1 Introduction

1.1 Motivation

Our goal is to understand Lazić’s proof of the following theorem.

Theorem 1.1. Let X be a smooth projective variety. Then the canonical ring

$$R(X, K_X) := \bigoplus_{m\geq 0} H^0(X, \mathcal{O}_X(mK_X))$$

is a finitely generated \mathbb{C}-algebra (“is finitely generated”, for short).

We want to give some reasons why this is an interesting result.

- When classifying projective varieties, one looks for a natural embedding in projective space. Such an embedding exists whenever we have a variety whose canonical divisor is ample. So we ask, given a variety X, is X birational to a variety with ample canonical divisor? For this to hold, X needs to be of general type, meaning that K_X is big. Conversely, given a smooth projective variety X of general type with finitely generated canonical ring, we can consider the variety

$$X_{\text{can}} := \text{Proj } R(X, K_X),$$

called the *canonical model* of X. One can show that X_{can} is a normal variety with canonical singularities which is birational to X and whose canonical divisor $K_{X_{\text{can}}}$ is ample. It is also possible to describe explicitly a birational map $X \dashrightarrow X_{\text{can}}$: Choose a positive integer r such that the r-th Veronese subring $R(X, rK_X)$ is generated by $H^0(X, rK_X)$. Then the complete linear system $|rK_X|$ defines a rational map

$$X \dashrightarrow \mathbb{P}(H^0(X, rK_X)^*)$$

which is birational onto its image, and the image is precisely X_{can}.

- For any variety, the canonical ring is one of two rings naturally attached to it (the Cox ring is the other). Therefore it is natural to ask about its properties.

- In the minimal model program, when one encounters a contraction $f : X \rightarrow Y$ whose exceptional locus has codimension ≥ 2, it is not possible to contract further because Y is too singular (K_Y is not \mathbb{Q}-Cartier). Instead, one would like to replace f by its *flip*, which is a variety X^+ together with a morphism $f^+ : X^+ \rightarrow Y$ such that K_{X^+} is f^+-ample. The existence of flips was a big problem in minimal model
theory, but it is easy to see that it is equivalent to the finite generation of the relative canonical ring

\[\bigoplus_{m \geq 0} f_* \mathcal{O}_X(mK_X), \]

which in turn follows from Theorem 1.1.

1.2 Main statement

In fact, Lazić proves a theorem slightly different from Theorem 1.1:

Theorem A. Let \(X \) be a smooth projective variety of dimension \(n \). Let \(B_1, \ldots, B_k \) be \(\mathbb{Q} \)-divisors on \(X \) such that \([B_i] = 0 \) for all \(i \), and such that the support of \(\sum_{i=1}^k B_i \) has simple normal crossings. Let \(A \) be an ample \(\mathbb{Q} \)-divisor on \(X \), and denote \(D_i = K_X + A + B_i \) for every \(i \).

Then the adjoint ring

\[R(X; D_1, \ldots, D_k) = \bigoplus_{(m_1, \ldots, m_k) \in \mathbb{N}^k} H^0(X, \mathcal{O}_X([\sum m_i D_i])) \]

is finitely generated.

Let us indicate briefly how to deduce Theorem 1.1 from Theorem A. If \(X \) is a smooth projective variety with \(\kappa(X, K_X) \geq 0 \), we have the Iitaka fibration

\[X - \varphi_{[mK_X]} \rightarrow \mathbb{P}(H^0(X, mK_X)^*) \]

\[\downarrow \]

\[Y \]

defined by the sections of a suitable multiple of \(K_X \). Now Fujino and Mori have shown that there exists an effective divisor \(\Delta \) on \(Y \) such that \((Y, \Delta)\) is klt and \(R(X, K_X) \) and \(R(Y, K_Y + \Delta) \) have isomorphic Veronese subrings. So the former is finitely generated if and only if the latter is. But note that

\[\kappa(Y, K_Y + \Delta) = \kappa(X, K_X) = \dim Y, \]

which means that \(K_Y + \Delta \) is big. Thus we may write \(K_Y + \Delta \sim_{\mathbb{Q}} A + B \) with \(A \) ample and \(B \geq 0 \). For sufficiently small rational \(\varepsilon > 0 \), set \(\Delta' = \varepsilon A + (\Delta + \varepsilon B) \). Then \(K_Y + \Delta' \sim_{\mathbb{Q}} (1 + \varepsilon)(K_Y + \Delta) \), so \(R(Y, K_Y + \Delta) \) and \(R(Y, K_Y + \Delta') \) have isomorphic Veronese subrings, hence it suffices to prove that \(R(Y, K_Y + \Delta') \) is finitely generated. Since \((Y, \Delta')\) is klt, this follows from the \(k = 1 \) case of Theorem A (after passing to a log resolution).
1.3 Some definitions

