Übungsaufgaben zur Vorlesung "Gruppenwirkungen auf algebraischen Varietäten"

3. Blatt

Abgabetermin: Fr, 17.5.2013

Aufgabe 3-1 Es sei X ein topologischer Raum, $\alpha: G \times X \to X$ eine stetige Gruppenwirkung. Beweise, daß X/G versehen mit der Quotiententopologie dann und genau dann T_1 ist, wenn alle Bahnen von α abgeschlossen sind.

Aufgabe 3-2 Es sie (X, τ) ein topologischer Raum Y, Z Mengen,

$$X \stackrel{f}{\twoheadrightarrow} Y \stackrel{g}{\twoheadrightarrow} Z$$

surjektive Abbildungen. Dann gilt

$$\tau_{g \circ f} = (\tau_f)_g .$$

Definition. Eine stetige Gruppenwirkung $\alpha \colon G \times X \to X$ heißt

- frei, falls $G_x = 1$ für jedes $x \in X$;
- \bullet eigentlich diskontinuierlich, falls jeder Punkt $x \in X$ eine offene Umgebung $x \in U_X \subseteq X$ besitzt, so daß

$$(q \cdot U_r) \cap U_r = \emptyset$$

für alle $g \in G$ bis auf endlich viele Ausnahmen.

Aufgabe 3-3 Es sei $\alpha \colon G \times X \to X$ eine freie und eigentlich diskontinuierliche Gruppenwirkung, $S \subseteq G$ eine G-stabile Untermenge (d. h. $g \cdot S \subseteq S$ für jedes $g \in G$). Man zeige, daß $\alpha|_S \colon G \times S \to D$ ebenfalls frei und eigentlich diskontinuierlich ist.

Aufgabe 3-4 Es sei X ein Hausdorffscher topologischer Raum, $\alpha: G \times X \to X$ eine (stetige) freie und eigentlich diskontinuierliche Gruppenwirkung. Man beweise, daß auch X/G Hausdorffsch ist.

Aufgabe 3-5 Es sei $\alpha \colon G \times X \to X$ eine stetige Gruppenwirkung mit der Eigenschaft, daß es für jeden Punkt $x \in X$ eine offene Umgebung $x \in U_x \subseteq X$ gibt, für welche

$$(g \cdot U_x) \cap U_x \neq \emptyset \iff g = 1$$
.

Man zeige, daß die Wirkung α frei und eigentlich diskontinuierlich ist.

Aufgabe 3-6 Es sei G eine topologische Gruppe, $H \leq G$ eine Untergruppe. Man beweise, daß G/H dann und genau dann diskret ist, wenn $H \subseteq G$ offen ist.