorphisms φ1, . . . , φM of K into
C, and there are complex numbers ci,m such that

(13) f(bi,j · βi) =

M∑

m=1

ci,m · φm(bi,j)

for every i = 0, . . . , n − 1 and j = 1, . . . , N . We need to represent
every term on the right hand side of (16) by some linear combination
of values of injective homomorphisms of K(β) at the point bi,j · βi. Let
the roots of the minimal polynomial of β be β = β0, . . . , βn−1. We put

ψm,k(a0+a1β+· · ·+an−1β
n−1) = φm(a0)+φm(a1)βk+· · ·+φm(an−1)β

n−1
k

for every a0, . . . , an−1 ∈ K and k = 0, . . . , n − 1. Then ψm,k is an
injective homomorphism of K(β) into C for every m and k. We show
that there are numbers xm,k such that

(14) f(bi,jβ
i) =

M∑

m=1

n−1∑

k=0

xm,kψm,k(bi,jβ
i);

that is,

f(bi,jβ
i) =

M∑

m=1

n−1∑

k=0

xm,kφm(bi,j) · βi
k.
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By (13), it is enough to find xm,k satisfying the equations

ci,m · φm(bi,j) =

n−1∑

k=0

xm,kφm(bi,j) · βi
k

for every i = 0, . . . , n − 1, j = 1, . . . , N and m = 1, . . . ,M. That is,
xm,k has to satisfy

(15) ci,m =
n−1∑

k=0

xm,k · βi
k

for every i = 0, . . . , n− 1 and m = 1, . . . ,M. Since the determinant of
the system of equations (15) is nonzero (Vandermonde) for every fixed
m, these systems are solvable. If xm,k is a solution, (14) shows that f
is represented on the set {bi,jβi} as a linear combination of injective
homomorphisms.

Case 2: If t is a transcendental number, then every element of K(t) is
a rational function of the variable t with coefficients from K.

Let f : K(t) → C be an additive function. Let the rational functions
y1, . . . , yn ∈ K(t) be given. Let q(t) be a common multiple of the
denominators of the rational functions yi.

Since every yj is a sum of terms of the form b · ti/q(t) (b ∈ K),
therefore, by additivity, it is enough to represent f at the points bi,j ·
ti/q(t) for every bi,j ∈ K (j = 1, . . . , N, i = 0, . . . , n− 1). For every fix
i, the function f(x · ti/q(t)) is an additive function on K. Thus, by the
induction hypothesis, there are injective homomorphisms φ1, . . . , φM of
K into C, and there are complex numbers ci,m such that

(16) f(bi,j · ti/q(t)) =
M∑

m=1

ci,m · φm(bi,j)

for every i = 0, . . . , n − 1 and j = 1, . . . , N . We need to represent
every term on the right hand side of (13) by some linear combination
of values of injective homomorphisms of K(t) at the points bi,j · ti/q(t).
Let t0, t2, . . . , tn−1 be algebraically independent elements over K, and
put

ψm,k(r(t)) = (φm ◦ r)(tk)
for every r ∈ K(t), m = 1, . . . ,M and k = 0, . . . , n − 1. Then ψm,k

is an injective homomorphism of K(t) into C for every m and k. We
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show that there are numbers xm,k such that

(17) f(bi,jt
i/q(t)) =

M∑

m=1

n−1∑

k=0

xm,kψm,k(bi,jt
i/q(t));

that is,

f(bi,jt
i/q(t)) =

M∑

m=1

n−1∑

k=0

xm,kφm(bi,j) ·
tik

φm(q(tk))
.

By (13), it is enough to find xm,k satisfying the equations

(18) ci,m · φm(bi,j) =

n−1∑

k=0

xm,kφm(bi,j) ·
tik

φm(q(tk))

for every i = 0, . . . , n − 1, j = 1, . . . , N and m = 1, . . . ,M. Let zm,k

satisfy

(19) ci,m =

n−1∑

k=0

zm,k · tik

for every i = 0, . . . , n − 1 and m = 1, . . . ,M. Since the determinant
of the system of equations (19) is nonzero (Vandermonde) for every
fixed m, these systems are solvable. If zm,k is a solution, then put
xm,k = zm,k · φm(q(tk)). Then (17) shows that f is represented on the
set {bi,jti/q(t)} as a linear combination of injective homomorphisms.