Before we can give an outline of the proof of Theorem A, we need some definitions.

Definition 1.2. Let \((X, S + \sum_{i=1}^{p} S_i)\) be a log smooth projective pair, where \(S\) and all \(S_i\) are distinct prime divisors, let \(V = \sum_{i=1}^{p} \mathbb{R}S_i \subseteq \text{Div}_\mathbb{R}(X)\), and let \(A\) be a \(\mathbb{Q}\)-divisor on \(X\). We define

\[
L(V) = \{ B = \sum b_i S_i \in V \mid 0 \leq b_i \leq 1 \text{ for all } i\},
\]
\[
E_A(V) = \{ B \in L(V) \mid |K_X + A + B|_\mathbb{R} \neq \emptyset\},
\]
\[
B^S_A(V) = \{ B \in L(V) \mid S \not\subseteq B(K_X + S + A + B)\}.
\]

These definitions are best remembered by noting that:

- \(L(V)\) is defined by the condition that a certain pair is log canonical,
- \(E_A(V)\) by the condition that a certain divisor is effective, and
- \(B^S_A(V)\) by the condition that a certain stable base locus does not contain \(S\).

Also note that in the definition of \(B^S_A(V)\), one considers \(K_X + S + A + B\) instead of \(K_X + A + B\) because one would like to apply the adjunction formula. For example, if \(B \in B^S_A(V)\) then \(B|_S \in E_{A|_S}(W)\), where \(W = \sum_{i=1}^{p} \mathbb{R}S_i|_S \subseteq \text{Div}_\mathbb{R}(S)\).

It is clear that \(L(V)\) is a rational polytope (with respect to the canonical basis of \(V\)). Indeed, it is simply given by the “hypercube” \([0, 1]^p\). On the other hand, \(E_A(V)\) and \(B^S_A(V)\) are a priori only bounded convex sets. A precise analysis of their structure is one of the main ingredients to the proof.
1.4 Outline of the proof

The proof of Theorem A is by induction on the dimension of X. As part of the induction, the following theorems are additionally proven.

Theorem B. Let $(X, \sum_{i=1}^{p} S_i)$ be a log smooth projective pair of dimension n, where S_1, \ldots, S_p are distinct prime divisors. Let $V = \sum_{i=1}^{p} R S_i \subseteq \text{Div}_R(X)$, and let A be an ample \mathbb{Q}-divisor on X.

Then $E_A(V)$ is a rational polytope.

Theorem 1.3. Let $(X, S + \sum_{i=1}^{p} S_i)$ be a log smooth projective pair of dimension n, where S and all S_i are distinct prime divisors. Let $V = \sum_{i=1}^{p} R S_i \subseteq \text{Div}_R(X)$ and let A be an ample \mathbb{Q}-divisor on X. Then $B_A^S(V)$ is a rational polytope, and

$$B_A^S(V) = \{ B \in \mathcal{L}(V) \mid \sigma_S(K_X + S + A + B) = 0 \}.$$

The precise structure of the induction is the following.

- Theorems A_{n-1} and B_{n-1} imply Theorem 1.3 (see Section 3).
- Theorems A_{n-1}, B_{n-1} and 1.3 imply Theorem B_n (see Section 4).
- Theorems A_{n-1} and B_n imply Theorem A_n (see Section 5).

Here and elsewhere, “Theorem A_n” means “Theorem A in the case dim $X = n$”, and so on.

2 The lifting lemma

The following theorem, which is known as the “lifting lemma”, is crucial to the proof. It was originally proved by Hacon and McKernan. In a nutshell, it gives a sufficient condition for sections of an adjoint line bundle $K_S + \cdots$ on a divisor $S \subset X$ to be liftable to sections of $K_X + S + \cdots$. The condition says that the sections we would like to lift need to vanish along certain divisors (to certain orders).

