ASYMPTOTIC INVARIANTS OF LINEAR SERIES

CLEMENS JÖRDER

Abstract

These are the notes for my talk about the Nakayama-Zariski decomposition. Everything is contained in (Nak04].

CONTENTS

1. Asymptotic order of vanishing 1
2. The main theorem 3
References 5

1. Asymptotic order of vanishing

In this section, let X be a smooth projective complex variety and let $\Gamma \subset X$ be a prime divisor.

A divisor B on X is a divisor with coefficients in \mathbb{R}. We write $B \geq 0$ for an effective divisor. Numerical equivalence of divisors is denoted by $\equiv_{n u m}$. Linear equivalence over $\mathbb{K}=\mathbb{Q}, \mathbb{R}$ is denoted by $\sim_{\mathbb{K}}$. The coefficient of Γ in B is denoted by $m u l t_{\Gamma}(B)$. The coefficient of B in a general element of a non-empty linear system $|V|$ is denoted by $m u l t_{\Gamma}|V|$. The big cone of X is denoted by $\operatorname{Big}(X)$. Its closure $P E(X)=\overline{\operatorname{Big}(X)}$ is the pseudoeffective cone.

Definition 1.1. Let B be a big divisor on X. The asymptotic order of vanishing of B along Γ is

$$
\sigma_{\Gamma}(B)=\inf \left\{\operatorname{mult}_{\Gamma}\left(B^{\prime}\right): B^{\prime} \geq 0 \text { and } B^{\prime} \equiv_{n u m} B\right\} .
$$

Proposition 1.2. Let B, B_{i} be big divisors on X, and $c \in \mathbb{R}_{>0}$. Then the following statements hold true:
(1) $\sigma_{\Gamma}(c \cdot B)=c \cdot \sigma_{\Gamma}(B) \forall c \in \mathbb{R}_{>0}$ (homogeneity)
(2) $\sigma_{\Gamma}\left(B_{1}+B_{2}\right) \leq \sigma_{\Gamma}\left(B_{1}\right)+\sigma_{\Gamma}\left(B_{2}\right)$ (subadditivity)
(3) $\sigma_{\Gamma}(A)=0$ for any ample divisor A on X. In particular $\sigma_{\Gamma}(B+A) \leq \sigma_{\Gamma}(B)$.
(4) $\sigma_{\Gamma}: \operatorname{Big}(X) \rightarrow \mathbb{R}_{\geq 0}$ is a continuous function, where $\operatorname{Big}(X)$ is the big cone.

Proof. The statements 1 and 2 are easy. 3 follows from the fact that an ample integral divisor is basepoint-free and an ample divisor is a linear combination with positive coefficients of ample integral divisors.

In order to prove 4 we choose an ample divisor A on X. There exists a $\delta>0$ such that $B-\delta A \sim_{\mathbb{R}} N \geq 0$ for some effective divisor N. This implies that for
$\epsilon>0$,

$$
\begin{aligned}
\sigma_{\Gamma}(B) & \leq(1+\epsilon) \sigma_{\Gamma}(B) \\
& =\sigma_{\Gamma}(B+\epsilon B) \\
& =\sigma_{\Gamma}(B+\epsilon \delta A+\epsilon N) \\
& \leq \sigma_{\Gamma}(B+\epsilon \delta A)+\epsilon \cdot \text { mult }_{\Gamma}(N) \\
& \leq \sigma_{\Gamma}(B)+\epsilon \cdot \text { mult }_{\Gamma}(N)
\end{aligned}
$$

Consequently, $\sigma_{\Gamma}(B)=\lim _{\epsilon \rightarrow 0, \epsilon>0} \sigma_{\Gamma}(B+\epsilon A)$. In a similar vein one can show that $\sigma_{\Gamma}(B)=\lim _{\epsilon \rightarrow 0, \epsilon<0} \sigma_{\Gamma}(B+\epsilon A)$. The continuity is now an easy consequence of 3 .
Corollary 1.3. Let B be a big integral divisor. Then

$$
\sigma_{\Gamma}(B)=\lim _{m \rightarrow \infty} \frac{1}{m} m u l t_{\Gamma}|m B|
$$

where m runs over all integers such that $|m B|$ is a non-empty linear system.
Sketch of proof. The right hand side exists and equals

$$
\sigma_{\Gamma}(B)_{\mathrm{Q}}:=\inf \left\{\operatorname{mult}_{\Gamma} B^{\prime}: \mathrm{B}^{\prime} \text { Q-divisor, } B^{\prime} \geq 0, B^{\prime} \sim_{\mathrm{Q}} B\right\}
$$

Let $\sigma_{\Gamma}(B)_{\mathbb{R}}$ be defined similarly, only replacing Q -divisors and linear equivalence over \mathbb{Q} by divisors and linear equivalence over \mathbb{R}. Then $\sigma_{\Gamma}(B)_{\mathbb{Q}}=\sigma_{\Gamma}(B)_{\mathbb{R}}$ holds true, since the rational points of a rational polyhedron in a finite dimensional real vector space defined over Q form a dense subset of the polyhedron.