This completes the proof. �

4. Further cases

Theorem 3.1 might suggest that if there are infinitely many injective
homomorphisms which are solutions of (2), then the variety generated
by these injective homomorphisms contains every additive solution as
well. Now we show that this is not true (see Theorem 4.3 below).

Definition 4.1. Let K denote a field over Q. We say that a function
d : K → C is a derivation if it has the following two properties:

(1) d(x+ y) = d(x) + d(y) and
(2) d(xy) = d(x)y + xd(y)

for every x, y ∈ K.

Lemma 4.2. Let K ⊂ L be subfields of C. If d is derivation on K,
then it can be extended to L as a derivation.
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Proof. Well-known. See, e.g. [7, Proposition, p. 154]. �

Theorem 4.3. If K ⊂ C is a field which contains a transcendental
number, then there exists a linear functional equation

n∑

i=1

aif(bix+ y) = 0

such that bi ∈ K for every i = 1, . . . , n, and there exists an additive
solution which is not contained by the variety generated by the injective
homomorphisms which are solutions.

Proof. Let us suppose that t ∈ K is a transcendental number and
a1, . . . , an are nonzero complex numbers satisfying

(20)
n∑

i=1

ai = 0,
n∑

i=1

ait
i = 0,

n∑

i=1

aiit
i−1 = 0.

We will prove that in this case the functional equation

(21)
n∑

i=1

aif(tix+ y) = 0

satisfies the requirements.

Every element of Q(t) is a rational function with rational coefficients
of the variable t. The operation d0 = ∂

∂t
is a well-defined derivation on

Q(t). It follows from Lemma 4.2 that we can extend d0 from Q(t) to
K as a derivation. Then d0 is a solution of (21). Indeed,

n∑

i=1

ai(d0(t
ix+ y)) =

n∑

i=1

aid0(t
i)x+

n∑

i=1

ait
id0(x) +

n∑

i=1

aid0(y) =

=
n∑

i=1

aiit
i−1d0(t)x+

n∑

i=1

ait
id0(x) +

n∑

i=1

aid0(y) = 0

(22)

by (20).

Let V denote the variety generated by those injective homomor-
phisms which are solutions of (21) on K.

Suppose φ ∈ V is an injective homomorphism. Then, by (20), we
have

∑n
i=1 aiφ(t)i = 0, and thus φ(t) is a root of the polynomial p(x) =

∑n
i=1 aix

i. Let u1, . . . , uk be the distinct roots of p. Suppose φ(t) = ui.
If ψ ∈ V is another injective homomorphism with ψ(t) = ui, then
restrictions of φ and ψ to Q(t) coincide. This easily implies that the
family of restrictions W = {g|Q(t) : g ∈ V } is finite dimensional. It
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is clear that if φ1, . . . , φk are fixed injective homomorphisms such that
φj(t) = uj (j = 1, . . . , k), then the restrictions φj |Q(t) form a basis of
W as a linear space.

Suppose d0 ∈ V. Then there are complex numbers c1, . . . , ck such
that

(23)
k∑

j=1

cjφj(w) = d0(w)

for every w ∈ Q(t). Applying (23) with w = ti and using d0(t
i) = i·ti−1,

we find
k∑

j=1

cjφj(t
i) =

k∑

j=1

cju
i
j = i · ti−1

for every i = 1, 2, . . . . Multiplying by zi and summing for i = 1, 2, . . .
we obtain

k∑

j=1

cj

∞∑

i=1

ui
jz

i =

∞∑

i=1

i · ti−1zi,

as an equation between formal power series. However, for z small
enough both power series are convergent, and we obtain

(24)

k∑

j=1

cj
ujz

1 − ujz
=

∂

∂t
· 1

1 − tz
= − z

(1 − tz)2

for every |z| < δ. The functions was defined with power series and
the intersection of domains of convergence contain a set that has a
non-isolated point. These implies that the functions are equal in the
union of the domains using Uniqueness Principle. This implies is that
equation (24) is an identity on the whole complex plane, since the last
term of equation (24) is a meromorphic function on the whole space
with a pole singularity in z = 1/t. Therefore,

k∑

j=1

cj
(1 − tz)2ujz

1 − ujz
= −z

holds for every z 6= 1/t and if z → 1
t

the left side tends to 0, but the
right is not.

This contradiction shows that d0 /∈ V, which completes the proof. �

Example It is easy to check that the function equation

(25) f(t2x+ y) − 2tf(tx+ y) + t2f(x+ y) − (t+ 1)2f(y) = 0

satisfies the conditions of Theorem 4.3.
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