Theorem 2.1. Let $(X, S + \sum_{i=1}^{p} S_i)$ be a log smooth projective pair, where S and all S_i are distinct prime divisors. Let $V = \sum_{i=1}^{p} R S_i \subseteq \text{Div}_R(X)$, and let $B \in \mathcal{L}(V)$ be a \mathbb{Q}-divisor such that $(S, B|_S)$ is canonical. Let A be an ample \mathbb{Q}-divisor on X and denote $\Delta = S + A + B$. Let $C \geq 0$ be a \mathbb{Q}-divisor on S, and let m be a positive integer such that mA, mB and mC are integral.

Assume that there exists a positive integer $q \gg 0$ such that qA is very ample, $S \not\subseteq Bs|qm(K_X + \Delta + \frac{1}{m} A)|$ and

$$C \leq \max \left\{ B|_S - \frac{1}{qm} \text{Fix}|qm(K_X + \Delta + \frac{1}{m} A)|_S, 0 \right\}.$$
\((The\ maximun\ is\ taken\ component-wise.\)\ Then
\[
|\text{m}(K_S + A|S + C)| + \text{m}(B|S - C) \leq |\text{m}(K_X + \Delta)|_S.
\]
In particular, if \(|\text{m}(K_S + A|S + C)| \neq \emptyset\), then \(|\text{m}(K_X + \Delta)|_S \neq \emptyset\), and
\[
\text{Fix} |\text{m}(K_S + A|S + C)| + \text{m}(B|S - C) \geq \text{Fix} |\text{m}(K_X + \Delta)|_S \geq m \text{Fix}_S(K_X + \Delta).
\]

The following is an immediate consequence of the lifting lemma. Here we see very clearly what is happening: If a divisor \(D \in |\text{m}(K_S + A|S + B|S)|\) is liftable to \(|\text{m}(K_X + S + A + B)|\), then \(D \geq \text{Fix} |\text{m}(K_X + S + A + B)|_S\) by definition. In particular, \(D \geq m(B|S - \Phi_m)\). The lifting lemma says this necessary condition is also sufficient.

Corollary 2.2. Let \((X, S + \sum_{i=1}^{p} S_i)\) be a log smooth projective pair, where \(S\) and all \(S_i\) are distinct prime divisors. Let \(V = \sum_{i=1}^{p} \mathbb{R}S_i \subseteq \text{Div}_\mathbb{R}(X)\) and let \(B \in \mathcal{L}(V)\) be a \(\mathbb{Q}\)-divisor such that \((S, B|S)\) is canonical. Let \(A\) be an ample \(\mathbb{Q}\)-divisor on \(X\) and denote \(\Delta = S + A + B\). Let \(m\) be a positive integer such that \(mA\) and \(mB\) are integral, and such that \(S \not\subseteq Bs|m(K_X + \Delta)|\). Denote \(\Phi_m = \max\{B|S - \frac{1}{m} \text{Fix} |m(K_X + \Delta)|_S, 0\}\).

Then
\[
|\text{m}(K_S + A|S + \Phi_m)| + m(B|S - \Phi_m) = |\text{m}(K_X + \Delta)|_S.
\]

3 Proof of Theorem \([1.3]_t\)

Let \(|| \cdot ||\) be any norm on \(\mathbb{R}^n\). In the applications, \(|| \cdot ||\) will mostly be the sup-norm. This has the advantage that a closed ball of rational radius around a rational point is a rational polytope.

The following result is a very simple example of Diophantine approximation.

Lemma 3.1. Let \(x \in \mathbb{R}^n\) be a point, and fix a real number \(\varepsilon > 0\). Then there are finitely many points \(x_i \in \mathbb{R}^n\) and positive integers \(k_i\) such that \(k_ix_i\) are integral, \(||x - x_i|| < \varepsilon/k_i\), and \(x\) is a convex combination of the \(x_i\).

The next lemma gives a criterion for a set to be a rational polytope.