It remains to show that $\sigma_{\Gamma}(B)=\sigma_{\Gamma}(B)_{\mathbb{R}}$. The inequality $\sigma_{\Gamma}(B) \leq \sigma_{\Gamma}(B)_{\mathbb{R}}$ holds since linear equivalence implies numerical equivalence. In order to show the reverse inequality, we remark that the proof of Proposition 1.2 also applies to $\sigma_{\Gamma}(B)_{\mathbb{R}}$. In particular, $\sigma_{\Gamma}(B)_{\mathbb{R}}=\lim _{\epsilon \rightarrow 0} \sigma_{\Gamma}(B+\epsilon A)_{\mathbb{R}}$ for some ample divisor A. Thus it suffices to show that $\sigma_{\Gamma}(B) \geq \sigma_{\Gamma}(B+\epsilon A)_{\mathbb{R}}$ for an arbitrary ample divisor A. This last assertion is true since ampleness is a numerical property.

Corollary 1.4. Suppose that X is a surface. Let $B=P+N$ be the Zariski-decomposition of a big divisor. Then $\sigma_{\Gamma}(B)=$ mult $_{\Gamma}(N)$.

Proof. By continuity of the Zariski-decomposition and 1.24 we may assume that B is a rational divisor. By homogeneity of the Zariski-decomposition and $1.2 \mid 2$ we may assume that all involved divisors are integral. Recall that the positive part of the Zariski-decomposition carries all sections, i.e., $|m B|=|m P|+m N$ for $m \in \mathbb{N}$. The nefness of P and 1.24 imply that $\sigma_{\Gamma}(P)=0$. The corollary follows with

$$
\begin{aligned}
\sigma_{\Gamma}(B) & =\lim _{m \rightarrow \infty} \frac{1}{m} \text { mult }_{\Gamma}|m B| \\
& =\lim _{m \rightarrow \infty} \frac{1}{m}\left(\text { mult }_{\Gamma}(|m P|)\right)+\text { mult }_{\Gamma} N \\
& =\sigma_{\Gamma}(P)+\text { mult }_{\Gamma} N \\
& =\text { mult }_{\Gamma} N .
\end{aligned}
$$

Proposition 1.5. Let A be an ample divisor on X. Then the asymptotic order of vanishing $\sigma_{\Gamma}: \operatorname{Big}(X) \rightarrow \mathbb{R}_{\geq 0}$ extends to the pseudoeffective cone $\operatorname{PE}(X)$ by

$$
\sigma_{\Gamma}(D):=\lim _{\epsilon \rightarrow 0, \epsilon>0} \sigma_{\Gamma}(D+\epsilon A), \quad D \in P E(X) .
$$

The function $\sigma_{\Gamma}: P E(X) \rightarrow \mathbb{R}_{\geq 0}$ does not depend on the choice of A.
Remark 1.6. The function $\sigma_{\Gamma}: P E(X) \rightarrow \mathbb{R}_{\geq 0}$ is not necessarily continuous.
Proof. By 1.23 the limit exists in $[0, \infty]$. By Lemma 1.7 , $D+\epsilon A-\sigma_{\Gamma}(D+\epsilon A) \cdot \Gamma$ is big. As a consequence,

$$
\left(D+\epsilon A-\sigma_{\Gamma}(D+\epsilon A) \cdot \Gamma\right) \cdot A^{n-1} \geq 0
$$

and

$$
\sigma_{\Gamma}(D+\epsilon A) \leq \frac{(D+\epsilon A) \cdot A^{n-1}}{\Gamma \cdot A^{n-1}} \leq C<\infty
$$

is bounded for $\epsilon \rightarrow 0$.
Let A^{\prime} be another ample divisor. Then $A-\delta A^{\prime}$ is ample for some $\delta>0$ and $\sigma_{\Gamma}(D+\epsilon A) \leq \sigma_{\Gamma}\left(D+\epsilon \delta A^{\prime}\right)$. Consequently, $\lim _{\epsilon \rightarrow 0} \sigma_{\Gamma}(D+\epsilon A) \leq \lim _{\epsilon \rightarrow 0} \sigma_{\Gamma}(D+$ ϵA^{\prime}) and the reverse inequality holds by symmetry.

Lemma 1.7. Let B be a big divisor and let Γ_{i} be finitely many pairwise distinct prime divisors. Then $B-\sum_{i} \sigma_{\Gamma_{i}}(B) \cdot \Gamma_{i}$ is also big.

