
Linear series on surfaces and Zariski decomposition

This is an extended version of a talk given at the Algebra-Geometry seminar at the
university of Freiburg in May 2011.

1 Zariski decomposition for effective divisors

Zariski decomposition is a way to dismantle orthogonally (pseudo-)effective divisors into posi-
tive and negative parts, both of which enjoy the useful geometric properties. For example, the
birational map ? to D is largely determined by it’s positive part, while the curves contracted
by the morphisms all lie in the negative part of D.

Theorem 1. Let D be an effective Q-divisor on a smooth projective surface X. Then there
exist uniquely determined effective Q-divisors P and N with

D = P +N

such that

i) P is nef

ii) N is zero or has negative definite intersection matrix

iii) P · C = 0 for every irreducible component C of N

Remark 1. We quickly recall a couple of definitions Let DivQ(X) := Div(X)⊗Q. On smooth
projective surfaces all Q-Weil divisors are also Q-Cartier, hence we can write Q-Cartier every
divisor D as a finite sum

∑
xiCi, where the Ci are distinct integral curves and xi ∈ Q. A

divisor D is called effective (or sometimes positive) if xi ≥ 0 ∀i. If D · C ≥ 0 for all integral
curves C then D we be called nef. For a divisor D =

∑
xiCi we define the intersection

matrix to by the symmetric matrix I(D) = I(C1, . . . , Cq) = (Ci ·Cj)i,j. By definition we have
D ·D = xt · I(D) · x, where x = (x1, . . . , xn)t. We will call P a sub divisor of D, if D − P is
effective or zero. We will then write P � D.

Example 1. a) The group of linear equivalence classes of Weil Divisors on P2 is isomorphic
to Pic(P2)) ∼= Z. The line h corresponds to the divisor generating Pic(P2), since all
lines in P2 are linear equivalent to each other and different lines intersect exactly in one
point we have h · h = 1. Thus the nef divisors are exactly the positive ones.

b) In the case of P2 blown up in one point p we have the following possibilities of curves:

i) E the blow up of p

ii) nh is the pullback of a curve in X − p
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iii) L is the proper transform of a curve in X with p ∈ π∗L, in this case we can write
it in the form of nh− E

To obtain the nef cone (Picture) we only need to determine the ah+bE which intersect
those curves above positively or zero, these are the points a + b ≥ 0 with a ≥ 0 and
−b ≥ 0. Now we see, that if D = ah+ bE is effective, then ah is the positive part of the
Zariski decomposition and bE the negative part.

h

E

nef

effective

b
D

P

N

Example 2. If D is an effective integral divisor then the positive or negative part of it’s
Zariski decomposition does not have to be integral anymore

Before we are able to proof theorem 1 we need a technical lemma.

Lemma 1. If N is a Q/R-divisor on a projective surface which intersection matrix is not
negative definite, then there exists an effective nef divisor E 6= 0 which components are among
those of N .

Granting lemma 1 for a moment we will show how to prove theorem 1 following [BCK]
closely.

Proof of Theorem 1. The idea of the proof is the following: First we will show that a maximal
effective nef subdivisor of D exists and fulfills properties of P i) to iii). Then we will show
that conditions i) to iii) force P to be maximal nef and conclude uniqueness.
Existence: Let be D =

∑n
i=1 aiCi with ai > 0. If P is an effective subdivisor of D then

P =
∑r

i=1 xiCi with 0 ≤ xi ≤ ai. Now P is nef if and only if

r∑
i=1

xiCi · Cj ≥ 0 ∀ 1 ≤ j ≤ r (1)

since by definition the intersection with an integral curve C not among the components of D
is not negative, c.f. [Har] p 360.
Now let us allow R-divisors. The set of all possible solutions of the inequalities (1) can be
identified with K :=

⋂n
j=1{(x1, . . . , xn) ∈ [0, a1] × [0, an]|

∑r
i=1 xiCi · Cj ≥ 0} which as an
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intersection of convex sets is convex. It also a closed subset of the real cubic given above and
so it is compact. Therefore there exists a maximal solution corresponding to the relation �.
We fix the real divisor P =

∑r
i=1 xiCi corresponding to this solution and set N = D − P .

