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ABSTRACT. These are the notes for my talk about the Nakayama-Zariski decom-
position. Everything is contained in [Nak04].
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1. ASYMPTOTIC ORDER OF VANISHING

In this section, let X be a smooth projective complex variety and let Γ ⊂ X be a
prime divisor.

A divisor B on X is a divisor with coefficients in R. We write B ≥ 0 for an
effective divisor. Numerical equivalence of divisors is denoted by ≡num. Linear
equivalence over K = Q, R is denoted by ∼K. The coefficient of Γ in B is denoted
by multΓ(B). The coefficient of B in a general element of a non-empty linear system
|V| is denoted by multΓ|V|. The big cone of X is denoted by Big(X). Its closure
PE(X) = Big(X) is the pseudoeffective cone.

Definition 1.1. Let B be a big divisor on X. The asymptotic order of vanishing of B
along Γ is

σΓ(B) = in f {multΓ(B′) : B′ ≥ 0 and B′ ≡num B}.

Proposition 1.2. Let B, Bi be big divisors on X, and c ∈ R>0. Then the following
statements hold true:

(1) σΓ(c · B) = c · σΓ(B) ∀c ∈ R>0 (homogeneity)
(2) σΓ(B1 + B2) ≤ σΓ(B1) + σΓ(B2) (subadditivity)
(3) σΓ(A) = 0 for any ample divisor A on X. In particular σΓ(B + A) ≤ σΓ(B).
(4) σΓ : Big(X)→ R≥0 is a continuous function, where Big(X) is the big cone.

Proof. The statements 1 and 2 are easy. 3 follows from the fact that an ample in-
tegral divisor is basepoint-free and an ample divisor is a linear combination with
positive coefficients of ample integral divisors.

In order to prove 4 we choose an ample divisor A on X. There exists a δ > 0
such that B − δA ∼R N ≥ 0 for some effective divisor N. This implies that for
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ε > 0,

σΓ(B) ≤ (1 + ε)σΓ(B)

= σΓ(B + εB)

= σΓ(B + εδA + εN)

≤ σΓ(B + εδA) + ε ·multΓ(N)

≤ σΓ(B) + ε ·multΓ(N)

Consequently, σΓ(B) = limε→0,ε>0 σΓ(B + εA). In a similar vein one can show
that σΓ(B) = limε→0,ε<0 σΓ(B + εA). The continuity is now an easy consequence
of 3. �

Corollary 1.3. Let B be a big integral divisor. Then

σΓ(B) = lim
m→∞

1
m

multΓ|mB|

where m runs over all integers such that |mB| is a non-empty linear system.

Sketch of proof. The right hand side exists and equals

σΓ(B)Q := in f {multΓB′ : B’ Q-divisor, B′ ≥ 0, B′ ∼Q B}.
Let σΓ(B)R be defined similarly, only replacing Q-divisors and linear equivalence
over Q by divisors and linear equivalence over R. Then σΓ(B)Q = σΓ(B)R holds
true, since the rational points of a rational polyhedron in a finite dimensional real
vector space defined over Q form a dense subset of the polyhedron.

It remains to show that σΓ(B) = σΓ(B)R. The inequality σΓ(B) ≤ σΓ(B)R holds
since linear equivalence implies numerical equivalence. In order to show the re-
verse inequality, we remark that the proof of Proposition 1.2 also applies to σΓ(B)R.
In particular, σΓ(B)R = limε→0σΓ(B+ εA)R for some ample divisor A. Thus it suf-
fices to show that σΓ(B) ≥ σΓ(B + εA)R for an arbitrary ample divisor A. This last
assertion is true since ampleness is a numerical property. �

Corollary 1.4. Suppose that X is a surface. Let B = P + N be the Zariski-decomposition
of a big divisor. Then σΓ(B) = multΓ(N).