Proof. There exist an ample divisor A and an effective divisor $E \geq 0$ such that $B \sim_{\mathbb{R}} A+E$. We calculate $\sigma_{\Gamma_{i}}(B) \leq \sigma_{\Gamma_{i}}(A)+\sigma_{\Gamma_{i}}(E) \leq m u l t_{\Gamma_{i}}(E)$. Thus $B-$ $\sum_{i} \sigma_{\Gamma_{i}}(B) \cdot \Gamma_{i} \sim_{\mathbb{R}} A+\left(E-\sum_{i} \sigma_{\Gamma_{i}}(B) \cdot \Gamma\right)$ is big.
Proposition 1.8. Let $D \in P E(X)$ be a pseudoeffective divisor on X. Then there exist only finitely many prime divisors $\Gamma \subset X$ such that $\sigma_{\Gamma}(D)>0$.

Proof. Choose an ample divisor A. If $\sigma_{\Gamma}(D)>0$, then $\sigma_{\Gamma}(D+\epsilon A)>0$ for all sufficiently small $\epsilon>0$. In particular, it suffices to show that for any big divisor B there exist at most $\rho(X)$ prime divisors Γ such that $\sigma_{\Gamma}(B)>0$. This can be seen as follows: Let $\Gamma_{i}, 1 \leq i \leq p$, be finitely many pairwise distinct prime divisors such that $\sigma_{\Gamma_{i}}(B)>0$. By Lemma 1.7, $B-\sum_{i} x_{i} \Gamma_{i}$ is big for $0<x_{i}<\sigma_{\Gamma_{i}}(B)$. The definition of $\sigma_{\Gamma_{j}}$ immediately implies that

$$
\sigma_{\Gamma_{j}}\left(B-\sum_{i} x_{i} \Gamma_{i}\right)=\sigma_{\Gamma_{j}}(B)-x_{j} .
$$

Since $\sigma_{\Gamma_{j}}$ is a numerical invariant, the prime divisors Γ_{i} are linearly independent in the Neron-Severi-space. Thus the number of prime divisors Γ_{i} is bounded by the Picard number, i.e., $p \leq \rho(X)$.

Definition 1.9. The Nakayama-Zariski decomposition of a pseudoeffective divisor $D \in P E(X)$ is given as

$$
D=N_{\sigma}(D)+P_{\sigma}(D)
$$

where $N_{\sigma}(D)=\sum_{\Gamma} \sigma_{\Gamma}(D) \cdot \Gamma$ and $P_{\sigma}(D)=D-N_{\sigma}(D) . N_{\sigma}(D)\left(r e s p . P_{\sigma}(D)\right)$ is called the negative part (resp., the positive part).

2. THE MAIN THEOREM

The aim of this section is to give an overview over the proof of the following result.

Theorem 2.1. Let X be a smooth projective variety and let $D \in P E(X)$ be a pseudoeffective divisor. Suppose that $D \not \equiv_{n u m} 0$ and that $N_{\sigma}(D)=0$. Then there exists an ample integral divisor A and a constant $\beta>0$ such that for all $m \gg 0$,

$$
h^{0}\left(X, \mathscr{O}_{X}(\lfloor m D\rfloor+A)\right) \geq \beta \cdot m
$$

In the remainder of this section we prove Theorem 2.1. Let X be a smooth projective variety.

Lemma 2.2 ([Nak04], Ch. 6). Let Δ be an effective divisor on $X, L \in \operatorname{Pic}(X)$ and let $S \subset X$ be either a point or a smooth curve. Suppose that

- (X, Δ) is log terminal along S, and
- Let $\rho_{S}: B l_{S}(X) \rightarrow X$ be the blowing-up along S with exceptional divisor $E_{X} \subset$ $B l_{S}(X)$. Then $\rho_{S}^{*}\left(L-\left(K_{X}+\Delta\right)\right)-(n-\operatorname{dim}(S)) E_{S}$ is ample.
Then the restriction map $H^{0}(X, L) \rightarrow H^{0}\left(S,\left.L\right|_{S}\right)$ is surjective.
Recall that the stable base locus of a Q-divisor B is the closed subset in X defined by

$$
\mathbb{B}(B)=\bigcap_{\substack{B^{\prime} \geq 0 \\ B^{\prime} \sim Q^{B}}} \operatorname{Supp}\left(B^{\prime}\right)
$$

Definition 2.3. The restricted base locus of a pseudoeffective divisor $D \in P E(X)$ is

$$
\mathbb{B}_{-}(D)=\bigcup_{\substack{\text { Aample } \\ D+A \text { Q-div. }}} \mathbb{B}(D+A)
$$