At the end of the proof we will show that if we start with a Q-divisor D, then P and N will
also have to be Q-divisors. By definition P is an effective, nef subdivisor of D, so N is also
effective. This shows i).
To see ii) we assume that if D 6= P , that I(N) is not negative definite, by lemma 1 there
exists an E such that for a small rational ε > 0 P ′ := P + εE is still effective and nef. But
since P ′ � P this contradicts the maximality condition on P .
iii) If C is a component of N with P · C > 0, then there exists a rational ε > 0 such that
P + εC ≥ 0 is still nef, but P + εC � P this also contradicts the maximality condition on P .
Uniqueness: Let D = P +N be a decomposition fulfilling properties i) to iii) of theorem 1,
we will show that P is indeed a unique maximal subdivisor of D. If P ′ � P is another nef
divisor, then P ′ = P +

∑l
j=1 yiCj , where yi ≥ 0 and Cj are the components of N . Since P ′

is nef we have

0 ≤ P ′Ci = P · Ci︸ ︷︷ ︸
=0

+(
l∑

j=1

yjCj) · Ci

On the other hand the negative definiteness of the intersection matrix of N forces

0 ≤ (

l∑
j=1

yjCj)
2 =

∑
k=1

yk (

l∑
j=1

yjCjCk)︸ ︷︷ ︸
≥0

≤ 0

therefore yk = 0 and so P = P ′.
Let P =

∑n
i=1 xiCi and P ′ =

∑n
i=1 yiCi maximal solutions of (1), then P ′′ =

∑n
i=1 max(xi, yi)Ci

is also nef. To see this, we have to check that that P ′′ · Cj = 0 for all j, this is equivalent to

n∑
i=1,i 6=j

max(xi, yi)CiCj ≥ −max(xj , yj)Cj · Cj

now

−yjCj · Cj ≤
n∑

i=1,i 6=j

yiCiCj ≤
n∑

i=1,i 6=j

max(xi, yi)CiCj ≥
n∑

i=1,i 6=j

xiCiCj ≥ −xjCiCj

since Cj · Ci ≥ 0 for i 6= j. Therefore P � P ′′ � P ′ and we conclude P = P ′′ = P ′, this was
to show!
It remains to show that P (and then automatically also N) is a Q-divisor, provided D is.
Let D =

∑n
i=1 aiCi and N =

∑r
j=1 biCi, with r ≤ n. Let be M = (Ci · Cj)1≤i≤r,1≤j≤n, then

M = (I(N) A)1 for some integral matrix A. If P =
∑
xiCi, then ii) means P · Ci = 0 which

is equivalent to M · x = 0. On the other hand we have ai = xi for all r + 1 ≤ i ≤ n, this

1If X = (xij) is a n × k matrix and Y = (yij) is a n × l matrix, then Z = (X Y ) = (zij) is defined to be
the n× k + l matrix with zij = xij if j ≤ k and zij = yi(j−k) for j > k.
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means x is the solution of the system

(
I(N) A

0 Idn−r

)


x1
...
xr
xr+1

...
xn


=



0
...
0

ar+1
...
an


Now since I(N) is negative definite the matrix on the left hand side has maximal rank, thus
this solution is unique. The elements of the matrix are all integral. If D is a Q-divisor, then
all elements on the right hand side are rational, thus all the xi are also rational as well.

Proof of Lemma 1. Let N =
∑n

i=1 niCi where Ci are distinct integral curves on X. I(N) is
not negative semidefinite:
In this case there exists a vector b with btI(N)b > 0, this vector corresponds to a divisor
B =

∑
i=1 biCi whose components are among those of N with B2 > 0. If B is not effective,

we can write B = B1 − B2 as the difference of two effective divisors having no common
component. Since

0 < (B1 −B2)
2 = B2

1 − 2B1 ·B2 +B2
2

and B1 ·B2 ≥ 0 we conclude that at least one Bi ·Bi > 0. By replacing B with a Bi we can
assume that B is effective. Now since B is effective and B2 > 0 the Riemann-Roch theorem
gives

1

2
mB(mB +KX) + χ(OX) = h0(X,OX(mB))− h1(X,OX(mB)) + h2(X,OX(mB)) (2)

= h0(X,OX(mB))− h1(X,OX(mB)) + h0(X,OX(KX −mD))
(3)

≤ h0(X,OX(mB)) for m� 0 (4)

where we used Serre Duality in (2) and the fact that KX −mD cannot be effective for m� 0
in (3). Now the left hand side in (1) can be written in the form of

1

2
B2m2 + b ·m+ c

where b := 1
2mBKX and c are rational (or real it does not matter) numbers, thus B is a big.