Lemma 3.2. Let \(\mathcal{P} \subset \mathbb{R}^n\) be a bounded convex set. Then \(\mathcal{P}\) is a rational polytope if and only if there is a constant \(\varepsilon > 0\) such that for all \(w \in \mathcal{P}\), \(v \in \mathbb{Q}^n\), and \(\ell \in \mathbb{N}^+\) with \(\ell v\) integral and \(||v - w|| < \varepsilon/\ell\), we have \(v \in \mathcal{P}\).

Setup 3.3. Let \((X, S + \sum_{i=1}^{p} S_i)\) be a log smooth projective pair of dimension \(n\), where \(S\) and all \(S_i\) are distinct prime divisors. Let \(V = \sum_{i=1}^{p} \mathbb{R}S_i \subseteq \text{Div}_\mathbb{R}(X)\), let \(A\) be an ample \(\mathbb{Q}\)-divisor on \(X\), and let \(W \subseteq \text{Div}_\mathbb{R}(S)\) be the
subspace spanned by the components of $\sum S_i$. For \mathbb{Q}-divisors $E \in \mathcal{E}_{A|S}(W)$ and $B \in \mathcal{B}_S^A(V)$, let

$$F(E) = \text{Fix}(K_S + A|S + E) \quad \text{and} \quad F_S(B) = \text{Fix}_S(K_X + S + A + B).$$

Denote

$$\Phi_m(B) = \max \{ B|S - \frac{1}{m} \text{Fix} m(K_X + S + A + B)|S, 0 \}$$

for every sufficiently divisible positive integer m, and let

$$\Phi(B) = \max \{ B|S - F_S(B), 0 \}.$$

Note that $\Phi(B) = \limsup \Phi_m(B)$.

Theorem 3.4. Assume Theorem $[A_{n-1}]$ and Theorem $[B_{n-1}]$, and let the assumptions of Setup $[3.3]$ hold. Let G be a rational polytope contained in the interior of $\mathcal{L}(V)$, and assume that $(S,G|S)$ is terminal for every $G \in G$. Denote $\mathcal{P} = G \cap \mathcal{B}_S^A(V)$. Then:

1. \mathcal{P} is a rational polytope,
2. Φ extends to a rational piecewise affine function on \mathcal{P}, and there exists a positive integer ℓ such that $\Phi(P) = \Phi_m(P)$ for every $P \in \mathcal{P}$ and every positive integer m such that mP/ℓ is integral.

Corollary 3.5. Theorem $[A_{n-1}]$ and Theorem $[B_{n-1}]$ imply Theorem $[1.3]$.

4 Proof of Theorem $[B_n]$

Lemma 4.1. Let (X,B) be a log smooth projective pair, where B is a \mathbb{Q}-divisor such that $|B| = 0$, and let A be a nef and big \mathbb{Q}-divisor.

If $K_X + A + B$ is numerically equivalent to an effective \mathbb{R}-divisor, then it is also linearly equivalent to an effective \mathbb{Q}-divisor.

Sketch of proof. An application of Kawamata-Viehweg vanishing tells us that h^0 of certain divisors equals their Euler characteristic. Then use the fact that the Euler characteristic is a numerical invariant.

The next lemma is in some sense complementary to Lemma 4.1. Both lemmas put together say that if (X,Δ) is klt, Δ is big, and $K_X + \Delta$ is pseudoeffective, then $K_X + \Delta$ is (\mathbb{R}-linearly) effective.

Lemma 4.2. Assume Theorems A_{n-1} and B_{n-1}.

Let (X,B) be a log smooth projective pair, where B is an \mathbb{R}-divisor such that $|B| = 0$. Let A be an ample \mathbb{Q}-divisor on X, and assume that $K_X + A + B$ is a pseudo-effective divisor such that $K_X + A + B \neq N_\sigma(K_X + A + B)$.

Then there exists an \mathbb{R}-divisor $F \geq 0$ such that $K_X + A + B \sim_\mathbb{R} F$.