Notation 2.4. For any point $x \in X$, let $\rho_{x}: B_{x}(X) \rightarrow X$ be the blowing-up of $x \in X$ with exceptional divisor $E_{x} \subset B_{x}(X)$. For any pseudoeffective divisor $D \in P E(X)$, let

$$
\sigma_{x}(D)=\sigma_{E_{x}}\left(\rho_{x}^{*}(D)\right)
$$

Proposition 2.5. Let $D \in P E(X)$ be a pseudoeffective divisor on X. Then $\mathbb{B}_{-}(D)=$ $\left\{x \in X: \sigma_{x}(D)>0\right\}$.
Proof. For simplicity, assume that D is a Q-divisor.
Suppose that $x \notin \mathbb{B}_{-}(D)$, and let A be an ample \mathbb{Q}-divisor. Then $x \notin \mathbb{B}(D+A)$ so that $\sigma_{x}(D+A)=0$. Let A^{\prime} be an ample divisor on $B_{x}(X)$. Then $\left(\rho_{x}^{*}(D)+A^{\prime}\right)-$ $\rho_{x}^{*}(D+\epsilon \cdot A)$ is ample for sufficiently small $\epsilon>0$. In particular, $\sigma_{E_{x}}\left(\rho_{x}^{*}(D)+A^{\prime}\right) \leq$ $\sigma_{E_{x}}\left(\rho_{x}^{*}(D+\epsilon A)\right)=0$ vanishes. Consequently, $\sigma_{x}(D)=0$.

Suppose conversely that $\sigma_{x}(D)=0$ and let A be an ample Q-divisor. Then

$$
\rho_{x}\left((m-1) A-K_{X}\right)-n \cdot E_{x}
$$

is an ample divisor on $B_{x}(X)$ for some sufficiently divisible $m \gg 0$. In order to prove that $x \notin \mathbb{B}(D+A)$ it suffices by Lemma 2.2 to show the existence of an effective divisor Δ on X satisfying

- (X, Δ) is log terminal at $x \in X$,
- $(m-1) A-K_{X} \equiv_{\text {nит }} m(D+A)-\left(K_{X}+\Delta\right)$.

The second condition is equivalent to $\Delta \equiv m D+A$. The existence of such a Δ is due to $\sigma_{x}(m D+A)=0$.

Corollary 2.6. Under the assumptions of Theorem 2.1. $\mathbb{B}_{-}(D)$ is a countable union of closed subvarieties in X of codimension at least 2.
Proof. $\mathbb{B}_{-}(D)$ is a countable union of closed subvarieties since in the definition of $\mathbb{B}_{-}(D)$ one can replace the union over all A by the union of a sequence of ample divisors A_{n} converging to 0 . If $\Gamma \subset X$ is a prime divisor contained in $\mathbb{B}_{-}(D)$, then $\sigma_{x}(D)>0$ for any point $x \in X$. As a consequence $\sigma_{\Gamma}(D)>0$, which contradicts the assumption $N_{\sigma}(D)=0$.
Proof of Theorem 2.1 For simplicity, assume that D is integral. If $C \subset X$ is a curve given by the intersection of very general hyperplane sections, then $C \cap \mathbb{B}_{-}(D)=$ \varnothing by Corollary 2.6. Further, $(C \cdot D)>0$ since $D \not \equiv_{n u m} 0$. If A is a sufficiently ample integral divisor, then

$$
\rho_{C}^{*}\left(A-K_{X}\right)-(n-1) E_{C}
$$

is an ample divisor on the blowing-up $B_{C}(X)$ of X along C (with exceptional divisor E_{C}). In order to apply Lemma 2.2 we seek to write $A-K_{X} \sim_{Q}(m D+2 A)-$ $\left(K_{X}+\Delta\right)$, where $(X, \Delta \geq 0)$ is log terminal along $C \subset X$. The first condition is equivalent to $\Delta \sim_{Q} m D+A$. The linear system $|N(m D+2 A)|$ is basepoint-free along C for some $N \gg 0$. In particular, any general member $F \in|N(m D+2 A)|$ meets C transversally. This implies that $\Delta:=\frac{1}{N} F \sim_{\mathrm{Q}} m D+2 A$ is \log terminal along C and satisfies the condition of Lemma 2.2 In particular, the restriction map

$$
H^{0}(X, m D+2 A) \rightarrow H^{0}\left(\bar{C},\left.(m D+2 A)\right|_{C}\right)
$$

is surjective for $m \gg 0$. As $h^{0}\left(C,\left.(m D+A)\right|_{C}\right)$ grows like $(C \cdot D) m$, the assertion follows.

References

[Nak04] N. NAKAYAMA: Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. 2104208 (2005h:14015)

Clemens Jörder, Mathematisches Institut, Albert-Ludwigs-Universitt Freiburg, Eckerstrasse 1, 79104 Freiburg im Breisgau, Germany

E-mail address: clemens.joerder@math.uni-freiburg.de