Proof. By continuity of the Zariski-decomposition and 1.2.4 we may assume that
B is a rational divisor. By homogeneity of the Zariski-decomposition and 1.2.2 we
may assume that all involved divisors are integral. Recall that the positive part of
the Zariski-decomposition carries all sections, i.e., |mB| = |mP|+ mN for m ∈ N.
The nefness of P and 1.2.4 imply that σΓ(P) = 0. The corollary follows with

σΓ(B) = lim
m→∞

1
m

multΓ|mB|

= lim
m→∞

1
m
(
multΓ(|mP|)

)
+ multΓN

= σΓ(P) + multΓN
= multΓN.

�

Proposition 1.5. Let A be an ample divisor on X. Then the asymptotic order of vanishing
σΓ : Big(X)→ R≥0 extends to the pseudoeffective cone PE(X) by

σΓ(D) := lim
ε→0,ε>0

σΓ(D + εA), D ∈ PE(X).
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The function σΓ : PE(X)→ R≥0 does not depend on the choice of A.

Remark 1.6. The function σΓ : PE(X)→ R≥0 is not necessarily continuous.

Proof. By 1.2.3 the limit exists in [0, ∞]. By Lemma 1.7, D + εA− σΓ(D + εA) · Γ is
big. As a consequence,

(D + εA− σΓ(D + εA) · Γ) · An−1 ≥ 0

and

σΓ(D + εA) ≤ (D + εA) · An−1

Γ · An−1 ≤ C < ∞

is bounded for ε→ 0.
Let A′ be another ample divisor. Then A − δA′ is ample for some δ > 0 and

σΓ(D + εA) ≤ σΓ(D + εδA′). Consequently, limε→0 σΓ(D + εA) ≤ limε→0 σΓ(D +
εA′) and the reverse inequality holds by symmetry. �

Lemma 1.7. Let B be a big divisor and let Γi be finitely many pairwise distinct prime
divisors. Then B−∑i σΓi (B) · Γi is also big.

Proof. There exist an ample divisor A and an effective divisor E ≥ 0 such that
B ∼R A + E. We calculate σΓi (B) ≤ σΓi (A) + σΓi (E) ≤ multΓi (E). Thus B −
∑i σΓi (B) · Γi ∼R A + (E−∑i σΓi (B) · Γ) is big. �

Proposition 1.8. Let D ∈ PE(X) be a pseudoeffective divisor on X. Then there exist
only finitely many prime divisors Γ ⊂ X such that σΓ(D) > 0.

Proof. Choose an ample divisor A. If σΓ(D) > 0, then σΓ(D + εA) > 0 for all
sufficiently small ε > 0. In particular, it suffices to show that for any big divisor
B there exist at most ρ(X) prime divisors Γ such that σΓ(B) > 0. This can be seen
as follows: Let Γi, 1 ≤ i ≤ p, be finitely many pairwise distinct prime divisors
such that σΓi (B) > 0. By Lemma 1.7, B− ∑i xiΓi is big for 0 < xi < σΓi (B). The
definition of σΓj immediately implies that

σΓj(B−∑
i

xiΓi) = σΓj(B)− xj.

Since σΓj is a numerical invariant, the prime divisors Γi are linearly independent
in the Neron-Severi-space. Thus the number of prime divisors Γi is bounded by
the Picard number, i.e., p ≤ ρ(X). �

Definition 1.9. The Nakayama-Zariski decomposition of a pseudoeffective divisor
D ∈ PE(X) is given as

D = Nσ(D) + Pσ(D)

where Nσ(D) = ∑Γ σΓ(D) · Γ and Pσ(D) = D − Nσ(D). Nσ(D) (resp. Pσ(D)) is
called the negative part (resp., the positive part).

2. THE MAIN THEOREM

The aim of this section is to give an overview over the proof of the following
result.

Theorem 2.1. Let X be a smooth projective variety and let D ∈ PE(X) be a pseudoeffec-
tive divisor. Suppose that D 6≡num 0 and that Nσ(D) = 0. Then there exists an ample
integral divisor A and a constant β > 0 such that for all m� 0,

h0(X, OX(bmDc+ A)) ≥ β ·m

In the remainder of this section we prove Theorem 2.1. Let X be a smooth
projective variety.
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Lemma 2.2 ([Nak04], Ch. 6). Let ∆ be an effective divisor on X, L ∈ Pic(X) and let
S ⊂ X be either a point or a smooth curve. Suppose that

• (X, ∆) is log terminal along S, and
• Let ρS : BlS(X) → X be the blowing-up along S with exceptional divisor EX ⊂

BlS(X). Then ρ∗S(L− (KX + ∆))− (n− dim(S))ES is ample.
Then the restriction map H0(X, L)→ H0(S, L|S) is surjective.