So we can write lB = El +Fl where El is the moving part and Fl the fixed component part of
lB. On the other hand |Bl| = |El|+Fl, bigness of B implies that |El| 6= ∅ for l large enough,
thus by [Bad] p. 217 E := El is nef and we are done.
I(N) is negative semidefinite:
We will do the proof by induction on the number of components. Say N =

∑n
i=1 aiCi. If

n = 1 then N2 = 0 = C2
1 , then N is nef. For n > 1 we will find a non trivial divisor

R :=
∑n

i=1 riCi corresponding to rt · I(N)r = 0, thus R · R = 0. If R or −R is effective, we
are done, if not we will write R = R1 − R2 as the difference of effective divisors having no
common component. Then 0 = R2 = R2

1− 2R1R2 +R2
2, since R2

i ≤ 0 we get R2
i = 0. Thus at

least one of the Ri’s is a non trivial divisor having negative semi-definite intersection matrix
and fewer components than R, by induction hypothesis the desired divisors exists.
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2 Fujita’s generalization to Pseudo-effective divisors

Now we will give an analogues statement to Theorem 1 for pseudo-effective divisors.
Recall that by the Nakai-Moishezon criterion a divisor H on a smooth projective surface is
ample if and only if H ·H > 0 and H · C > 0 for every integral curve C.

Definition 1. As before X denotes a smooth projective surface. A divisor D is called pseudo-
effective if D ·H ≥ 0 for every ample divisor H.

One can show for example, that a divisor D is pseudo-effective if D · N ≥ 0 for all nef
divisors N .

Remark 2. Using the Nakai-Moishezon criterion we see that the closure of the effective cone
(i.e. all divisors numerically equivalent to an effective divisor) in NSR(X) is equal to the set
of pseudo-effective divisors.

Example 3. We want to give an example of an pseudo-effective divisor which is not effective.
Let C be an elliptic curve of degree 0 and ρ be a divisor which is no torsion element in Pic(C),
i.e. ρ = p1 − p2, pi ∈ C. Then ρ × P1 is is not an effective divisor of X := C × P, but
corresponds to 0 in NSR(X), therefore it is pseudo-effective.

Theorem 2. Let D be a pseudo-effective Q-divisor on a smooth projective surface X. Then
there exist uniquely determined Q-divisors P and N with

D = P +N

such that

i) P is nef

ii) N is zero or is effective and has negative definite intersection matrix

iii) P · C = 0 for every irreducible component C of N

Remark 3. By definition a R-divisor DR is a Q-divisor DQ multiplied by some real number
a. The Zariski decomposition of DR is then defined by DR = a ·PDQ +aNDQ, i.e. the theorem
above also holds for pseudo-effective R-divisors.

Before we are able to proof this theorem we need to list some facts.

Lemma 2. Let X be a smooth, projective surface and C1, . . . , Cq integral curves on X such
that the intersection matrix (Ci ·Cj)i,j is negative definite. Let D =

∑q
i=1 aiCi be a Q-divisor

on X

i) If D · Cj ≤ 0 for all j , then D ≥ 0

ii) If there exists a pseudo-effective divisor D′ with (D′−D) ·Cj ≤ 0 for all j, then D′−D
is pseudo-effective.

Proof. [Bad] Lemma 14.9 and 14.10.

Lemma 3. Let C1, . . . , Cq be curves on a smooth projective variety X, and let D be a pseudo-
effective Q-divisor such that D · Ci ≤ 0, ∀1 ≤ i ≤ q. Assume there exists an r such that
1 ≤ r < q and D ·Cj < 0, ∀r+ 1 ≤ j ≤ q. If the intersection matrix I(C1, . . . , Cr) is negative
definite, then the intersection matrix I(C1, . . . , Cq) is also negative definite.
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Proof. [Bad] lemma 14.12.

Corollary 1. If D is a pseudo-effective divisor, then there exist only finitely many integral
curves Ci such that D · Ci < 0 and the intersection matrix of C1, . . . , Cq is negative definite.