6
Proof. Set $\Delta = A + B$. By the assumption $K_X + \Delta \not\equiv N_\sigma(K_X + \Delta)$, there is a number $k \in \mathbb{N}^+$ such that kA is integral and

$$h^0(X, [m(K_X + \Delta)] + kA) \to \infty$$

as $m \to \infty$. In particular, we find an $m \in \mathbb{N}^+$ with

$$h^0(X, [mk(K_X + \Delta)] + kA) > \left(\frac{n + nk}{n}\right).$$

Since the right-hand side is the number of conditions that a given divisor has multiplicity $> nk$ at a certain point fixed in advance, we obtain an effective divisor $G \sim R mk(K_X + \Delta) + kA$ with $\text{mult}_x G > nk$, for some $x \notin \text{Supp} N_\sigma(K_X + \Delta)$.

Set $D := \frac{1}{mk}G$ and consider a log resolution $f : Y \to X$ of $(X, B + D)$ constructed by first blowing up x, giving an exceptional divisor $P \subset Y$. For any $0 \leq t \leq m$,

$$K_Y + C_t = f^*(K_X + B + tD) + E_t,$$

where C_t, E_t are effective and do not have any common components. Now define

$$B_t := \max\{C_t - N_\sigma(K_Y + f^*A_t + C_t), 0\},$$

where $A_t := \left(1 - \frac{t}{m}\right)A$. We make a few observations:

1) $N_\sigma(K_Y + f^*A_t + C_t) = \left(1 + t\right)N_\sigma(f^*(K_X + \Delta)) + E_t$, so B_t is continuous as a function of t.

2) $\min\{B_t, N_\sigma(K_Y + f^*A_t + B_t)\} = 0$.

3) $\lfloor B_0 \rfloor = 0$, but $\text{mult}_P B_m > 1$.

By 1) and 3), there is a minimal $0 < \lambda < m$ such that $\text{mult}_S B_\lambda = 1$ for some prime divisor S. Then by 2), $\sigma_S(K_Y + f^*A_\lambda + B_\lambda) = 0$. Now Theorem 1.3 told us that

$$S \notin \text{B}(K_Y + S + f^*A_\lambda + (B_\lambda - S)),$$

in particular,

$$K_Y + f^*A_\lambda + B_\lambda \sim R F' \geq 0$$

for some effective divisor F'. (Here we are actually cheating a little because f^*A_λ is not ample, as required in Theorem 1.3, but only big and nef. In reality one needs to subtract a small effective exceptional divisor from f^*A_λ to make things work.) The latter linear equivalence may be pushed down to X, giving

$$K_X + \Delta \sim R \frac{1}{1 + \lambda} f_*(F' + C_\lambda - B_\lambda) \geq 0.$$

This is what we wanted to show. \Box
The following is an easy property of rational polyhedral cones.

Lemma 4.3. Let $\mathcal{C} \subset \mathbb{R}^n$ be a rational polyhedral cone. If $(x_m) \subset \mathcal{C}$ is a sequence converging to $x \in \mathcal{C}$, then there exists an $\varepsilon > 0$ such that for all $m \gg 0$,

$$x_m + \varepsilon(x_m - x) \in \mathcal{C}. $$

The next lemma says that in a certain situation, the pseudo-effective cone has a similar property. In particular, the (closed, convex) set $\{\Upsilon' \in W \mid K_X + A + \Upsilon' \text{ is pseudo-effective}\}$ cannot have a “circular part” like the shaded region in the following picture.

Lemma 4.4. Assume Theorems A_{n-1} and B_{n-1}.

Let $(X, S + S_1 + \cdots + S_p)$ be a log smooth projective pair of dimension n, A an ample \mathbb{Q}-divisor on X, $W = \langle S, S_1, \ldots, S_p \rangle_{\mathbb{R}}$, and assume $\Upsilon \in \mathcal{L}(W)$, $\Upsilon_m \in W$ are divisors such that

- $\Upsilon_m \to \Upsilon$,
- there is $0 \leq \Sigma \in W$ such that $K_X + A + \Upsilon \sim_{\mathbb{R}} \Sigma$,
- all $K_X + A + \Upsilon_m$ are pseudo-effective.

Assume furthermore the following technical conditions:

- $\text{mult}_S \Upsilon = 1$,
- $\text{mult}_S \Sigma > 0$,
- $\sigma_S(K_X + A + \Upsilon) = 0$.