Recall that the stable base locus of a Q-divisor B is the closed subset in X defined
by

B(B) =
⋂

B′≥0
B′∼QB

Supp(B′).

Definition 2.3. The restricted base locus of a pseudoeffective divisor D ∈ PE(X) is

B−(D) =
⋃

A ample
D+A Q-div.

B(D + A)

Notation 2.4. For any point x ∈ X, let ρx : Bx(X)→ X be the blowing-up of x ∈ X
with exceptional divisor Ex ⊂ Bx(X). For any pseudoeffective divisor D ∈ PE(X),
let

σx(D) = σEx (ρ
∗
x(D)).

Proposition 2.5. Let D ∈ PE(X) be a pseudoeffective divisor on X. Then B−(D) =
{x ∈ X : σx(D) > 0}.
Proof. For simplicity, assume that D is a Q-divisor.

Suppose that x /∈ B−(D), and let A be an ample Q-divisor. Then x /∈ B(D + A)
so that σx(D + A) = 0. Let A′ be an ample divisor on Bx(X). Then

(
ρ∗x(D) + A′

)
−

ρ∗x(D+ ε · A) is ample for sufficiently small ε > 0. In particular, σEx (ρ
∗
x(D)+ A′) ≤

σEx (ρ
∗
x(D + εA)) = 0 vanishes. Consequently, σx(D) = 0.

Suppose conversely that σx(D) = 0 and let A be an ample Q-divisor. Then

ρx((m− 1)A− KX)− n · Ex

is an ample divisor on Bx(X) for some sufficiently divisible m � 0. In order to
prove that x /∈ B(D + A) it suffices by Lemma 2.2 to show the existence of an
effective divisor ∆ on X satisfying

• (X, ∆) is log terminal at x ∈ X,
• (m− 1)A− KX ≡num m(D + A)− (KX + ∆).

The second condition is equivalent to ∆ ≡ mD + A. The existence of such a ∆ is
due to σx(mD + A) = 0. �

Corollary 2.6. Under the assumptions of Theorem 2.1, B−(D) is a countable union of
closed subvarieties in X of codimension at least 2.

Proof. B−(D) is a countable union of closed subvarieties since in the definition of
B−(D) one can replace the union over all A by the union of a sequence of ample
divisors An converging to 0. If Γ ⊂ X is a prime divisor contained in B−(D), then
σx(D) > 0 for any point x ∈ X. As a consequence σΓ(D) > 0, which contradicts
the assumption Nσ(D) = 0. �

Proof of Theorem 2.1. For simplicity, assume that D is integral. If C ⊂ X is a curve
given by the intersection of very general hyperplane sections, then C ∩B−(D) =
∅ by Corollary 2.6. Further, (C · D) > 0 since D 6≡num 0. If A is a sufficiently
ample integral divisor, then

ρ∗C(A− KX)− (n− 1)EC
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is an ample divisor on the blowing-up BC(X) of X along C (with exceptional divi-
sor EC). In order to apply Lemma 2.2 we seek to write A− KX ∼Q (mD + 2A)−
(KX + ∆), where (X, ∆ ≥ 0) is log terminal along C ⊂ X. The first condition is
equivalent to ∆ ∼Q mD + A. The linear system |N(mD + 2A)| is basepoint-free
along C for some N � 0. In particular, any general member F ∈ |N(mD + 2A)|
meets C transversally. This implies that ∆ := 1

N F ∼Q mD + 2A is log terminal
along C and satisfies the condition of Lemma 2.2. In particular, the restriction map

H0(X, mD + 2A)→ H0(C, (mD + 2A)|C)
is surjective for m � 0. As h0(C, (mD + A)|C) grows like (C · D)m, the assertion
follows. �
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