Proof of theorem 2. We will only sketch the proof of the existence, which contains an algo-
rithm to obtain the Zariski decomposition. Let C1 · · · , Cq1 be all curves with D · Ci < 0. By
corollary 1 there are only finitely many of these and the intersection matrix of

∑
iCi is nega-

tive definite. Then there exists exactly one divisor N1 =
∑q1

i=1 biCi such that N1 ·Ci = D ·Ci,
in fact the vector b := (b1, . . . , bq1) is the (unique) solution of the system of linear equations
(Ci · Cj)i,jb = (D · C1, . . . , D · Cq1) since negative definiteness implies that the intersection
matrix has full rank! By lemma 2 i) N1 ≥ 0. Set D1 = D − N1. If D1 is not nef then
it still has to be pseudo-effective by lemma 2 ii). Let Cq1+1, . . . Cq2 be all curves such that
D1 · Cj < 0 for all q1 < j ≤ q2, then the intersection matrix of

∑q2
i=1Ci is negative definite

by lemma 3, and we construct N2 as above. We are done if we can show, that the procedure
has to terminate after finitely many steps. To see this note that because of the negative
definiteness of the intersection matrix the curves Ci define linear independent elements in the
Néron-Severi group NS(X)Q, which has by the theorem of the base only finite rank, so we
are done. (See for example the end of the proof of corollary 1)

Proof of Corollary 1. Let C1, . . . , Cq be integral curves in X such that D ·Ci < 0, ∀ 1 ≤ i ≤ q,
then by lemma 3 the intersection matrix I(C1 . . . , Cq) is negative definite. Now we will show
that Ci are linearly independent elements of the Neron Severi Group NS(X)Q. Assume there
exist ai ∈ Q such that (

∑q
i=1 aiCi) ·D′ = 0 for all D′, therefore for a = (a1, . . . , aq) we have

0 = (
∑q

i=1 aiCi)
2 = at · I(C1, . . . , Cq) ·a ≤ 0. Since I(C1, . . . , Cq) is negative definite, this can

only happen when a = 0, so C1, . . . , Cq are linearly independent in NS(X)Q. By the theorem
of the base (see [PAG], proposition 1.1.16) NS(X)Q is a free abelian group of finite rank, this
implies q ≤ rkNS(X)Q and has therefore to be finite.

For a real number x ∈ R we define dxe := min{n ∈ Z|n ≥ x}. If D :=
∑

i aiCi is a Q or
R-divisor, then dDe =

∑
idaieCi.

Proposition 1. Let D be an integral effective divisor, if D = P +N is it‘s Zariski decompo-
sition, then the canonical map

H0(X,OX(mD − dmNe)) −→ H0(X,OX(D))

is bijective.

Proof. See [PAG], proposition 2.3.21

Corollary 2. Let D be a pseudo-effective Q-divisor, then

vol(D) = vol(PD) = PD · PD

i.e. D is pseudo-effective ⇒ vol(D) ∈ Q
Proof. Choose m large enough such that mD− dmNe = mP . By definition the volume of D
we have volX(n ·D) = n2 · volX(D), so without loss of generality we may assume that D,N
and P are integral divisors.

lim
m→∞

2
h0(X,OX(mD))

m2
= lim

m→∞
2
h0(X,OX(mP ))

m2
= lim

m→∞
P · P + 2

O(m)

m2
= P · P ∈ Q
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Corollary 3. The ring R(X,D) is finitely generated if and only if P is semi-ample, i.e. |lP |
is free for some l� 0.

Proof. See example 2.1.30 and theorem 2.3.15 in [PAG].

Remark 4. Zariski himself constructed an example of a divisor such that the canonical ring
is not finitely generated. See [PAG] p.158 for details.

3 Zariski decomposition in higher dimensions

Definition 2 (Cutkosky-Kawamata-Moriwaki-Decomposition). Let X be a smooth projective
variety, a CKM decomposition of a divisor D is a birational modification µ : X ′ → X, together
with an effective Q-divisor N ′, such that

i) P ′ = µ∗D −N ′ is a nef divisor on X ′

ii) the natural maps

H0(X ′,OX′(µ
∗(mD − dmNe)))→ H0(X ′,OX′(µ

∗(mD)))

are bijective

Corollary 4. If a divisor D admits a CKM decomposition then volX(D) ∈ Q.