Then there exists an $\varepsilon > 0$ such that for infinitely many m,

$$K_X + A + \Upsilon_m + \varepsilon(\Upsilon_m - \Upsilon)$$

is pseudo-effective.
Sketch of proof. Set \(V = \langle S_1, \ldots, S_p \rangle \subset W \) and \(\Sigma_m = \Sigma + Y_m - Y \). Then \(\Sigma_m \rightarrow \Sigma \) and the \(\Sigma_m \) are pseudo-effective. Let \(Z \in V \) and \(0 < \varepsilon \ll 1 \) be such that \(Y - \varepsilon Z - S \) is in the interior of \(L(V) \) and \(A' = A + \varepsilon Z \) is still ample. Define

\[
P = \Sigma - (Y - \varepsilon Z - S) + B^S_m(V) \subset W,
\]

and let \(\mathcal{D} = \mathbb{R}_+ \cdot \mathcal{P} \subset W \) be the cone over \(\mathcal{P} \). By Theorem 1.3, \(\mathcal{D} \) is a rational polyhedral cone. And since \(\Sigma - (Y - \varepsilon Z - S) \sim \mathbb{R} k_X + S + A' \), all divisors in \(\mathcal{D} \) are in particular pseudo-effective by the definition of \(B^S_m(V) \).

We claim that setting \(\Gamma_m = \Sigma_m - \sigma_S(\Sigma_m)S \), after passing to a subsequence we have \(\Gamma_m \in \mathcal{D} \) for all \(m \), and \(\Gamma_m \rightarrow \Sigma \). We will not prove the claim here, but let us say how to finish the proof assuming the claim. By Lemma 4.3 there is an \(\varepsilon > 0 \) such that for \(m \gg 0 \), \(\Psi_m = \Gamma_m + \varepsilon(\Gamma_m - \Sigma) \) is pseudo-effective (since it is in \(\mathcal{D} \)). Then

\[
\Sigma'_m := \Sigma_m + \varepsilon(\Sigma_m - \Sigma) = \Psi_m + (1 + \varepsilon)(\Sigma_m - \Gamma_m)
\]
is pseudo-effective too. Hence so is \(K_X + A + \Upsilon_m + \varepsilon(\Upsilon_m - \Upsilon) \sim \mathbb{R} \Sigma_m \), which proves the lemma.

Theorem 4.5. Theorem \(A_{n-1} \) and Theorem \(B_{n-1} \) imply Theorem \(B_n \).

Sketch of proof. The proof is divided into five steps. Remember that the goal is to show that \(\mathcal{E}_A(V) \) is a rational polytope.

1. Note that by Lemma 4.1 in the definition of \(\mathcal{E}_A(V) \) we may replace linear equivalence by numerical equivalence without changing the set.

2. Show that \(\mathcal{E}_A(V) \) is closed (apply Lemma 4.2).

3. Show that \(\mathcal{E}_A(V) \) is locally a polytope, i.e. extreme points don’t accumulate (apply Lemma 4.4).

4. By compactness, \(\mathcal{E}_A(V) \) is then a polytope.

5. Show that \(\mathcal{E}_A(V) \) is a rational polytope (because the set of numerically trivial divisors in \(V \) is a rational subspace of \(V \)).

The second step is by far the most difficult one.

5 Proof of Theorem \(A_n \)

The idea of Lazizi’s proof that Theorem \(A_{n-1} \) and Theorem \(B_{n-1} \) imply Theorem \(A_n \) goes back to Shokurov’s proof of the existence of “pl-flips”. This may roughly be described as follows: Start with a log smooth plt pair \((X, S + B) \), where \(S \) is a prime divisor, \([B] = 0 \), and \(S \sim \mathbb{Q} r(K_X + S + B) \) for some rational \(r > 0 \). Then:
• Show that the restricted algebra \(\text{Res}_S R(X, K_X + S + B) \) is finitely generated. This is accomplished by finding a suitable divisor \(C \) on \(S \) such that

\[
\text{Res}_S R(X, K_X + S + B) \cong R(S, K_S + C).
\]

By induction on the dimension, the latter ring is finitely generated, hence so is the former. — One might hope naively that taking \(C = B|_S \) would do. However, it doesn’t. This is where lifting lemmas come in.

