2010.03.30.

REPRESENTATION THEORY/SPRING 2010/ E. Horváth and A. Küronya PRACTICE SESSION 8

1. (HW) Let L be the real vector space R^{3}. Define $[x, y]:=x \times y$ (cross product of vectors) for $x, y \in L$, and verify that L is a Lie algebra.
Write down the structure constants relative to the usual basis of R^{3}.
Show that this Lie algebra is isomorphic to so(3), the special orthogonal Lie algebra, consisting of 3×3 antisymmetric matrices of trace zero.
2. Describe all Lie algebras of dimension at most two over the field K.
3. The Lie algebra A_{l} : special linear Lie algebra $s l(l+1, K)$ consisting of all trace zero matrices over the field K. Show that this is a subalgebra of $g l(l+1, K)$. Determine its dimension, give a basis of it.
4. A bilinear function $f: V_{K} \times V_{K} \rightarrow K$ is called skew symmetric (or symplectic) if $f(u, v)=-f(v, u)$ for all $u, v \in V$.
a) Show that a bilinear function is skew symmetric iff its matrix is skew symmetric. A bilinear function f is called nondegenerate if for every nonzero vector $u \in V$ there exists a vector $v \in V$ s.t. $f(u, v) \neq 0$.
b) Show that a bilinear function f is nondegenerate iff its matrix is regular.
5. The symplectic Lie algebra C_{l} : Let $\operatorname{dim}_{R} V=2 l$. Let $J=\left(\begin{array}{cc}0_{l} & I_{l} \\ -I_{l} & 0_{l}\end{array}\right)$. Let $f(u, v)=$ $u^{T} J v$ be the antisymmetric, nondegenerate bilinear function with matrix J. Let $S p(2 l, R)=$ $\{G \in G L(n, R) \mid f(G u, G v)=f(u, v)\}$ the group preserving the above symplectic bilinear function.
a)Show that its Lie algebra $\operatorname{sp}(2 l, R)=\left\{X \in g l(2 l, R) \mid X^{T} J=-J X\right\}$
b)In general $s p(2 l, K)=\left\{X \in g l(2 l, K) \mid X^{T} J=-J X\right\}$
c) Show that this algebra consists of matrices $X=\left(\begin{array}{cc}A_{l} & B_{l} \\ C_{l} & D_{l}\end{array}\right)$, where $A_{l}^{T}=-D_{l}, B_{l}^{T}=B_{l}$, $C_{l}^{T}=C_{l}$.
d) Show that its dimension is $2 l^{2}+l$ and give a basis of it!
6.(HW) The orthogonal Lie algebra B_{l} : Let $J=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0_{l} & I_{l} \\ 0 & I_{l} & 0_{l}\end{array}\right)$. Let $o(2 l+1, K)=\{X \in$ $\left.g l(2 l+1, K) \mid X^{T} J+J X=0\right\}$. Describe the matrices belonging to this algebra. Show that its dimension is $2 l^{2}+l$.
6. The orthogonal Lie algebra $D_{l} . J=\left(\begin{array}{cc}0_{l} & I_{l} \\ I_{l} & O_{l}\end{array}\right)$. Let $o(2 l, K)=\left\{X \in g l(2 l, K) \mid X^{T} J+\right.$ $J X=0\}$. Describe the matrices belonging to this algebra. Show that its dimension is $2 l^{2}-l$.
8.a) Show that $t(n, K)$ the upper triangular matrices in $g l(n, K)$ forms a subalgebra.
b) Show that the stricly upper triangular matrices $n(n, K)$ in $g l(n, K)$ is a subalgebra.
c) Show that the diagonal matrices $d(n, K)$ in $g l(n, K)$ form a subalgebra.
7. Let $H, K \leq L$ subalgebras of the Lie algebra L. Define $[H, K]:=\langle[h, k] \mid h \in H, k \in K\rangle$ be the subspace generated by commutators $[h, k]$.
a) Show that $[d(n, k), n(n, K)]=n(n, K)$.
b) Show that $[t(n, k), n(n, k)]=n(n, k)$.
8. Show that the adjoint map $a d: L \rightarrow(\operatorname{Der},[]$,$) is a Lie algebra homomorphism.$
9. Show that if a matrix $x \in g l(n, F)$ has n distinct eigenvalues $a_{1}, \ldots, a_{n} \in F$ then $a d x: g l(n, F) \rightarrow g l(n, F)$ has n^{2} not necessarily distict eigenvalues $a_{i}-a_{j}, 1 \leq i, j \leq n$.
10. Prove that the set of all inner derivations $a d x, x \in L$ is an ideal of $\operatorname{Der} L$.
11. a) Prove that $[g l(n, F), g l(n, F)]=s l(n, F)$.
b) Prove that $Z(g l(n, F))$ is just the set of scalar matrices in $g l(n, F)$.
c) Show that if charF is not a divisor of n, then $Z(s l(n, F))=0$.
d) Show that if charF divides n then $Z(s l(n, F))$ consists of all scalar matrices in $g l(n, F)$.