Proof. The volume is a birational invariant i.e. vol(D) = vol(µ∗D) , so the proof is similar
to proof of Corollary 2.

Remark 5. Cutkosky constructed examples of effective big divisors with irrational volume to
show that a CKM-Decomposition on a smooth projective variety does not exist in general.

4 Applications

Let again X be a smooth projective surface, D be a R-divisor, we define

Null(D) := {C|C is an irreducible curve with D · C = 0}

If D = P +N is its Zariski decomposition, then define

Neg(D) := {C|C is an irreducible component of N}

Denote by I(X) the set of all irreducible curves with negative self intersection. For C ∈ I(X)
define

C≥0 := {D ∈ NSR(X)|D · C ≥ 0}

and
C⊥ := {D ∈ NSR(X)|D · C = 0}

Lemma 4. The intersection of the nef cone Nef(X) and the big cone Big(X) is local poly-
hedral, i.e. for every R-divisor P ∈ Big(X) ∩ Nef(X) there exists an open neighborhood U
and curves C1, . . . , Cq ∈ I(X) such that

U ∩ V = U ∩ (C≥01 ∩ · · · ∩ C
≥
q )
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Theorem 3 (Variation of the Zariski decomposition). Let X be a smooth projective surface.
Then there is a locally finite decomposition of the big cone into rationally polyhedral subcones,
such that in each subcone the support of the negative part of the Zariski decomposition of the
divisors in the subcone is constant.

Idea of the proof of Theorem 3. For a nef divisor P we define the chamber of P to be

ΣP := {D ∈ Big(X)|Neg(D) = Null(P )}

Now one of the key observations is that Big(X) is the union of the sets ΣP , [BKS] lemma
1.4. The face of P is defined by

Face(P ) =
⋂

C∈Null(P )

C⊥ ∩Nef(X)

Let V ≥0(M) be the cone generated by the subset M ⊂ NS(X)R. By proposition 1.8 [BKS]
we can extend the local polyhedral property of the face to the chamber ΣP via

Big(X) ∩ ΣP = (Big(X) ∩ Face(P )) + V ≥0(Null(P ))

since by Lemma 4 Big(X) ∩ Face(P ) is local polyhedral. By definition of ΣP , the support
of the negative part of the Zariski decomposition is constant on ΣP , so it remains to show
that this decomposition is locally finite. This follows from the lemma 4 below, since every
big divisor has an open neighborhood in Big(X) in the form of D + Amp(X) for some big
divisor D, and so only finitely many chambers ΣP can meet the neighborhood .

Example 4. Take again the the projective space P2 blown up at two points P1 and P2, in this
case we have curves with negative self intersection, two exceptional divisors E1, E2 and the
strict transform L of the line through P1 and P2 i.e. h−E1−E2. The intersection matrix of
{L,E1, E2} is −1 1 1

1 −1 0
1 0 −1


For an effective divisor D = aL+ bE1 + cE2 there are five possibilities for the Zariski decom-
position

D =



(aL+ bE1 + cE2) + 0 if a ≥ b, a ≥ c, b+ c ≥ a
(aL+ bE1 + cE2) + ((b− a)E1 + (c− a)E2) if a ≤ b, a ≤ c
(aL+ bE1 + cE2) + (b− a)E1 if c ≤ a ≤ b
(aL+ bE1 + cE2) + (c− a)E2 if b ≤ a ≤ c
((b+ c)L+ bE1 + cE2)) + (a− b− c)L if b+ c ≤ a

where the positive part has been written first. The hyperplanes corresponding to L, E1 and
E2 decompose the big cone into 5 parts on each of which the support of the negative part of
Zariski decomposition remains constant (look at the list above) and so determine the chamber
structure. In the picture below A is an arbitrary ample divisor, P , Q1 and Q2 are big and
nef divisors in the nef boundary which are in the relative interiors of the indicated faces, such
that the decomposition can be represented by the corresponding chambers ΣA,ΣP ,ΣQ1 ,ΣQ2

and ΣL.
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Lemma 5. If D is a big R-divisor and A is an ample R-divisor, then

Neg(D + λA) ⊂ Neg(D)

for all λ ≥ 0

Proof. Take ε0 > 0 from the proposition below, if λ ≤ ε0, then the statement follows from
the proposition below. If λ > ε0, then there exists a n ∈ N such that λ ≤ nε0. Then
D + λA = D + ε0A+ (λ− ε0)A. The statement is true for D + ε0A(which is also big) so the
proof can done by induction.