• Conclude finite generation of \(R(X, K_X + S + B) \) from that of \(\text{Res}_S R(X, K_X + S + B) \). This step is actually much easier: By the assumption \(S \sim \mathbb{Q} r(K_X + S + B) \), we only need to conclude finite generation of \(R(X, S) \) from that of \(\text{Res}_S R(X, S) \). But it is easy to see that if \(\sigma_1, \ldots, \sigma_\ell \in R(X, S) \) are sections such that \(\sigma_1|_S, \ldots, \sigma_\ell|_S \) generate \(\text{Res}_S R(X, S) \), and \(\sigma \in H^0(X, \mathcal{O}_X(S)) \) is a section whose zero divisor is exactly \(S \), then the set \(\{ \sigma, \sigma_1, \ldots, \sigma_\ell \} \) generates \(R(X, S) \).

Comparing Lazíc’s proof to the special case done by Shokurov, the first step is very similar: apply a lifting lemma and do induction on the dimension. However, in the second step we cannot use an assumption like \(S \sim \mathbb{Q} r(K_X + S + B) \), because this held only by a “relative Picard number one” argument, but in general the Picard number may be arbitrarily large. So \(H^0(X, \mathcal{O}_X(S)) \not\subset R(X, K_X + S + B) \) and we cannot take an extra generator \(\sigma \) like Shokurov did. In order to remedy this situation, we should consider a bigger ring, like \(R(X; K_X + S + B) \). Note that this ring is graded over \(\mathbb{N}^2 \) instead of \(\mathbb{N} \). This was Corti’s original idea: that sometimes higher rank grading is better than rank one.

The first step in the strategy outlined above is carried out by the following lemma.

Lemma 5.1. Assume Theorems \(A_{n-1} \) and Theorem \(B_{n-1} \).

Let \((X, S_1 + \sum_{i=1}^p S_i) \) be a log smooth projective pair of dimension \(n \), where \(S \) and all \(S_i \) are distinct prime divisors. Let \(V = \sum_{i=1}^p \mathbb{R} S_i \subseteq \text{Div}_\mathbb{R}(X) \), let \(A \) be an ample \(\mathbb{Q} \)-divisor on \(X \), let \(B_1, \ldots, B_m \in \mathcal{E}_{S+A}(V) \) be \(\mathbb{Q} \)-divisors, and denote \(D_i = K_X + S + A + B_i \).

Then the ring \(\text{Res}_S R(X; D_1, \ldots, D_m) \) is finitely generated.

A special case of the second step is contained in the next theorem.

Theorem 5.2. Assume Theorems \(A_{n-1} \) and Theorem \(B_{n-1} \).

Let \((X, S_1 + S_2) \) be a log smooth projective pair of dimension \(n \), where \(S_1 \) and \(S_2 \) are distinct prime divisors. Let \(B \) be a \(\mathbb{Q} \)-divisor with \(|B| = 0 \) which is supported on \(S_1 + S_2 \), and let \(A \) be an ample \(\mathbb{Q} \)-divisor. Assume that \(K_X + A + B \sim \mathbb{Q} D \) for some effective \(\mathbb{Q} \)-divisor \(D \) supported on \(S_1 + S_2 \).

Then the ring \(R(X, K_X + A + B) \) is finitely generated.
Obviously, Theorem 5.2 stops short of proving Theorem A in full generality. We indicate how to get rid of the remaining extra assumptions.

- If we have an arbitrary number of components S_1, \ldots, S_p instead of two, the proof goes exactly the same way. It is just more difficult to draw pictures.

- If $K_X + A + B$ is not \mathbb{Q}-linearly equivalent to any effective divisor, its section ring is trivial, so we are done anyway. If $K_X + A + B \sim_{\mathbb{Q}} D \geq 0$, we pass to a log resolution of $(X, S_1 + \cdots + S_p + D)$, where we may assume that the support of D is snc.

- If we have an arbitrary number of divisors B_1, \ldots, B_k instead of just one, the proof is again similar to the one above, but a bit more complicated. In particular, the second point of this list (showing that we may assume all $K_X + A + B_i$ to be effective) is not so easy, and we have to apply Theorem B.

Altogether, this shows the following.

Theorem 5.3. Theorem A_{n-1} and Theorem B_n imply Theorem A_n.