Representation Theory / Spring 2010 / Erzsébet Horváth & Alex Küronya

Practice Session # 6

Due date: April 13^{th}

The homework problem with an asterisk is the one you are supposed to submit.

Homework

1.* (Campbell-Hausdorff-Baker formula for the Heisenberg group) Let $A, B \in Mat_n(\mathbb{R})$ be matrices such that [A[AB]] = [B[AB]] = 0. Then prove that

$$e^{tA}e^{tB} = e^{tA+tB+\frac{t^2}{2}[AB]}$$

by showing that both sides satisfy the differential equation

$$\frac{dX(t)}{dt} = X(t)(A+B)$$

with the initial condition X(t) =Id.

- 2. Prove that the exponential map $\exp: \mathfrak{u}(n) \to U(n)$ is surjective, but not injective.
- 3. Verify that the exponential map of the Heisenberg group is a bijection.
- 4. Prove that the following properties characterize the integral curve $\phi_X : \mathbb{R} \to G$ uniquely $(X \in \mathfrak{G})$. (1) $\phi'_X(0) = X$, (2) f = 0 and f = 0 is a Lie mean homeomorphism.
 - (2) $\phi_X : \mathbb{R} \to G$ is a Lie group homomorphism.
- 5. Let $\Phi:G\to H$ be a Lie group homomorphism, $X\in\mathfrak{g}.$ Show that $\phi_{(T_1\Phi)(X)}\ =\ \Phi\circ\phi_X\ .$