Proposition 2. Let D be a big divisor with Zariski decomposition D = P+N and A an ample
divisor, such that N =

∑r
i=1 aiCi where Ci are integral curves, then there exists a positive

number ε0 > 0 and affine-linear functions f1, . . . , fr : R→ R, such that for all 0 ≤ ε ≤ ε0 the
Zariski decomposition of D + εA is

P + εA+

r∑
i=1

(ai − fi(ε))Ci︸ ︷︷ ︸
positive part

+

r∑
i=1

fi(ε)Ci

Proof. Let

P ′ = P + εA+
r∑

i=1

(ai − xi)Ci

then D + εA has the Zariski decomposition

P ′︸︷︷︸
positive part

+

r∑
i=1

xiCi

if

i) 0 ≤ xi ≤ ai for all i

ii) P ′ · Ci = 0 for all i
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Let us explain this. First we should check that i) and ii) imply that P ′ is the positive part of
the Zariski decomposition: Since P + εA is ample ii) implies that P ′ is nef, N ′ =

∑r
i=1 xiCi

is effective by i) and has by definition negative definite intersection matrix or is trivial. Now
we will investigate, when conditions i) and ii) are satisfied. Let S be the intersection matrix
of N , then P ′ · Ci = 0 for all i is equivalent to

S ·

x1...
xr

 = ε

AC1
...

ACr

+

NC1
...

NCr


Since S is negative definite, the system has a unique solutionx1...

xr

 = εS−1

AC1
...

ACr

+

a1...
ar


Therefore the xi can be understood as affine linear functions fi of ε. On the other hand, S
has only positive or zero entries besides the diagonal ones, this forces all entries of S−1 to be
negative or zero [BKS] theorem 4.1. Thus every fi is in the form of fi(ε) = −bε + ai with
b ∈ R≥0. Condition i) will be satisfied if we take ε0 to be the smallest zero of the fi‘s, this
was to show!

Corollary 5 (Continuity of the Zariski decomposition). If (Dn) is a sequence of big divisors
converging in NSR(X) to a big divisor D, Dn = Pn+Nn and D = P+N are the corresponding
Zariski decompositions, then (Pn) will converge to P and (Nn) to N .

Proof. [BKS] proposition 1.14.

5 Appendix

5.1 Blowing up projective surfaces at a point

We discuss the basic properties of blow ups of points in the case of non singular projective
surfaces.

Theorem 4. Let X be a projective smooth surface. If X ′ is the blow up of X at some point
p ∈ X, then there is a morphism of varieties π : X ′ → X such that X ′− π−1({p}) ∼= X −{p}
and π−1({p}) ∼= P1. The exceptional divisor E corresponding to π−1({p}) has self intersection
number -1. The canonical map π∗ : Pic(X)→ Pic(X ′) and Z→ Pic(X ′), n→ En determine
the intersection theory of X ′ by the following rules:

• Pic(X ′) ∼= Pic(X)× Z

• E2 = −1

• π∗(C) · π∗(D) = C ·D for C,D ∈ Pic(X)

• π∗(C) · E = 0 for C ∈ Pic(X)
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• Let π∗ : Pic(X ′) → Pic(X) denote the canonical map, then for C ∈ Pic(X) and
D ∈ Pic(X ′) we have

C · π∗(D) = π∗(C) ·D

Proof. See proposition 3.2 in [Har].

PE

5.2 The Riemann-Roch Theorem

In this section we discuss two Riemann-Roch type theorems.

Theorem 5 (Asymptotic Riemann-Roch Theorem). Let D be a nef divisor on a smooth
projective variety of dimension m. Then

h0(X,O(nD)) =
Dm

m!
· nm +O(nm−1)

Proof. See for example Lazarsfeld, [PAG], p. 69

Theorem 6 (Riemann-Roch theorem for surfaces). Let X be a smooth projective surface, D
an effective divisor and KX the canonical divisor, then

h0(X.OX(mD))−h1(X.OX(mD))+h2(X.OX(mD)) =
1

2
D ·Dm2−D ·Km+χ(X,OX(mD))

Proof. See theorem 1.6 on p. 363 [Har], note that pa = χ(OX)− 1.
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